Блок питания с индикацией на pic-микроконтроллере

Программирование устройств на PIC микроконтроллерах

  • 07/27/14—21:26: Термометр на DS18B20
  •      Осмелюсь предложить для повторения простой термометр на датчике DS18B20 (DS18S20) и PIC16F630.     Сделано для применения в климатической приточной системе на другом МК, а данная схема явилась побочным продуктом разработки. Особенностью является высокая скорость измерений (период отсчетов около 110 мс). Диапазон обычен: -55…+125 , разрешающая способность 1 градус, точность соответствует точности датчика — 0,5 градуса (в диапазоне -10…+85).
  • 07/27/14—21:38: Переключатели на микроконтроллере
  •      Электрические цепи зачастую переключают с помощью обычных механических переключателей. Несомненные достоинства такого решения — простота, достаточная надёжность, невысокая стоимость. Однако механическим переключателям свойственны и некоторые недостатки. Их контакты и подвижные элементы подвержены износу, а если возникает необходимость переключать несколько цепей в определённой последовательности, конструкция переключателя существенно усложняется.     Из всего многообразия механических переключателей наиболее проста по конструкции и надёжна обычная кнопка без фиксации. Такие кнопки и применены в качестве управляющих в описываемых ниже конструкциях, а логика переключения при последовательных нажатиях на эти кнопки заложена в программу микроконтроллера.
  • 07/27/14—21:41: Велокомпьютер на микроконтроллере PIC16F628A
  •      По просьбе сына оборудовать его велосипед спидометром автор изготовил этот прибор и заодно наделил его дополнительными функциями, превратив в полноценный велокомпьютер. Базой для разработки послужил сравнительно недорогой и широко распространённый микроконтроллер PIC16F628A, индикатор был выбран семиэлементный светодиодный на четыре десятичных разряда. С его помощью удалось вывести и все нужные для пояснительных надписей буквы латинского алфавита. Велокомпьютер имеет небольшие размеры и автономное питание от батареи гальванических элементов или аккумуляторов, энергии которых при средней интенсивности поездок хватает на несколько месяцев работы.     Почти все аналогичные приборы, описания которых встречаются в Интернете, имеют ЖК-индикаторы на одну-две строки по 8—16 символов в каждой. Такие индикаторы, наряду с несомненными достоинствами (возможность вывода не только цифр, но и букв, отсутствие необходимости постоянно обновлять информацию на экране, малое энергопотребление, относительно небольшое число линий управления), имеют и существенные недостатки. К ним можно отнести невысокую ударопрочность, небольшой размер символов, деградацию при длительном воздействии прямых солнечных лучей, недостаточно широкий угол обзора, относительно высокую стоимость.
  • 07/28/14—21:22: Зарядное устройство из компьютерного блока питания
  •      В статье приведена схема и методика переделки блока питания (БП) от отслужившего свой век ПК в мощное устройство для зарядки свинцово-кислотных аккумуляторных батарей, практически любой емкости, зарядным током до 12 А. Работа по переделке БП проста и может быть проведена даже начинающим радиолюбителем, а само устройство получается недорогим и удобным в использовании.
  • 07/28/14—21:25: Простой встраиваемый ампервольтметр на PIC16F676
  •      В статье представлена конструкция цифрового амперметра-вольтметра, предназначенного для совместной работы с универсальной платой управления лабораторными блоками питания. Его особенностью является отсутствие собственного датчика тока. При измерении тока используется датчик тока платы управления. Рассмотренная конструкция идеально подходит для переделки компьютерных блоков питания (БП) в лабораторные источники питания постоянного тока.     Переделка компьютерных блоков питания в лабораторные оказалась весьма востребована. В поисках вариантов схемы управления и защиты автор обнаружил универсальную плату управления, описанную в [1]. Схема платы управления оказалась очень простой и эффективной, удовлетворяющей всем требованиям управления и защиты мощного лабораторного источника питания постоянного тока.
  • 07/28/14—21:37: Контроллер RGB светодиодной ленты
  •      Описываемое устройство позволяет произвольным образом регулировать цвет свечения ленты со светодиодами трёх базовых цветов — красного (R), зелёного (G) и синего (B). Оно рассчитано на работу с лентой с объединённым анодным выводом всех цветовых компонент, но может быть приспособлено и к лентам со светодиодами, включёнными в другой полярности.     Установка нужного цвета свечения RGB светодиодной ленты производится изменением яркости образующих его компонент R, G и В за счёт варьирования длительности импульсов, питающих соответствующие светодиоды, при постоянной частоте их повторения (76 Гц). Для каждой компоненты предусмотрено по 256 ступеней изменения длительности импульсов и, следовательно, её яркости. Имеется возможность запомнить сочетания яркости компонент RGB для трёх оттенков цвета свечения ленты и быстро устанавливать эти оттенки простыми нажатиями на предназначенные для этого кнопки.
  • 07/29/14—21:16: Автоматический блок управления стеклоочистителем
  •      Ниже приводится вариант блока управления стеклоочистителем. Этот блок управляет работой щеток и одновременно включением насоса омывателя ветрового стекла.     Особенность предлагаемого читателям микроконтроллерного устройства — отсутствие в нём переменного резистора или переключателя для регулирования длительности паузы между взмахами щёток стеклоочистителя. Программа, загруженная в микроконтроллер, следит за действиями водителя и подстраивает под них периодичность включения стеклоочистителя, повышая комфортность и безопасность управления автомобилем.
  • 07/29/14—21:20: Программатор-отладчик PicMon
  •      Предлагаемое простое устройство и обслуживающие его компьютерные программы позволяют не только запрограммировать распространённые микроконтроллеры фирмы Microchip, но и запустить загруженную программу на исполнение, а в ходе его наблюдать за изменением состояния регистров общего и специального назначения и ячеек EEPROM работающего микроконтроллера. Не выходя из программы, можно изменять значения, хранящиеся в таких регистрах и ячейках. Полученная информация позволяет судить о правильности работы программы и выявлять допущенные при её разработке ошибки.     В статье рассказано, как подготовить программу микроконтроллера к отладке, описаны компьютерные программы, разработанные автором для управления программированием и отладкой, приведён пример поиска с помощью отладчика ошибки в программе и её исправления.
  • 07/29/14—21:30: Портативный MP3-плейер
  •      Сегодня в продаже имеется множество карманных МРЗ-плей еров, да и в большинстве сотовых телефонов предусмотрена возможность воспроизводить аудиозаписи такого формата. Но автору захотелось создать свой собственный небольшой плейер, в результате на свет появилось устройство, описанное в этой статье. Оно позволяет воспроизводить МРЗ-файлы со скоростью цифрового аудиопотока до 256 Кбит/с и длительностью до 99 мин 59 с.
         Лабораторный блок питания с цифровым вольтметром и амперметром служит мне уже полгода. Собран он в корпусе от компьютерного блока питания. К оформлению лицевой панели пока руки не доходят. Напряжение регулируется от 1,32 до 24,00 вольт, ток — до 3 ампер. Индикаторами служат 4-х цифровые светодиодные индикаторы с общим катодом. Вольтметр с разрешающей способностью 0,04. В (с гашением незначащих нулей в двух левых индикаторах),  запятая после 2-го знака. Амперметр с разрешающей способностью 4 мА (с гашением незначащих нулей в двух левых индикаторах), запятая после 1-го знака.
         Чтобы управлять поворотным устройством остронаправленной УКВ-антенны, необходима автоматизированная система её наведения, оснащённая всеми функциями, обеспечивающими комфортную работу оператора радиостанции в эфире. Один из вариантов такой системы представлен вниманию читателя в предлагаемой статье.     Для эффективного проведения связей на любительских УКВ-диапазонах используют многоэлементные направленные антенны, для работы с которыми требуются системы для их разворота в сторону корреспондента, так называемые поворотные устройства. С расширением использования спутниковых ретрансляторов для проведения дальних радиосвязей на УКВ потребовались поворотные устройства, обеспечивающие изменение направления максимального излучения антенны не только по азимуту (в горизонтальной плоскости), но и по углу места (вертикальной плоскости). Это обусловлено тем, что спутник-ретранслятор движется по эллиптической орбите на значительной высоте над земной поверхностью. Система наведения антенны на спутник должна постоянно корректировать её направление в зависимости от положения спутника на небосклоне. Управлять наведением вручную, постоянно доворачивая антенну, довольно сложно и не эффективно, поэтому сегодня этот процесс автоматизируют с помощью компьютера.
         Назначение этого коммутатора — простое и удобное подключение микроконтроллеров PIC в корпусах DIP с различным числом выводов к программатору. Все они устанавливаются в одну и ту же 40-гнёздную панель ZIF (Zero Insertion Force — с нулевым усилием вставления) по принципу «первый вывод в первое гнездо».     Радиолюбители сегодня широко используют в своих конструкциях микроконтроллеры. Наиболее удобный и распространённый программатор для внутрисхемного (без демонтажа из целевого устройства) программирования микроконтроллеров семейства PIC — PICkit 2 и его модификации. Однако многие радиолюбители предпочитают загружать программу в микроконтроллер ещё до установки его в свою конструкцию. Для этого к PICkit 2 приходится делать приставки с панелью под программируемый микроконтроллер или с несколькими панелями, если нужно программировать микроконтроллеры разных типов с различным числом выводов. В некоторых случаях используют панель ZIF-40, в которую микроконтроллер каждого типа вставляют особым образом. Это очень неудобно и часто приводит к ошибкам, в результате которых неправильно вставленный микроконтроллер зачастую выходит из строя.
  • 08/03/14—22:20: Счётчик людей в помещении, управляющий освещением
  •      Когда люди в течение дня приходят в помещение и уходят из него, свет, который забыл выключить ушедший последним, нередко остаётся гореть на всю ночь. Предлагаемый прибор, постоянно подсчитывая входящих и выходящих, всегда «знает”, сколько человек находится внутри. Устройство автоматически включает освещение, как только в помещение кто-нибудь входит, и выключает его, когда все вышли.     Построен прибор на микроконтроллере PIC12F629, обрабатывающем сигналы двух оптических бесконтактных датчиков положения объекта Opto-Bero 3RG7010-0CC00 фирмы Siemens, установленных на косяке двери так, что каждый входящий пересекает чувствительную зону сначала первого, а затем второго датчика, а выходящий пересекает их в обратном порядке.
         Регулятор, описание которого приведено в этой статье, был разработан и изготовлен по просьбе товарища – владельца грузового автомобиля ЗиЛ 5301 («Бычок»). Необходимость переделки управления скоростью вентилятора печки обусловлена тем, что штатная система отопления этого автомобиля имеет только 2 режима отопления салона – средний и максимальный. Разработанный автором регулятор имеет 5 ступеней регулировки отопления, а установленный уровень сохраняется в памяти микроконтроллера регулятора при выключении зажигания. Этот регулятор можно использовать также и для замены механических переключателей скорости вентиляторов печки с балластными резисторами других автомобилей с бортовой сетью 12 В.     Для обогрева салона в современных автомобилях в качестве теплоносителя используется охлаждающая жидкость, которая нагревается, отбирая тепловую энергию от работающего двигателя.
  • 08/03/14—22:36: Плата для программатора
  •      Иногда необходимо запрограммировать микроконтроллеры в DIP корпусе в устройствах с отсутствующим разъемом внутрисхемного программирования. В статье приводится пример печатной платы для программирования микроконтроллров PIC в DIP корпусах. Данную переходную плату я использую совместно с программатором-отладчиком PICkit3.
  • 08/04/14—22:36: Прибор для поиска скрытой проводки на PIC12F629
  •      Говорят, что ремонт – это стихийное бедствие. На него вечно не хватает ни денег, ни времени. Почти каждый, кто начинает ремонт, думает, как и на чем можно сэкономить. Поэтому ремонт в своей квартире автор решил начать самостоятельно с переделки проводки, а для этого надо было разобраться в трассировке старой внутренней проводки. Потому и был изготовлен прибор, описание которого приведено в этой статье.     Вначале были найдены в радиолюбительской прессе и Интернете различные конструкции приборов для поиска скрытой проводки. Выбор пал на прибор, собранный на микроконтроллере компании Microchip PIC12F629, из статьи. Подкупили характеристики и возможности прибора, простота схемы, доступность и невысокая цена комплектующих деталей.
  • 08/04/14—22:40: Фотореле-таймер
  •      Если в темное время суток нажать на одну из установленных в подъезде и подсвеченных светодиодами кнопок, предлагаемое устройство включит в нем свет на заданное время. Однако его можно с успехом использовать и для автоматического включения и выключения ночного освещения во дворе или на улице, и даже в качестве обычного таймера, включающего на определенное время любую нагрузку.     Предлагаю вниманию читателей разработанное мной недорогое, экономичное и простое устройство управления освещением — универсальное фотореле-таймер, позволяющее экономно расходовать электроэнергию на освещение, например, подъездов жилых домов.
  • 08/04/14—22:42: Ламинатор для изготовления печатных плат
  •      Многие радиолюбители давно уже применяют технологию термопереноса рисунка печатных проводников, напечатанного на бумаге лазерным принтером, на фольгу заготовки будущей платы с помощью обычного утюга. К сожалению, пользуясь таким инструментом, очень сложно достичь оптимального прижатия бумаги к заготовке платы и идеально выдержать температуру, необходимую для переноса расплавленного тонера на фольгу. Процесс приходится, как правило, много раз повторять, опытным путём добиваясь приемлемого качества рисунка на фольге.     Сегодня у многих радиолюбителей имеются не вполне исправные или морально устаревшие и давно не используемые по назначению лазерные принтеры. Такой аппарат с успехом может послужить основой для изготовления ламинатора, обеспечивающего надёжный и высококачественный перенос рисунка.
Читайте также:  Эффективная замена стандартных стабилизаторов серии 78xx

Источник: http://biblioclasm57.rssing.com/chan-27280666/all_p3.html

Лабораторный блок питания 1,2 … 30В/4А с цифровой индикацией

В лаборатории каждого радиолюбителя должен быть лабораторный блок питания с возможностью регулировки выходного напряжения и тока, с защитой от коротких замыканий и индикацией «на борту». Идеальным решением может стать покупной блок питания. Однако многие, ради спортивного интереса, собирают блоки питания самостоятельно.

Вот и у меня появилась необходимость в блоке питания. Решил собрать самостоятельно. В качестве основы выбрал набор Мастер Кит NK037. Подробнее ознакомиться с набором можно на сайте masterkit.ru. В качестве индикации выбрал вольтметр на PIC16F676. Проверить автомобильные форсунки совсем не сложно.

В статье — Устройство проверки форсунок на PIC12F615 описывается электроника для стенда.

Технические характеристики блока питания:

  1. Выходное напряжение – 1.1 … 25В;
  2. Максимальный выходной ток – 4А;
  3. Защита от короткого замыкания;
  4. Цифровая индикация.

О схеме

Принципиальная схема стабилизатора напряжения из набора NK037 показана на рисунке 1

Рисунок 1 – Принципиальная схема стабилизатора напряжения

Основа схемы – интегральный стабилизатор напряжения LM317. Схема набора NK037 не сильно отличается от типового включения микросхемы LM317 из даташита. Отличие выделено красным контуром.

Транзистор VT2 – это токовый ключ, а на транзисторе VT1 собрана защита от превышения тока. Как показала практика, защита от превышения тока сразу не запускается и нуждается в наладке. Сам не стал возиться с этой защитой и просто ее исключил.

На рисунке 2 показана схема стабилизатора напряжения с моими корректировками.

Рисунок 2 – Принципиальная схема стабилизатора напряжения + небольшие корректировки.

В набор NK037 не входит понижающий сетевой трансформатор, так что придется покупать отдельно. Напряжение на вторичной обмотке должно быть не менее 27-28В. Ну, а ток не менее 4А. Перечень всех компонентов, необходимых для сборки набора, приведен в таблице 1.

Таблица 1 – Перечень компонентов для стабилизатора напряжения.

Позиционное обозначение Наименование Аналог/замена
С1 Конденсатор электролитический – 4700мкФх50В
С2 Конденсатор керамический – 0,1мкФх50В
С3,С4 Конденсатор электролитический – 10мкФх50В
DA1 Интегральный стабилизатор LM317
G Диодный мост RS405 KBL06
R1 Резистор 5 Вт 0,22 Ом
R2 Резистор 2Вт 1,8…2,7 Ом
R3 Резистор 0,125Вт 4,7 кОм
R4 Резистор 0,125Вт 22 Ом
R5 Резистор 0,125Вт 220 Ом
VD Диод 1N4007
VT1 Транзистор КТ814
VT2 Транзистор КТ818

О печатной плате

На рисунках 3, 4 показана печатная плата и размещение компонентов.

Рисунок 3 – Печатная плата стабилизатора напряжения.

Рисунок 4 – Размещение компонентов.

Внешний вид готовой платы показан на рисунке 5.

Рисунок 5 – Внешний вид готовой платы набора NK037.

Транзистор VT2, микросхема DA1 и переменный резистор с платы вынесены.

На рисунке 6 можно посмотреть внешний вид вольтметра на PIC16F676. Вольтметр будет использоваться для последующей индикации выходного напряжения.

Рисунок 6 – Внешний вид вольтметра на PIC16F676.

О сборке

А теперь самое интересное — сборка лабораторного блока питания.

В качестве основы, для крепления двух плат и радиаторов, выбрал обычный ламинат толщиною около 8мм.

Рисунок 7 – Основа для двух плат и радиаторов.

Саму основу, чуть позже, буду крепить к металлическому корпусу, а пока, чтоб не мешались шляпки винтов, засверливаю их под потай.

Рисунок 8 – Засверливаем ламинат под потай.

Рисунок 9 – Засверливаем ламинат под потай.

Вот что получилось – рисунок 10.

Рисунок 10 – Две платы и радиаторы на основании из ламината.

В качестве сетевого понижающего трансформатора использовал трансформатор с тороидальным сердечником, который закрепил к корпусу при помощи мебельной петли и длинного винта. Под трансформатор наклеил двухсторонний скотч, исключающий скольжение. Рисунки 11,12.

Рисунок 11 – Крепление трансформатора к корпусу блока питания.

Рисунок 12 – Снизу трансформатора приклеен двухсторонний скотч.

Сам корпус состоит из двух г-образных пластин, которые винтами скрепляются между собою. Передняя и задняя панели сделаны из гетинакса.

В задней панели насверлил отверстий для вентиляции, а также отверстие для сетевого шнура и предохранителя — рисунок 13.

Рисунок 13 – Внешний вид задней панели.

Отверстия сверлил, используя шаблон — рисунок 14.

Рисунок 14 – Шаблон для задней панели.

Сетевой шнур к задней панели прикрепил, используя небольшой хомут — рисунок 15.

Рисунок 15 – Крепление сетевого шнура к задней панели.

На передней панели лабораторного блока питания закрепил индикатор, переменный резистор, клеммы для проводов питания, кнопку включения сети и светодиод. Рисунки 16-18.

Рисунок 16 – Крепление индикатора на передней панели.

Рисунок 17 – Крепление индикатора на передней панели.

Рисунок 18 – Крепление сетевого выключателя и светодиода.

Внешний вид передней панели — рисунок 19.

Рисунок 19 – Внешний вид передней панели лабораторного блока питания.

Ко дну корпуса прикрутил резиновые ножки, чтоб не скользил по столу – рисунок 20.

Рисунок 20 – Резиновые ножки, чтоб блок питания не скользил.

Фото готового лабораторного блока питания можно посмотреть на рисунках 21, 22

Рисунок 21 – Готовый лабораторный блок питания.

Рисунок 22 – Готовый лабораторный блок питания.

Интересное видео

В качестве заключения добавлю, что блок питания работает на Ура! Напряжение держит стабильно, кратковременная защита от короткого замыкания работает. Всем кто захочет повторить лабораторный блок питания с цифровой индикацией, желаю исправных компонентов!

Файлы к статье:

Лабораторный блок питания 1,2 … 30В/4А с цифровой индикацией(статья)

Журнал радиодело №2 за 2005год

Источник: https://pichobby.lg.ua/shemu/istochniki-pitaniya/item/28-blok-pitaniya.html

Лабораторный бп с цифровым ампервольтметром

   Предлагаю всем радиолюбителям для повторения схему проверенного ампервольтметра на микроконтроллере 16F676. Разрабатывалась она под блок питания, схема лабораторного БП показана в статье ниже. А/В-метр позволяет производить измерения напряжения от 0-50 вольт, амперы — от 0-10 ампер. Работает устройство прекрасно в течении уже довольно длительного времени.

   В печатной плате я бы посоветовал предусмотреть место под конденсатор 0,1-2 мкФ на 12-й вывод МК, на случай если надо будет сглаживать пульсации и помехи, которые будет ловить входной усилитель. Элементы входной части на ОУ (R3, R4, RV2) необходимо подбирать в зависимости от номинала шунта (R101) и тока измерения.

   Электросхема самого блока питания особеностей особых не имеет. Эта рабочая схема функционирует стабильно, печатная плата без ошибок. Его схема и описание работы взяты с сайта vrtp.ru:

   Это схема и разводка упрощенного варианта блока питания, на одном проходнике VT2 – TIP147. Нумерация схемы совпадает с предыдущей, удалены элементы, относящиеся к 3 проходникам. Размер платы, как и в предыдущем варианте, 120 х 55 мм. Попутно совет, если не удастся убрать самовозбуд на ВЧ в режиме источника напряжения, — попробуйте совсем убрать конденсатор С21.

   Что касается VD8 – (он включен в эмиттер VT3), то, с помощью этого стабилитрона смещается рабочая точка выходного напряжения ОУ DA1.1 в середину напряжения опоры и питания = +12.25 Вольт. Так что выходное напряжение этого ОУ всегда держится около этого предела (5.6 + 0.7 = 6.3 Вольт). А назначение VD10 и VD11 – увеличить напряжение включения (засветки) соответствующих светодиодов HL1 и HL2. Дело в том, что на макете я применял яркие светодиоды, поэтому наличием одних резисторов R21 и R22 не обошлось. Чтобы не было лишней подсветки «чужого” светодиода, и пришлось поставить стабилитроны. При смене режимов стабилизации «напряжение-ток”, происходит погасание одного, а лишь потом засветка другого светодиода.    При использовании других светодиодов, менее ярких, возможно, придется подобрать (чаще всего уменьшить) напряжение стабилизации стабилитронов VD10 и VD11. Что касается стабилитронов VD10, VD11 – то, тут все зависит от желания получить требуемую яркость индикации, и, чтобы не было засветки «чужого” светодиода.    А вот к выбору стабилитрона VD8 нужно относиться поосторожней. Схема в принципе, допускает изменение его напряжения стабилизации в довольно широких пределах (от 3 до 6 вольт), но, есть некоторые нюансы. Резисторы R14 и R16 образуют делитель, уменьшающий напряжение на базе VT3 при ограничении тока. Мысленно замкните нижний вывод R16 на землю, и прикиньте, сколько будет на базе VT3, при МАХ выходном напряжении DA1.1 (считаем = 11 вольт), в нашем случае, на базе VT3 будет около 4.2 вольт.    Это напряжение должно быть МЕНЬШЕ, чем сумма напряжения стабилитрона VD8 и падения на переходе БЭ транзистора VT3 (3.3 + 0.7 = 4 вольта). Иначе, ОУ DA1.2 не сможет закрыть VT3 при перегрузке по току. Напряжение -5 вольт, мы здесь специально не учитываем, создавая тем самым некоторый запас. А если попроще, то, уменьшив напряжение стабилизации VD8, лучше пропорционально этому уменьшить и номинал R16. В нашем случае, при применении VD8 = 3.3 вольтам, оно будет = 3.6 кОм. Правда, при этом уменьшится яркость HL1 в момент ограничения тока, но, это, легко восстановить подбором VD10.   Собрал данную схему (с однополярным питанием, без минусовой подпорки). Все работает нормально, но при токах больше 0,5А на выходе появляются пульсации 50-100мВ (до этого 10-20) и растут с увеличением нагрузки. Пробежался по схеме осциллографом. Пульсации идут начиная с эмиттера VT1, соответственно и дальше по схеме они везде. Поменял транзистор — без толку. Поменял ТЛку-тот же результат. поигрался емкостями 0,1мкф по питанию-ноль эмоций. Пробовал увеличить емкость С8, помогает но не сильно. На халяву ткнул емкость 1000,0х16в между базой VT1 и входным минусом… На выходе при 2,5А — ВСЕГО 2мВ пульсации, и так во всем диапазоне напряжений и токов!   Еще совет, а попробуйте увеличить С7 до 47…220 мкФ, и глянуть величину пульсаций при этом. Кстати, можно попробовать, подключить С7 между управляющим выводом TL431 и базой VT1, а не между управляющим выводом и катодом TL431, как изначально на схеме. Предыдущие опыты закончились установкой кондера довольно большой емкости в базу Т1. Уменьшение емкости приводило к увеличению пульсаций. А также имел место «синусоподобный» выход на режим. Манипуляции вокруг не принесли желаемых результатов. Но… все убрал и поставил емкость параллельно резистору Р4-30Ком, 22мкф, плюсом к эмиттеру Т1. Получил пульсации 2,5мВ при токе нагрузки 2,9А(больше транс не держит), во всем диапазоне напряжений. Выход на режим стал линейно нарастающим, без всяких всплесков. Емкость менее 10 мкф увеличивает пульсации, а более 22-х уже не уменьшает их. Честно говоря объяснения сему факту найти не могу…1) Сама идея применить обычный дешевый ОУ хороша, в описании к вышеуказанной схеме подробно разжевано, что и как. Повторяться не буду, скажу лишь, что основа ее схемотехники, это работа ОУ с входными сигналами, находящимися в середине динамического диапазона, то есть в середине его питания (поэтому и не нужно отрицательное смещение для ОУ). Именно для этого и введен делитель, в 2 раза понижающий напряжение опоры, и в эту точку подается выходное напряжение, уменьшенное (смасштабированное) через соответствующий резистор R21. Для этого и применены резисторы R10, R11, R21, — этот кусок схемы повторяет прототип, про который я рассказал выше. 2) Резистор R1 – служит для разрядки силовых электролитов после выключения, это типовое решение. Все-таки 15000 мкФ – это довольно большая емкость. Дело в том, что при вышеописанном включении ООС (про резисторы R10, R11, R21 – я писАл выше), напряжение, на входах ОУ и не должно быть в районе нуля, то есть земли. Оно меняется от 4 до 6 вольт (или около того), как и в схеме прототипа. Поэтому в схеме есть резистор R8, он ограничивает диапазон изменения этого самого напряжения, не от нуля. Какой смысл далее уменьшать опорное напряжение на входе ОУ, когда на выходе блока уже и есть тот самый ноль. 3) Считаю, что отсутствие отрицательного смещения это не недостаток, а преимущество схемы, хотя на вкус и цвет – сами знаете… Разве добавка двух-трех резисторов – это сложнее, чем собирать выпрямитель для отрицательного напряжения, фильтр, стабилизатор, — мне кажется, что нет.4) Стабилитрон VD5 – смещает рабочую точку выходного напряжения ОУ DA1.1 – в середину динамического диапазона, то есть в середину питания. Напряжение выхода ОУ никогда не снижается ниже 5…6 вольт, что нам и требуется, в общем-то, для применения в качестве ОУ обычных, а не Rail-to-Rail, и т. п.5) Применение в качестве транзистора VT2 – составной структуры типа Дарлингтон, решает сразу две задачи. Во-первых, сильно разгружает по току транзистор VT3 (не надо ставить его на теплоотвод и т. п.), который работает с практически полным входным напряжением схемы, а во-вторых, — позволяет применить в качестве запараллеленных проходников обычные транзисторы, с довольно небольшим коэффициентом усиления, практически не заботясь об их подборе. Попробовать, конечно, можно, поставить на место VT2 обычный транзистор, но, как вам сказать, все это до поры, до времени. Я не просто так акцентировал внимание собирающих на том, что в качестве VT2 – нужен только СОСТАВНОЙ P-N-P транзистор типа Дарлингтон.6) Что получилось насчет МАХ выходного тока, вам лучше спросить у алфизика. Он, по-моему, снял с этой схемы что-то около 12 ампер выходного тока, я сам удивился. Думаю, комментарии тут излишни, хотя я считаю, что для схемы с непрерывным регулированием такой ток чересчур избыточен. Возникнут другие проблемы, отвода тепла, надежности, и так далее, и тому подобное. Но, как говорится это на усмотрение пользователя, если нравится, как работает схема, что тут еще скажешь. 7) Выбор транзисторов подразумевает, что они имеют требуемый запас по своему допустимому напряжению. Надеюсь, понимаете, что если входное напряжение планируется около 50 вольт, то и транзисторы должны иметь предел как минимум в 80…100 вольт. Но, это касается, в общем-то любой схемы, а не только этой.    Диод VD2 позволяет разрядиться конденсатору фильтра опоры С8 после выключения блока, стабилитроны VD6 и VD7 – задают режим поочередного свечения индикаторных светодиодов HL1 и HL2. Диод VD4 перепускает значительный выброс напряжения на клеммах блока на его входные электролиты для защиты самих проходников (на всякий случай, мало ли какую индуктивную нагрузку подключат к этим самым клеммам).   Диод VD8 защищает проходные транзисторы от попадания на выход слишком большого отрицательного напряжения. Конденсаторы С16 и С17 – обычный тандем конденсаторов на выходе блока питания. Резистор R29 создает небольшую подгрузку выхода для блока питания, при этом улучшаются его динамические параметры, кроме того, при регулировании выходного напряжения в уменьшение – быстрее разряжается выходной С17, это удобнее. Конденсатор С15 устраняет возможность самовозбуда схемы ограничения выходного тока.   Чтобы открыть обычный (не составной !!!) кремниевый NPN транзистор, на его базу надо подать напряжение примерно на 0.7 вольта бОльшее, чем на эмиттере. Так вот, если убрать стабилитрон VD5 (соединить эмиттер VT3 с землей), тогда чтобы открыть VT3 на его базе (то есть на выходе ОУ DA1.1) должен быть потенциал + 0.7 вольта. Никакого напряжения около 5…6 вольт мы на выходе ОУ не получим, он будет работать вблизи потенциала земли, а для обычного ОУ, питающегося однополяркой это не есть хорошо. Я для того и поставил стабилитрон VD5, чтобы сместить рабочую точку выходного напряжения ОУ в середину его питания. Резюме – этот стабилитрон нужен обязательно.    Если вам нравится классика (хотя все относительно), сделайте схему с отрицательным смещением, в чем вопрос я не понял. Ведь насильно вас никто не принуждает собирать именно эту схему. На вывод 6 и заведена обратная связь с выхода через резистор R21, просто туда подается и половинное напряжение опоры, созданное с помощью резисторов R10, R11.    Если нет возможности запитать кулер с отдельной обмотки, — его питание лучше брать с входных электролитов через небольшой помехоподавляющий дроссель. Излишек ограничьте резистором, или простеньким стабилизатором, можно даже совмещенным с регулятором вращения по температуре. Не советую брать питание кулера с опоры, она на то и опора, чтобы быть без всяких наводок и помех.   Попутно совет, лучше вход стабилизатора опоры (это — коллектор VT1, верхний вывод резистора R2 и катод VD2) подключить отдельным проводом сразу к плюсу входных электролитов С6, меньше будет влияние пульсаций при МАХ выходных токах.   Когда я говорил про «два-три резистора”, я имел ввиду добавку именно R10, R11. Именно с их помощью получается так, что нам не нужно подавать на входы ОУ напряжение, равное нулю, чтобы получить на выходе блока этот самый ноль. Почитайте повнимательнее описание схемы-прототипа, там это подробно описано. Вообще, фишка этой схемы в том, что ОУ, регулирующий напряжение не работает на краях своего динамического диапазона, а именно в середине. Поэтому в нее и можно ставить обычный ОУ.   Насчет TL431. Для того, чтобы на этом стабилизаторе не было полного входного напряжения — как раз и введен разгружающий каскад на транзисторе VT1. Прикиньте сами, на его эмиттере 12.5 вольт (так рассчитан делитель R4 и R5 в стабилизаторе опоры), значит, на его базе будет напряжение на 0.7 вольта бОльше, то есть 13.2 вольт. А весь оставшийся излишек напряжения будет падать на транзисторе VT1, ток через TL431 ограничен резистором R3. Резистор R2 задает открывающее напряжение на базе VT1, а TL431 регулируя это напряжение — как раз и стабилизирует напряжение опоры. Конечно, транзистор VT1 будет рассеивать небольшую мощность, я и указывал, что его желательно поставить на небольшой теплоотвод типа флажка, место на плате для этого предусмотрено.

Читайте также:  Применение электронного блока часов

   И еще, советую вам обратить внимание на последнюю версию схемы (посты 337288 и 337290). Выход схемы ограничения по току подключен на вход ОУ DA1.1, то есть не внутрь ООС по напряжению, а «снаружи», если так можно выразиться.

При превышении уставки тока, транзистор VT7 открывается, и шунтирует вход DA1.1, ограничивая ток на выходе блока. Это схемное решение позволяет избавиться от выбросов на выходе, при выходе из режима ограничения тока.

При условии, конечно, что сам по себе канал регулирования напряжения нормально скорректирован с точки зрения ООС.

   Корпус для конструкции использовал пластмассовый, от какого-то прибора. Трансформатор на О-образном сердечнике. Прошивки для МК и файлы печатных плат находятся в архиве. Данный БП легко повторяем, характеристики хорошие. Авторы материала: Александрович-SOIR (Soir&C.E.A)

   Форум по блокам питания

Источник: http://radioskot.ru/publ/bp/laboratornyj_bp_s_cifrovym_ampervoltmetrom/7-1-0-470

Лабораторный бп с индикацией на микроконтроллере

   Представляю для вашего внимания проверенную схему хорошего лабораторного источника питания, опубликованного в журнале «Радио» №3, с максимальным напряжением 40 В и током до 10 А. Блок питания оснащён цифровым блоком индикации, с микроконтроллерным управлением. Схема БП показана на рисунке:

   Описание работы устройства. Оптопара поддерживает падение напряжения на линейном стабилизаторе примерно 1,5 В.

Если падение напряжения на микросхеме увеличивается (например, вследствие увеличения входного напряжения), светодиод оптопары и, соответственно, фототранзистор открываются.

ШИ-контроллер выключается, закрывая коммутирующий транзистор. Напряжение на входе линейного стабилизатора уменьшится.

   Для повышения стабильности резистор R3 размещают как можно ближе к микросхеме стабилизатора DA1. Дроссели L1, L2 — отрезки ферритовых трубок, надетых на выводы затворов полевых транзисторов VT1, VT3. Длина этих трубок равна примерно половине длины вывода.

Дроссель L3 наматывают на двух сложенных вместе кольцевых магнитопроводах К36х25х7,5 из пермаллоя МП 140. Его обмотка содержит 45 витков, которые намотаны в два провода ПЭВ-2 диаметром 1 мм, уложенных равномерно по периметру магнитопровода.

Читайте также:  Sprint-layout

Транзистор IRF9540 допустимо заменить на IRF4905, а транзистор IRF1010N — на BUZ11, IRF540.

   Если потребуется с выходным током, превышающим 7,5 А, необходимо добавить еще один стабилизатор DA5 параллельно DA1. Тогда максимальный ток нагрузки достигнет 15 А.

В этом случае дроссель L3 наматывают жгутом, состоящим из четырех проводов ПЭВ-2 диаметром 1 мм, и увеличивают примерно в два раза емкость конденсаторов С1—СЗ. Резисторы R18, R19 подбирают по одинаковой степени нагрева микросхем DA1, DA5.

ШИ-контроллер следует заменить другим, допускающим работу на более высокой частоте, например, КР1156ЕУ2.

Модуль цифрового измерения напряжения и тока лабораторного БП

   Основа устройства — микроконтроллер PICI6F873. На микросхеме DA2 собран стабилизатор напряжения, которое используется и как образцовое для встроенного АЦП микроконтроллера DDI.

Линии порта RA5 и RA4 запрограммированы как входы АЦП для измерения напряжения и тока соответственно, a RA3 — для управления полевым транзистором. Датчиком тока служит резистор R2, а датчиком напряжения — резистивный делитель R7 R8.

Сигнал датчика тока усиливает ОУ DAI. 1. а ОУ DA1.2 использован как буферный усилитель.

   Технические характеристики:
 

  •  Измерение напряжения, В — 0..50.
  •  Измерение тока, А — 0.05..9,99.
  •  Пороги срабатывания защиты:
  • — по току. А — от 0,05 до 9.99.
  • — по напряжению. В — от 0,1 до 50.
  •  Напряжение питания, В — 9…40.
  •  Максимальный потребляемый ток, мА — 50. 

   Работа и тока: при нажатии на кнопку SB3 «Авто в режиме установки выполняется выход на рабочий режим, а в рабочем режиме — автоматическая установка защиты.

В последнем случае значения тока и напряжения, при которых срабатывает защита, автоматически устанавливаются больше текущих значений напряжения и потребляемого тока на две единицы младшего разряда.

Подробнее о работе модуля читайте на форуме.

   Светодиодные семиэлементные индикаторы могут быть любые с общим катодом, кнопки — малогабаритные с самовозвратом, например DTST-6, постоянные резисторы — МЛТ, С2-22. Резистор R2 изготовлен из отрезка высокоомного провода, в авторском варианте использован резистор от вышедшего из строя мультиметра М-830.

Полевой транзистор — мощный переключательный с n-каналом, желательно с буквой L в первой части названия, так как для его открывания достаточно напряжения 4-5 В. При токах нагрузки более 5 А сопротивление открытого канала должно быть не более 0,01 Ом.

Необходимо обратить внимание на то, чтобы максимально допустимый ток стока был больше тока нагрузки.

   Налаживание блока индикации начинают с установки подстроенным резистором R4 выходного напряжения (5,12 В) стабилизатора на микросхеме DA2. при этом предварительно микроконтроллер удаляют. Затем его устанавливают и подают на вход напряжение 10…15 В.

Измеряя это напряжение цифровым вольтметром, сравнивают его показания с показаниями индикатора устройства и при небольших отличиях добиваются их совпадения резистором R4. При этом следует учесть, что напряжение питания микроконтроллера не должно превышать 5,5 В.

В случае необходимости подбирают резистор R7.

   Для налаживания измерителя тока к выходу устройства подключают нагрузку с последовательно включенным амперметром. При токе 100мА сравнивают показания и добиваются их совпадения подбором резистора R5. Затем проверяют точность показаний при токе в несколько ампер. Плата и — в архиве.

   После срабатывания защиты устраняют причину, ее вызвавшую. Возвращают устройство в исходное состояние, отключив и включив источник или включив режим «Установка», а затем нажимая на кнопку SB3 «Авто».

   Необходимо отметить, что устройство реагирует на нажатие кнопок после их отпускания. Если присутствует дребезг контактов, то параллельно кнопкам следует установить конденсаторы емкостью 0.047…0,22 мкФ. Питать устройство желательно от отдельного источника. Конструкцию собрал и испытал: Romick_Калуга.

   

   Схемы блоков питания

Источник: http://elwo.ru/publ/skhemy_blokov_pitanija/laboratornyj_bp_s_indikaciej_na_mikrokontrollere/7-1-0-503

Блок питания 0…25 вольт с микроконтроллерным управлением

Собран на микроконтроллере PIC16F628A, регулировка напряжения от 0 до 25 вольт с шагом 0.1 вольт при помощи энкодера. Индикация на дисплей 16*2. Защита от короткого замыкания.

Блок индикации и управления.Индикатор — ЖКИ дисплей на основе контроллера НD44780, 2 сточки по 16 символов. Управление напряжением осуществляется встроенным в контроллер ШИМ ом. Его скважность регулируется энкодером, каждый шаг которого приводит к увеличению или уменьшению напряжения на 0,1 вольт на выходе БП. Полный оборот энкодера – 2 вольта. Поскольку ШИМ может изменять напряжение на накопительной емкости лишь в интервале от 0 до 5 вольт, применен ОУ с коэффициентом усиления 5. Таким образом фактическое напряжение на выходе БП регулируется в пределах 0 – 25 вольт.

Регулирующим элементом является мощный составной транзистор КТ827А. С эммитера регулирующего транзистора через верхнее плечо делителя (2 Х 8,2 к) осуществляется обратная связь, благодаря чему даже при больших токах в нагрузке напряжение поддерживается на строго заданном уровне вплоть до сотых долей вольта.

Измерительная часть – двухканальный АЦП (Микрочип), измеряющий реальное напряжение на выходе БП и падение напряжения на шунтирующем резисторе, усиленное ОУ, что прямо пропорционально потребляемому нагрузкой току. Сердцем конструкции является контроллер.

Блок защиты от короткого замыкания в нагрузке. Выполнен виде отдельного устройства включенного между выпрямителем и регулирующим элементом. Ток срабатывания защиты — 5 А. Подбирается резистором 47к в базовой цепи транзистора управляющего ключом КТ825Г.

Настройка.

Заключается в подборе резисторов, обозначенных звездочкой, для соответствия показаний ЖКИ реальным току и напряжению на выходе БП.
Детали.Шунт взят из разбитого мультиметра, его сопротивление около 0,01 Ом. Исходное состояние контактов энкодера описано в принципиальной схеме, он может быть любой соответсвующий этим состояниям. Кроме вращения, он имеет вн контакты, которые замыкаются без фиксации при нажатии на вал.

Транзисторы n-p-n без маркировки могут быть КТ315 или любыми маломощными, подобными им в чип корпусе. Транзистор p-n-p в ключе, управляющем подсветкой может быть любой средней мощности.

Как пользоваться БП.
Энкодером регулируется напряжение 0 – 25 вольт с шагом 0,1 вольта. При кратком (менее 0,5 сек) нажатии на ручку включается/выключается подсветка. При нажатии более 0,5 сек происходит запись установленного напряжения в энергонезависимую память контроллера.

Скачать полный проект для MPLAB

С разрешения автора, Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Источник: http://radioded.ru/skhema-na-mikrokontrollere/blok-pitaniya-025-volt-s-mikrokontrollernym-upravleniem

Ссылка на основную публикацию