Ограничение пускового тока ламп накаливания на irf740

Пусковой ток

Ограничение пускового тока ламп накаливания на irf740

Содержание:

  1. Пусковые токи электродвигателей

  2. Пусковой ток аккумуляторной батареи

  3. Видео

При работе с различными электротехническими устройствами довольно часто возникает вопрос, что такое пусковой ток. В самом простом варианте ответа это будет такой ток, который потребен при запуске электродвигателя или другого устройства.

Его значение может в несколько раз превышать номинальное, требующееся в нормальном устойчивом режиме работы. Таким образом, для того чтобы раскрутить ротор, электродвигатель должен приложить гораздо больше энергии по сравнению с работой при постоянном числе оборотов.

Снизить пусковые токи можно с помощью специальных систем гашения и устройств плавного пуска.

Пусковые токи электродвигателей

В каждом приборе, устройстве или механизме возникают процессы, называемые пусковыми. Это особенно заметно при начале движения, когда необходимо тронуться с места. В этот момент для первоначального толчка требуется значительно больше усилий, чем при дальнейшей работе данного механизма.

Точно такие же явления затрагивают и электрические устройства – электродвигатели, электромагниты, лампы и другие. Наличие пусковых процессов в каждом из них зависят от того, в каком состоянии находятся рабочие элементы. Например, нить накаливания обычной лампочки в холодном состоянии обладает сопротивлением, значительно меньшим, чем при нагревании в рабочем режиме до 10000С.

То есть, у лампы, мощностью 100 Вт сопротивление нити во время работы составит около 490 Ом, а в выключенном состоянии этот показатель снижается до 50 Ом. Поэтому при высоком пусковом токе лампочки иногда перегорают. От всеобщего перегорания их спасает сопротивление, возрастающее при нагревании.

Постепенно оно достигает постоянного значения и способствует ограничению рабочего тока до нужной величины.

Влияние пусковых токов в полной мере затрагивает все виды электродвигателей, широко применяющихся во многих областях. Для того чтобы правильно эксплуатировать электроприводы нужно знать их пусковые характеристики. Существует два основных параметра, оказывающих влияние на пусковой ток.

Скольжение является связующим звеном между частотой вращения ротора и скоростью вращения электромагнитного поля. Снижение скольжения происходит от 1 до минимума по мере набора скорости. Пусковой момент является вторым параметром, определяющим степень механической нагрузки на валу.

Эта нагрузка имеет максимальное значение в момент пуска и становится номинальной после того, как произошел полный разгон механизма.

Следует учитывать особенности асинхронных электродвигателей, которые при пуске становятся эквивалентны трансформатору с короткозамкнутой вторичной обмоткой. Она обладает совсем небольшим сопротивлением, поэтому величина пускового тока при скачке может достичь многократного превышения по сравнению с номиналом.

В процессе дальнейшей подачи тока в обмотки, сердечник ротора начинает по нарастающей насыщаться магнитным полем. Возникает ЭДС самоиндукции, под действием которой начинает расти индуктивное сопротивление цепи. С началом вращения ротора происходит снижение коэффициента скольжения, то есть наступает фаза разгона двигателя.

При росте сопротивления пусковой ток снижается до нормативных показателей.

В процессе эксплуатации может возникнуть проблема, связанная с увеличенными пусковыми токами.

Причиной их возникновения, чаще всего, становится перегрев электродвигателей, перегруженные электрические сети в момент пуска, а также ударные механические нагрузки в подключенных устройствах и механизмах, таких как редукторы и другие.

Для решения этой проблемы предусмотрены специальные приборы, представленные частотными преобразователями и устройствами плавного пуска. Они выбираются с учетом особенностей эксплуатации того или иного электродвигателя.

Например, устройства плавного пуска используются в основном для агрегатов, соединенных с вентиляторами. С их помощью достигается ограничение пускового тока до двух номиналов. Это вполне нормальный показатель, поскольку во время обычного пуска ток превышает номинальное значение в 5-10 раз. Ограничение достигается за счет измененного напряжения в обмотках.

Обычные двигатели переменного тока получили широкое распространение в промышленном производстве, благодаря очень простой конструкции и низкой стоимости. Их серьезным недостатком считается тяжелый запуск, который существенно облегчается частотными преобразователями.

Наиболее ценным качеством этих устройств является способность к поддержке пускового тока в течение одной минуты и более. Самые современные приборы позволяют не только регулировать пуск, но и оптимизировать его по заранее установленным эксплуатационным характеристикам.

Пусковой ток аккумуляторной батареи

Аккумулятор не зря считается одним из важных элементов автомобиля. Его основная функция заключается в подаче напряжения на имеющееся электрооборудование. В основном это стартер, автомагнитола, освещение и другие устройства. Для того чтобы успешно решать эту задачу, в аккумуляторе должно происходить не только накопление, но и сохранение заряда в течение длительного времени.

Одним из основных параметров батареи является пусковой ток. Данная величина соответствует параметрам тока, который протекает в стартере в момент его пуска. Пусковой ток непосредственно связан с режимом работы автомобиля.

Если транспортное средство эксплуатируется очень часто, особенно в холодных условиях, в этом случае батарея должна иметь большой пусковой ток. Его номинальный параметр обычно находится в соответствии с мощностью источника питания, выдаваемой в течение 30 секунд при температуре минус 180С.

Он появляется в тот момент, когда ключ поворачивается в замке зажигания и начинает работать стартер. Измерение токового значения производится в амперах.

Пусковые токи могут быть совершенно разными у аккумуляторов, одинаковых по своему внешнему виду и основным характеристикам. На этот фактор существенное влияние оказывают физические свойства материалов для изготовления и конструктивные особенности каждого изделия.

Например, возрастание тока может наблюдаться, если свинцовые пластины становятся пористыми, повышается их количество, используется ортофосфорная кислота.

Завышенная величина тока не оказывает негативного влияния на оборудование, она лишь способствует повышению надежности пуска.

Источник: https://electric-220.ru/news/puskovoj_tok/2016-12-07-1136

Осторожно, Светодиоды! Или подводные камни при питании LED-ламп

Ну что? Пост я хотел написать уже как год назад, но тогда не было повода. А сейчас повод снова есть! Светодиодное освещение входит в массы тотально как и китайскими лампочками с барахолок, так и злыми светодиодными прожекторами или спотами в потолок.

Светодиоды — это тренд, это круто, мощно и удобно. Они потребляют меньше мощности, более компактны. Но не всё так гладко, как кажется, и не все моменты учитывают. Лично мне не нравится, когда светодиодный фонарь на столбе лучит как точечный источник света и из-за этого прямо под столбом светло и хорошо, но зато слепит глаза, а в трёх метрах ни черта не видно.

Но дело не только в том, насколько удобно или не удобно это освещение! Есть ещё одно техническое западло, которое не все учитывают, но которое приводит к нехорошим последствиям. Для того, чтобы понять о том, какое же это такое западло, мы возвращаемся к самому началу и вспоминаем ранний пост про импульсные блоки питания, в котором коряво описано их устройство. Давайте его повторим?

Итак, блоки питания с трансформатором почти насовсем отошли нафиг. Почему? А потому что тяжело стабилизировать напряжение, потому что сам трансформатор тяжёлый и громоздкий и не везде его позапихаешь.

Оказалось удобнее делать такие же блоки питания, но где трансформатор работает на более высокой частоте. Вот в нашей сети частота всего 50 Гц.

А если её поднять до 25-30 кГц, то огромный трансформатор на 200 Ватт превратится в маленькую фиговинку.

А как поднять частоту сети? А сделать свой собственный генератор этой частоты на микросхеме или транзисторах! Пущай он наш маленький трансформатор и питает! А уже сам генератор мы будем питать обычным сетевым напряжением.

Рассмотрим логику создателей ИБП дальше. Каким родом тока проще всего питать генератор? Постоянным, выпрямленным. А значит у нас появляется выпрямитель и фильтрующий конденсатор.

И вот тут-то и начинается самое главное западло.

Повторим всё ещё раз. Обычное сетевое напряжение переменного тока выпрямляется при помощи диодного моста и попадает на фильтрующий конденсатор. После этого напряжение постоянного тока идёт на генератор высокой частоты. Напряжение высокой частоты проходит через трансформатор, понижается до нужного уровня, выпрямляется, стабилизируется и подаётся на выход блока питания.

И вот это вот конденсатор и создаёт нам самое главное западло. Когда мы подаём питание на любой импульсный блок питания (а это и компьютерный, и зарядка для сотового, и драйвер или блок питания для LED-светильника), то кратковременно на доли секунды потребляемый ток подскакивает до космических величин (раз в 10 больше обычного потребления).

ВНИМАНИЕ! Всё, описанное и подсчитанное ниже, подходит для тех случаев, когда вы ставите светодиодные светильники с отдельным внешним драйвером (в том числе и светодиодные прожекторы)! Если вы просто переходите на светодиодные лампы, которые питаются от 220 напрямую и в которых драйвер встроен внутрь, то обычно никаких проблем с освещением не возникает.

Давайте возьмём какой-нибудь драйвер от Mean Well и посмотрим на его спецификацию. Я наобум выбрал APC-16-350. Это хиленький такой драйвер на 16 Ватт со стабилизацией тока. Для какого-нибудь светодиода на 10 Ватт сгодится.

Внимательно изучаем указанные там параметры и первым видим параметр «Потребляемый ток» («AC Current») — 0,3 ампера. И тут наши добрые люди (в том числе и те, кто заказывает мне щиты) как раз и пишут мне что-то типа «А, да у меня освещение светодиодное, всего десять драйверов по 0,3 ампера каждый, потребление фигня».

И когда-то я тоже думал, что потребление фигня. Ну смотрите сами: 0,3 х 10 = 3 ампера. Да это ж любая хилая релюшка справится, а защищать такие линии надо автоматом на 6А. Верно?

А вот НЕТ! Добрый производитель дал нам классный параметр «Стартовый ток» («Inrush Current»), который составляет..

45 (сорок пять!) ампер за время 0,000 21 секунды! Представляете? Какие-то ничтожные 0,3 ампера при включении блока превращаются в 45! Это в 150 раз больше нормального потребления! И чтобы мы совсем уже расстроились, следующий параметр, который нам дают — это то, сколько таких драйверов можно навесить на автомат номиналом в 16А (а не 10А, которым мы обычно защищаем освещение): на B16 можно поставить 13 штук драйверов, а на С16 — 23 штуки.

Давайте ещё раз переосмыслим всё это. При старте хилый драйвер жрёт ток в 150 раз больше обычного (45 ампер)! А на автомат B16 их можно поставить всего 13 штук!

И вот из-за этого сейчас происходит всё больше и больше вот таких вот случаев (все они из первых рук, потому что это были мои заказчики):

  • В щите стоял автомат B6 для «хилых драйверов по 10 Вт». Драйверов было десять штук. При включении света обычным выключателем автомат наглухо вышибало. Заменили автомат на B10 — всё равно вышибало. Вышибать перестало на C10. Заменить автомат на C16 нельзя, потому что на освещение заложен стандартный кабель 3х1,5 кв.мм.
  • Регулярно (раз в месяц) сваривались контакты выключателя, который включал пяток светодиодов с их драйверами. Пришлось менять светильники на другие, в которых нет таких злобных драйверов (про это ниже).
  • Собрали щит с ПЛК и релюшками CR-P на 16А. Я как-то пропустил то, что светодиодные лампы там тоже с драйверами. После парочки включений этих ламп (тоже десяток светильников) релюшки спаялись и умерли. Хотя они, заметьте, расчитаны на 16А активной нагрузки.

И что делать? Как это исправлять? Положим, если бы горели какие-то там хилые релюшки! А горят даже выключатели! Обычные выключатели, рассчитанные на 10А. Давайте подумаем про возможные варианты:

  • Менять релюшки на контакторы серии ESB20 (на 20А с более прочными контактами). Но выдержат ли они? Стартовый ток десяти таких драйверов будет 45 х 10 = 450 ампер. При этом контакторы ESB20 не очень хорошие. Их магнитная система работает на переменном токе в отличие от всех других контакторов серии ESB и часто гудит или перегревается.
  • Ставить более злые контакторы. Ну это уже смешно. Прикиньте, сколько будет стоить щит на ESB24, если их понадобится поставить штук 25?
  • Использовать установочные реле E297 (аналог импульсных по размерам и типу, но без фиксации). Они заказные и рассчитаны на токи 16А. И мы ничего не выигрываем!
  • Использовать PTC-Термисторы, включенные последовательно с таким драйвером, чтобы облегчить его стартовый режим. Так делают в импульсных блоках питания на большие мощности. Я никогда не рассматривал этот вариант и буду благодарен, если мне кто-то подскажет в комментариях, что это такое и с чем их едят.
Читайте также:  Аппаратная шим на микроконтроллере

А как обойти фишку подгорания контактов у выключателя? Действительно, что ли, ставить контактор и закладывать магистраль 3х4 под автоматом C20 на такие светильники?..

Так что будьте ОЧЕНЬ внимательны со светодиодным освещением большой мощности! Не всё так легко и просто, и не всё так дешёво как может показаться: возможно, что вам придётся тратить денег на хитрую начинку щита для управления драйверами светодиодных ламп и только потом уже высчитывать общую экономию по потреблению электроэнергии!

Если вас заинтересовала информация из этого поста и вы хотите со мной связаться (или заказать Сборку щита / Консультацию/Мастер-Класс), то пишите мне на почту info@cs-cs.net или звоните на +7-926-286-97-35 (c 10 до 20 по Москве).

На SMS и почту, написанную в одну строчку, я не отвечаю. Отзываюсь на имя Электрошаман.

Невнимательных, тупых и наглых продаванов и менеджеров я буду жёстко стебать, если они не заглянут в инфу про контакты для организаций, а скорее кинутся звонить.

Источник: http://cs-cs.net/ostorozhno-svetodiody-pitanie-led-lamp

Терморезистор – ограничитель пускового тока лампы

Терморезистор – ограничитель пускового тока лампы

  Пусковой ток лампы может быть ограничен на безопасном уровне, если на время разогревания ее спирали в цепь ввести токоограничительный резистор, который затем, после разогревания спирали, замкнуть.

Эта же цель достигается включением последовательно с лампой элемента, имеющего отрицательный температурный коэффициент сопротивления (ТКС), Таким элементом является терморезистор, или. как его еще называют, термистор.

В момент включения лампы ток в цепи будет ограничен значительным сопротивлением холодного терморезистора, который при этом быстро разогревается. После его разогревания ток лампы уже будет определять сопротивление спирали, которая к тому времени тоже разогреется и увеличит свое сопротивление (примерно в 10 раз).

Следовательно, при правильно подобранных параметрах терморезистора пусковое значение тока будет снижено в несколько раз. Это предотвратит локальный перегрев “слабых” участков спирали лампы, их дальнейшее разрушение и позволит продлить срок ее службы.

Уменьшатся электромагнитные помехи и другие отрицательные явления, связанные с резким изменением тока е сети. А некоторая “плавность” в нарастании освещенности, если она возникнет, скорее всего станет приятной для глаз. К терморезистору—ограничителю пускового тока лампы накаливания — предъявляется ряд очевидных требований.

  Во-первых, нужно следить, чтобы терморезистор нагревался и остывал за время, сравнимое с временем разогревания спирали лампы. В противном случае он не сможет эффективно ограничивать ток на всем участке быстрого увеличения температуры спирали, а также не будет ч готов к выполнению своей функции в течение некоторого времени после выключения лампы.

Во-вторых, начальное сопротивление терморезистора должно позволять снизить пусковой бросок тока в момент включения лампы не менее чем в три раза, иначе защитный эффект будет незначительным, В-третьих, сопротивление нагретого термореэистора во время горения лампы не должно быть более 1 …

2% сопротивления лампы, это исключит заметное уменьшение напряжения на самой лампе, могущее привести к понижению температуры ее спирали. Известно, что световое излучение лампы имеет резкую зависимость (четвертой степени) от температуры спирали; так, пяти процентное уменьшение напряжения уменьшит, как минимум, на 20% световой поток от лампы. в-четаертых.

мощность, рассеиваемая нагретым терморезистором, не должна превышать продельного значения (дли приборов из различных материалов эти значения разные). И. наконец, пятое требование — их невысокая стоимость. Из серийно выпускаемых в настоящее время терморезистооав не удалось найти прибор, полностью удовлетворяющий этим требованиям.

Однако некоторые из них, например, ММТ-12 сопротивлением 680, 470 и 150 Ом, оказались пригодными для изучения переходных процессов в цепи лампы при ее включении. Эти приборы мы включали в испытательную цепь последовательно с лампой мощностью 100 Вт, питаемую от сети переменного тока напряжением 220 В.

На рис, 1—3 показаны экспериментально снятые временные зависимости сопротивления с момента включения в сеть испытательной цепи терморезисторов (кривые 1) и лампы (кривые 2), а также суммарного сопротивления цепи (кривые 3). На рис. 1 для сравнения штриховой линией изображена такая же зависимость сопротивления этой же лампы в отсутствие в ее цепи терморезистора.

Кривая показывает, что время полного разогревания спирали лампы равно примерно 0,3 с. Рассмотрев кривые 1 на рис, 1—3. можно заключить, что терморезисторы ММТ-12 разогреваются протекающим током за 10…80 с, т. е. время их разогревания в 30..270 раз больше, чем спирали лампы. Эти приборы обладают большой массой (1.

7 г), с чем именно и связана их большая тепловая инерционность. И хотя потеря яркости лампы (из-за существенной доли падающего на разогретых терморезисторах напряжения) почти незаметна на глаз, их вряд ли можно рекомендовать для широкого применения.

  Графики на рис. 1—3 показывают также, что с уменьшением номинала терморезистора эффективность ограничения начального тока лампы снижается. В испытательной цепи с терморезистором сопротивлением 680 Ом ток в момент включения несколько меньше, чем в установившемся режиме, и увеличивается по мере разогревания терморезистора и спирали лампы.

При терморезисторе с номиналом 470 Ом общее сопротивление и, следовательно, ток почти не изменяются, при 150 Ом ток в момент включения примерно в четыре раза превышает установившееся значение, Выходит, что низкоомные терморезисторы из серии ММТ-12 менее пригодны для ограничения начального тока лампы мощностью около 100 Вт.

Однако при использовании терморезисторов этой серии сопротивлением более 1000 Ом, на них выделяется слишком большая мощность, приводящая к разрушению приборов. То же произойдет при повышении мощности лампы. С точки зрения потребляемой мощности необходим терморезистор с наименьшим сопротивлением в установившемся режиме (соответствующем конечному участку кривых 1).

На низкоомном терморезисторе к тому же меньше падение напряжения.

  Как видим, решение задачи сводится к определению некоего компромисса между двумя противоречивыми требованиями. Нами изготовлены экспериментальные образцы термореэисторов из кремния, специально предназначенных для ограничения начального тока ламп накаливания мощностью 60…150 Вт. Масса одного прибора примерно равна 0.007 г.

начальное сопротивление 110 Ом. Из рис. 4 видно, как изменяется сопротивление такого терморезистора, включенного последовательно в цепь лампы накаливания мощностью 100 Вт (кривая 1). Лампы накаливания (кривая 2) и суммарное — лампы и терморезистора (кривая 3), Конечное сопротивление его равно 11 Ом.

Это хотя меньше, чем у ММТ-12 (соответственно — 28, 24 и 21 Ом в том порядке, как на рис. 1—3), но все же довольно велико — около 2% от сопротивления нагретой лампы. В ближайшее время мы предполагаем изменить конструкцию терморезистора с целью значительно снизить (в 3…

6 раз) его сопротивление, а значит, и потребляемую мощность в нагретом состоянии.

  Для кардинального уменьшения сопротивления терморезистора в нагретом состоянии перспективны, на наш взгляд, два направления работы. Первое — установка термореэистора в баллоне лампы вблизи спирали и использование для его нагревания не только джоулевого тепла, но и тепла излучения спирали лампы.

Второе — создание комбинированной конструкции — совместно работающих на одном кремниевом кристалле термореэистора и симистора.

В этой структуре носители заряда, генерируемые в результате разогревания зоны терморезистора, будут диффундировать в зону симистора и открывать его, а терморезистор, шунтированный cимистором, после этого остынет и не будет потреблять мощности.

Авторы неизвестны
Источник: shems.h1.ru

Источник: http://www.qrz.ru/schemes/contribute/digest/svet34.shtml

Управление мощной нагрузкой постоянного тока. Часть 3

Кроме транзисторов и сборок Дарлингтона есть еще один хороший способ рулить мощной постоянной нагрузкой — полевые МОП транзисторы.

Полевой транзистор работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал.

Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением.

МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.

Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком.

Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает.

Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.

Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной, по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.

Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.

МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь.

Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.

Нагрузка включается в цепь стока. Вообще, в теории, полевому транзистору совершенно без разницы что считать у него истоком, а что стоком — разницы между ними нет.

Но на практике есть, дело в том, что для улучшения характеристик исток и сток делают разной величины и конструкции плюс ко всему, в мощных полевиках часто есть обратный диод (его еще называют паразитным, т.к.

он образуется сам собой в силу особенности техпроцесса производства).

У меня самыми ходовыми МОП транзисторами являются IRF630 (n канальный) и IRF9630 (p канальный) в свое время я намутил их с полтора десятка каждого вида.

Обладая не сильно габаритным корпусом TO-92 этот транзистор может лихо протащить через себя до 9А. Сопротивление в открытом состоянии у него всего 0.35 Ома.

Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314, способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.

Читайте также:  Измеритель ёмкости на микроконтроллере pic18f1320

Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5. Тут вариантов три:

  • На более мелких транзисторах сорудить цепочку, подающую питалово с высоковольтной цепи на затвор, чтобы прокачать его высоким напряжением

Источник: http://easyelectronics.ru/upravlenie-moshhnoj-nagruzkoj-postoyannogo-toka-chast-3.html

Пусковые токи

Вы хотите, чтобы стабилизатор напряжения, источник бесперебойного питания или генератор служили безотказно? Тогда эта статья будет для вас полезна.

Одна из основных характеристик бытовых приборов — электрическая мощность на выходе. Она отражает возможность питания подключённой нагрузки. Для правильного выбора стабилизатора напряжения переменного тока, ИБП или генератора нужно знать мощность устройства. Для ее расчета следует подсчитать сумму электрической мощности всех приборов, которые могут быть единовременно подключены.

Одно из основных условий долгой и стабильной работы стабилизатора, генератора и ИБП: мощность техники не должна превышать их возможности по выходной мощности. Лучше, чтобы суммарная электрическая мощность электроприборов, которые функционируют одновременно, была на 20 % меньше выходной мощности питающего прибора. Чем меньше стабилизатор или ИБП работает с перегрузкой, тем дольше он служит.

В расчете суммарной мощности и состоит основная трудность. В паспорте любого устройства указана мощность в кВт. Вроде бы всё просто: нужно сложить мощность приборов. Но в этом кроется основная ошибка.

Приборы, в конструкции которых есть электродвигатели, насосы или компрессоры, в момент запуска дают нагрузку на сеть, превышающую номинал в 2–7 раз. Такое явление обусловлено наличием пусковых токов.

Это же правило относится к приборам, в состав которых входят инерционные компоненты или элементы, физические свойства которых в момент запуска отличаются от их обычных значений при эксплуатации. Классический пример — изменение сопротивления у обыкновенной лампы накаливания.

В конструкции таких ламп есть вольфрамовая нить, при включении электрическое сопротивление вольфрама меньше (нить холодная), чем при работе. Сопротивление увеличивается с ростом температуры, следовательно, при включении лампы её мощность намного больше, чем во время работы. При включении лампы накаливания присутствуют пусковые токи.

Мощность любого прибора рассчитается как произведение напряжения (в вольтах) и силы тока (в амперах).

По мере увеличения силы тока растет мощность, а значит, возрастает нагрузка на стабилизатор, генератор и источник питания.

Определение пусковых токов можно сформулировать так: электроприборы или их элементы, имеющие инерционные свойства, в момент запуска дают большую нагрузку на электрическую сеть или питающий прибор, чем в процессе работы.

Значение пусковых токов зависит не только от усилия по раскрутке ротора двигателя или насоса до номинальных оборотов, но и от изменения сопротивления проводника. Чем меньше сопротивление, тем больше величина силы тока, который может протекать по нему. При нагреве уменьшается сопротивление и снижается возможность проводника пропускать большие токи.

Помимо вращающего момента и электросопротивления дополнительную электрическую мощность в момент старта прибору придаёт индуктивная мощность. В момент включения люминесцентной лампы у индуктивной катушки сопротивление мало. Также действует мощность для поджига разряда, что увеличивает силу тока.

Влияние пусковых токов особенно важно для стабилизаторов напряжения и источников бесперебойного питания on-line типа. Стабилизаторы работают в одном из двух режимов работы: номинальном или предельном.

В номинальном режиме работы сохраняется мощность, но при ухудшении качества электроснабжения в сети наблюдается очень низкое или, напротив, очень высокое напряжение.

В таком случае стабилизатор переходит в предельный режим работы, его выходная мощность снижается примерно на 30 %. Если при этом происходит перегрузка по пусковым токам, то он выключится, сработает система защиты.

Если это будет повторяться часто, срок службы качественного стабилизатора будет небольшим (что уж говорить о китайской технике).

С ИБП типа on-line дела обстоят сложнее. Если на такой прибор дается нагрузка, превышающая номинальную (а у пусковых токов очень большая скорость, и они проходят любую защиту), предохранители не успевают сработать, и источник питания может сгореть. Это негарантийный случай и ремонт будет стоить значительных средств.

Единственный вид ИБП, который может выдерживать пусковые токи, в 2–3 раза превышающие номинал, — системы резервного электропитания линейно-интерактивного типа.

Максимальные пусковые токи дают компрессоры холодильников (однокамерные — до 1 кВт, двухкамерные — до 1,8 кВт), а также глубинные насосы. Их мощность во время запуска превышает номинал в 5–7 раз.

Самый маленький коэффициент запуска (равный 2) отмечается у насосов Grundfos с системой плавного пуска.

При выборе источников электроснабжения или стабилизатора напряжения нужно учитывать временной фактор влияния пусковых токов. При первом включении стабилизатора или генератора все электроприборы начнут работу одновременно и суммарная нагрузка будет большая.

При дальнейшей работе потребитель должен оценить вероятность одновременного запуска приборов с большими пусковыми токами (к примеру, холодильника, насоса и стиральной машины).

Если стабилизатор или ИБП имеет небольшую мощность, то следует самостоятельно контролировать включение техники с пусковыми токами.

Выводы:

  • При подсчёте суммарной мощности электротехники мощность приборов с пусковыми токами нужно рассчитывать не по номиналу, а с учётом пусковых токов (в Вт либо в А).
  • Пусковые токи даёт техника, в конструкции которой есть электродвигатель, насос, компрессор, нить накаливания или катушка индуктивности.
  • Чем хуже напряжение в магистральном проводе (ниже 150 В или выше 250 В), тем более высокий номинал должен быть у стабилизатора или ИБП (примерно на 30 % больше суммарной мощности работающей техники).

Пусковые токи можно ассоциировать с началом движения велосипеда: в момент начала движения нужно большое усилие, чтобы раскрутить колёса, но когда велосипед приходит в движение, требуется меньше сил для поддержания скорости.

Примеры номинальной мощности и мощности при запуске бытовой техники

В таблице не отражены точные значения электрических приборов, предоставлены лишь ориентировочные цифры для понимания алгоритма выбора стабилизатора напряжения и ИБП.

Источник: http://StabMart.ru/articles/puskovye-toki.html

Пусковой ток в DC/DC-преобразователях

Вступление

Пусковой ток — это пиковый ток, возникающий в цепях источника питания при включении. На рисунке 1 показана стандартная система источника питания. Входной фильтр электромагнитных помех (EMI-фильтр) включает в себя конденсатор, который подключается к входной линии.

DC/DC-преобразователь также имеет конденсаторы, которые подключаются на входе и выходе. Кроме того, к нагрузке может подключаться дополнительный конденсатор. Для каждого из этих конденсаторов требуется ток зарядки для обеспечения нужного уровня напряжения для устойчивого режима работы.

Таким током является пусковой ток.

Высокий пусковой ток зависит от конкретно выбранных элементов схемы. Существует проблема, заключающаяся в том, что большие скачки тока могут создавать электромагнитные помехи в прилегающих схемах и приводить в действие (активизировать) элементы защиты цепей на входе, например предохранитель или полупроводниковую защиту от сверхтоков.

Кривая пускового тока

Типовая кривая пускового тока показана на рисунке 2. На ней видны два пиковых скачка тока. Первый скачок пускового тока отмечается при включении источника входного напряжения.

Такой пиковый ток протекает через конденсаторы EMI-фильтра и входной конденсатор DC/DC-преобразователя, заряжая их до уровня, необходимого для устойчивого режима работы. Второй скачок тока наблюдается при включении DC/DC-преобразователя.

Такой пиковый ток течет через силовой трансформатор DC/DC-преобразователя и выходной конденсатор и, в свою очередь, заряжает их до необходимого для устойчивого режима работы уровня.

Пусковой ток

Первый пик тока часто называется пусковым пиком. Его пиковое значение и форма значительно зависят от характеристик источника входного питания, времени повышения напряжения и сопротивления источника питания.

Резко поднимающееся вверх колебание входного напряжения, как в случае замыкания пускового переключателя, будет соответствовать высокой и узкой кривой пика.

Более медленное и плавное нарастание входного напряжения, например на выходе любого входного электронного устройства или конденсаторной батареи, будет соответствовать более мягкому пику.

Пиковое значение пускового тока определяется уравнением i=Cхdv/dt, где С — емкостное сопротивление, общее сопротивление EMI-фильтра и входного сопротивления DC/DC-преобразователя, а dv/dt — это крутизна кривой напряжения.

Пик тока фиксируется только один раз, если источник входного напряжения характеризуется очень быстрым временем восстановления напряжения. Для этого источник должен обладать достаточным запасом мощности.

Как правило, резкое изменение напряжения бывает только в случаях механического переключения нагрузки или замыкания реле. Если источником питания является импульсный преобразователь, полупроводниковый регулятор мощности или конденсаторная батарея, то длительность импульса будет более продолжительной.

Обычно длительность импульса выходного напряжения импульсных преобразователей составляет несколько миллисекунд, полупроводниковых регуляторов (SSPC) обычно 50 мкс–500 мкс, а больших конденсаторных батарей — обычно не менее нескольких миллисекунд.

Такое длительное нарастание напряжения не приведет к образованию высоких пиков. Важно также определить не только пиковый ток, но и крутизну нарастания тока, чтобы установить, будут ли приведены в действие входной предохранитель, выключатель и SSPC под воздействием пускового тока.

Ток включения

Второй пик тока на рисунке 2 также является важной частью пускового тока.

Этот скачок отмечается, когда DC/DC-преобразователь включается и направляет ток от входа для зарядки своего выходного конденсатора и конденсатора нагрузки. Стандартные кривые тока включения показаны на рисунке 3.

Ток включения остается одинаковым, независимо от того, включается ли преобразователь под воздействием входного напряжения или управляющим сигналом.

Для DC/DC-преобразователей компании VPT используется запатентованная схема обратной магнитной связи с жестким контролем внутреннего цикла запуска и четкой и плавной подачей выходного напряжения.

Плавная подача напряжения обеспечивает контролируемое изменение на выходе и меньшую крутизну dv/dt.

Благодаря мягкому пуску входной ток обычно не превышает значения входного тока устойчивого режима работы преобразователя во время пуска.

DC/DC-преобразователи компании VPT также характеризуются непрерывным постоянным предельным током на выходе. Они подают весь объем номинального тока на источник нагрузки, не дают сбоев и не отключаются, вызывая необходимость перезапуска. Это позволяет им запускать любой конденсатор источника нагрузки, независимо от емкости.

В случае использования очень больших емкостных нагрузок DC/DC-преобразователь входит в режим ограничения тока. В данном случае входной ток не должен более чем в 1,5 раза превысить номинальный ток работы. Этого оказывается достаточно, чтобы не вызывать помехи и/или активировать защитные устройства на входе.

Второй скачок пускового тока не оказывает негативного воздействия на DC/DC-преобразователи в рамках конструкции системы.

Ограничение активного скачка

В некоторых случаях требуется ограничить скачок тока, идущего на входные конденсаторы. Единственная возможность сделать это — включить в цепь последовательный элемент перед конденсаторами.

На рисунке 4 показана базовая схема ограничения скачка тока. Последовательный резистор R1 ограничивает входной ток, пока будут достаточно заряжены конденсаторы.

После зарядки входных конденсаторов реле S1 замыкается и полный объем тока подается на DC/DC-преобразователь.

Для ограничения пускового тока может также использоваться дроссель. Для такого решения не требуется обходного контура, так как постоянный ток проходит через него с низкими потерями. Вместе с тем, как правило, требуется большой номинал индуктивности для эффективного ограничения пускового тока.

Необходимо проявлять осторожность, так как дроссель может образовывать резонансный контур с входным фильтром или с внутренним контуром обратной связи DC/DC-преобразователя, вызывая нестабильность работы системы. Обычно требуется установка дополнительных компонентов для снижения возникшего резонанса.

Другая распространенная схема изображена на рисунке 5. В ней используется последовательный МОП-транзистор VT1. Транзистор VT1 обычно находится в выключенном состоянии, при этом через резистор R2 подается низкое напряжение на затвор. При подаче входного напряжения питание на затвор подается через R1.

Время включения транзистора VT1 ограничивается временем зарядки конденсатора С1. Значения R1 и С1 подбираются такие, чтобы входные конденсаторы заряжались медленно, ограничивая при этом пусковой ток. После зарядки входных конденсаторов на затвор транзистора VT1 подается напряжение до такого значения, пока оно не будет ограничено стабилитроном.

При этом транзистор VT1 остается полностью включенным.

Данная схема может быть изменена путем подключения транзистора VT1 к плюсу питающего провода. Питание может подаваться точно так же с помощью использования Р-канального МОП-транзистора.

Возможно также использование N-канального МОП-транзистора, но с подачей питания на затвор через генератор или отдельный источник питания. Существует множество других схем ограничения пускового тока.

Все они используют последовательное устройство в первичной цепи и работают приблизительно по одной и той же схеме.

Важно, чтобы всегда при окончании зарядки конденсаторов последовательное устройство было шунтировано или полностью включено в целях снижения сопротивления и потери мощности. Также важно, чтобы контроль пускового тока не приводил к возникновению шума и помех во входной линии, так как он осуществляется до EMI-фильтра.

Читайте также:  Дополнительные функции для мотоцикла

Входные модули с ограничением пускового тока

Во многих входных модулях компании VPT предусмотрена встроенная система ограничения пускового тока (таблица 1). В каждом модуле используется последовательный N-канальный МОП-транзистор, подключенный к плюсу питающего провода.

N-канальный МОП-транзистор обеспечивает самое низкое сопротивление в открытом состоянии с целью минимальных потерь мощности. Благодаря подключению его к плюсу питающего источника обратная цепь остается замкнутой, что упрощает конструкцию системы. В таких моделях МОП-транзистор используется в двух целях.

Он также обеспечивает защиту от входного напряжения во время переходного режима.

Модели DV–704A и DVMN28 включают EMI-фильтр и ограничение пускового тока. Обе схемы оптимизированы для совместной работы.

Цепь пускового тока ограничивает любой ток, поступающий в EMI-конденсаторы, но не вызывает никаких дополнительных электромагнитных помех во входных линиях, как это может происходить в случае дискретных контуров.

Модель VPTPCM–12 содержит цепь контроля пускового тока, которая ограничивает пусковой ток на конденсаторах данной модели и на конденсаторах в нагрузке. Но в ней также имеются переключатели, вследствие чего могут потребоваться дополнительные EMI-фильтры на входе.

Заключение

Пусковой ток — это пиковый ток, возникающий при подаче или включении напряжения. В некоторых случаях может быть необходимо ограничение скачка тока во входных конденсаторах. Это требует построения дополнительной схемы.

А с применением DC/DC-преобразователей компании VPT многие системы питания будут соответствовать необходимым требованиям без построения специального решения ограничения пускового тока, что позволит упростить схему, снизить количество элементов, размер и цену на компоненты, при этом увеличив надежность и эффективность устройства.

Комментарий специалиста Построение качественных многоуровневых и многоканальных систем питания требует от инженеров и конструкторов решения проблемы минимизации негативного взаимовлияния комплексных переходных процессов в момент включения систем. Вследствие этого возникает необходимость согласования нагрузок, фильтрации помех до приемлемого уровня для обеспечения стабильного функционирования приборов в жестких условиях эксплуатации.Модули питания VPT успешно решают данную задачу, а системы питания, построенные на их основе, уже долгие годы обеспечивают надежную работу сложнейшей бортовой и научной аппаратуры в космических программах Роскосмоса, NASA и ESA.
Вадим Дроздов, технический специалист PT Electronics

Источник: http://vestnikmag.ru/puskovoj-tok-v-dcdc-preobrazovatelyax/

Ограничение пускового тока ламп накаливания на IRF740

Не смотря на наступление светодиодов, остаются поклонники ламп накаливания при реализации освещения.

Одним из недостатков ламп накаливания, наряду с высоким потреблением энергии, остается короткий срок их жизни.

Считается, что наибольший вклад здесь вносит повышенный (до 10 раз) пусковой ток и попытки продлить срок жизни ламп накаливания сводятся , в основном, к ограничению пускового тока.

Большинство существующих устройств для снижения пускового тока собраны на тиристорах и работают на принципе фазо-импульсного регулирования.

На мой взгляд, один из недостатков таких устройств это большие пиковые токи через лампу даже при ограничении среднего тока через нее и высокие электромагнитные помехи. Предлагаемое здесь устройство лишено этих недостатков.

Оно собрано на MOSFET транзисторе IRF740 и ограничивает как средний, так и пиковый пусковой ток, выступая при включении, в течении 0.5 с, в роли балласта.

Поясню, почему именно 0.5 с. Из Википедии, толщина нити лампы 220В составляет 45-50 мкм, сопротивление холодной нити – 70 Ом, а удельное сопротивлении вольфрама – 0.055 Ом*мм^2 / м . Отсюда вычисляем длину нити – 2.5м (эта цифра некоторых удивит, но спираль двойная и эта длина реальна!).

Плотность вольфрама 19.32 г/см^3, отсюда элементарно находим массу нити накала – 0.1 г. Давайте теперь вычислим, насколько успеет нагреться нить за 0.5 с при условии рассеиваемой мощности не больше номинала (в среднем 60 Вт). Удельная теплоемкость вольфрама 0.

134 Дж/(г*К), а значит температура будет Т = (60Вт*0.5с) / (0.134 Дж/(г*К )*0.1г) = 2240 градуса, то есть примерно равна номинальной. Вот этим и обусловлено значение 0.5 сек. .

На практике, пусковая мощность при ограничении тока окажется несколько меньше номинальной, а значит, и температура будет ниже, но порядок цифр будет примерно такой.

Устройство рассчитано для номинального напряжения 220В и мощности ламп до 100 Вт.   

Ниже приводится схема предлагаемого устройства.

Лампа подключена последовательно с диодным мостом, на выходе которого включен транзистор VT1. На затвор транзистора при включении подается плавно возрастающее напряжение при помощи цепочки VD5, VD6, R1, R2, C1.

Благодаря наличию диода VD6, конденсатор C1 заряжается: до начала открытия транзистора обеими полуволнами, а с началом открытия VT1 – только положительной (условно) полуволной.

Это позволяет с началом открытия VT1 уменьшить скорость заряда конденсатора, что, для того же времени плавного пуска, позволяет в 2 раза уменьшить начальную задержку включения.

Относительно небольшое значение R2 служит этой же цели (с увеличением напряжения возрастает ток через него и, становясь сопоставимым с зарядным током C1, уменьшает со временем скорость его заряда), а так же быстрому разряду С1 после выключения. . Стабилитрон VD7 защищает вход транзистора от превышения напряжения.

Диод VD5 подключен до лампы, поэтому, напряжение на затворе остается высоким даже при полном открытии VT1, что сводит потери напряжения в статичном режиме до падения напряжения на диодном мосте (около 1.5 В). Этот факт тоже выгодно отличает устройство от многих схем подобного назначения.

Приведенная выше максимальная мощность лампы обусловлена максимальной пиковой мощностью, выделяемой на транзисторе в момент включения. Предохранитель FU1 защищает элементы устройства в случае (довольно редком) КЗ при перегорании лампы. Транзистор при этом, с большой долей вероятности, будет открыт по причине сниженной на лампе мощности в период плавного пуска. Вместо плавкого предохранителя можно припаять разрывной (обязательно) резистор номиналом 0.22 Ома на 1 Вт.

Все детали устройства собраны на печатной плате размерами 25мм на 66мм, чертежи и общий вид которой приводится ниже.

Прибор устанавливается в непосредственной близости от светильника (или внутри него) между выключателем и собственно лампой накаливания. Никакого радиатора для транзистора не требуется, так как в статике на нем рассеивается мизерная мощность, а в момент включения он не успевает существенно нагреться.

Для анализа работы схемы проводилось моделирование в программе LTspice (правда, пришлось вместо нелинейного сопротивления лампы использовать постоянное среднего значения, в следствие чего, ток через лампу в модели серьезно отличается от реальности, она предназначена, в основном, для наблюдения временных характеристик и напряжений). Модель и плата DipTrace приводятся во вложении.

Список радиоэлементов

Скачать список элементов (PDF)

Прикрепленные файлы:

Источник: http://cxem.gq/electric/electric104.php

Ограничение пускового тока ламп накаливания на IRF740

Ограничение пускового тока ламп накаливания на IRF740

Не глядя на пришествие светодиодов, остаются фанаты ламп накаливания при реализации освещения. Одним из недочетов ламп накаливания, вместе с высочайшим потреблением энергии, остается маленький срок их жизни. Считается, что больший вклад тут заносит завышенный (до 10 раз) пусковой ток и пробы продлить срок жизни ламп накаливания сводятся, в главном, к ограничению пускового тока.

Большая часть имеющихся устройств для понижения пускового тока собраны на тиристорах и работают на принципе фазо-импульсного регулирования.

На мой взор, один из недочетов таких устройств это огромные пиковые токи через лампу даже при ограничении среднего тока через нее и высочайшие электрические помехи. Предлагаемое тут устройство лишено этих недостатков.

Оно собрано на MOSFET транзисторе IRF740 и ограничивает как средний, так и пиковый пусковой ток, выступая при включении, в течении 0.5 с, в роли балласта.

Объясню, почему конкретно 0.5 с. Из Википедии, толщина нити лампы 220В составляет 45-50 мкм, сопротивление прохладной нити – 70 Ом, а удельное сопротивлении вольфрама – 0.055 Ом*мм^2 / м. Отсюда вычисляем длину нити – 2.5м (эта цифра неких изумит, но спираль двойная и эта длина реальна!).

Плотность вольфрама 19.32 г/см^3, отсюда тривиально находим массу нити накала – 0.1 г. Давайте сейчас вычислим, как успеет нагреться нить за 0.5 с при условии рассеиваемой мощности не больше номинала (в среднем 60 Вт). Удельная теплоемкость вольфрама 0.

134 Дж/(г*К), а означает температура будет Т = (60Вт*0.5с) / (0.134 Дж/(г*К )*0.1г) = 2240 градуса, другими словами приблизительно равна номинальной. Вот этим и обосновано значение 0.5 сек. .

На практике, пусковая мощность при ограничении тока окажется несколько меньше номинальной, а означает, и температура будет ниже, но порядок цифр будет приблизительно таковой.

Устройство рассчитано для номинального напряжения 220В и мощности ламп до 100 Вт.

Ниже приводится схема предлагаемого устройства.

Лампа подключена поочередно с диодным мостом, на выходе которого включен транзистор VT1. На затвор транзистора при включении подается плавненько растущее напряжение с помощью цепочки VD5, VD6, R1, R2, C1.

Благодаря наличию диодика VD6, конденсатор C1 заряжается: до начала открытия транзистора обеими полуволнами, а с началом открытия VT1 — только положительной (условно) полуволной.

Это позволяет с началом открытия VT1 уменьшить скорость заряда конденсатора, что, для такого же времени плавного запуска, позволяет в 2 раза уменьшить исходную задержку включения.

Относительно маленькое значение R2 служит этой же цели (с повышением напряжения растет ток через него и, становясь сравнимым с зарядным током C1, уменьшает с течением времени скорость его заряда), а так же резвому уровню С1 после выключения. . Стабилитрон VD7 защищает вход транзистора от превышения напряжения.

Диодик VD5 подключен до лампы, потому, напряжение на затворе остается высочайшим даже при полном открытии VT1, что сводит утраты напряжения в статичном режиме до падения напряжения на диодном мосте (около 1.5 В). Данный факт тоже прибыльно отличает устройство от многих схем подобного предназначения.

Приведенная выше наибольшая мощность лампы обоснована наибольшей пиковой мощностью, выделяемой на транзисторе в момент включения. Предохранитель FU1 защищает элементы устройства в случае (достаточно редчайшем) КЗ при перегорании лампы. Транзистор при всем этом, с большой толикой вероятности, будет открыт из-за сниженной на лампе мощности в период плавного запуска. Заместо плавкого предохранителя можно припаять разрывной (непременно) резистор номиналом 0.22 Ома на 1 Вт.

Все детали устройства собраны на печатной плате размерами 25мм на 66мм, чертежи и вид которой приводится ниже.

Прибор устанавливается в конкретной близости от осветительного прибора (либо снутри него) меж выключателем и фактически лампой накаливания. Никакого радиатора для транзистора не требуется, потому что в статике на нем рассеивается маленькая мощность, а в момент включения он не успевает значительно нагреться.

Для анализа работы схемы проводилось моделирование в программке LTspice (правда, пришлось заместо нелинейного сопротивления лампы использовать неизменное среднего значения, в следствие чего, ток через лампу в модели серьезно отличается от действительности, она предназначена, в главном, для наблюдения временных черт и напряжений). Модель и плата DipTrace приводятся во вложении.

Перечень радиоэлементов

Обозначение Тип Номинал Количество ПримечаниеМагазинМой блокнот VT1 MOSFET-транзистор IRF740 1 IRF840Поиск в win-sourceВ блокнотVD1-VD6 Выпрямительный диодик 1N4007 6 КД209Поиск в win-sourceВ блокнотVD7 Стабилитрон12-15 В1 Д814ДПоиск в win-sourceВ блокнотC1 Электролитический конденсатор47мкФ 25В1 Поиск в win-sourceВ блокнотR1 Резистор 1 МОм 1 Поиск в win-sourceВ блокнотR2 Резистор 220 кОм 1 Поиск в win-sourceВ блокнотFU1 Плавкий предохранитель2 А1 Поиск в win-sourceВ блокнотДобавить все

Скачать перечень частей (PDF)

PPLN(1).rar (3 Кб)
MOSFET LTspice DipTrace Освещение

Источник: http://bloggoda.ru/2017/09/29/ogranichenie-puskovogo-toka-lamp-nakalivaniya-na-irf740/

Ссылка на основную публикацию
Adblock
detector