Электронный коммутатор нагрузок

Схемы коммутации индуктивных нагрузок

Одним из популярных использований диодов является ослабление индуктивной “отдачи”: импульсов высокого напряжения, возникающих при прерывании протекания постоянного тока через индуктивность. Возьмем, к примеру, простую схему на рисунке ниже без защиты от индуктивной отдачи.

Индуктивная отдача: (a) Кнопка разомкнута. (b) Кнопка замкнута, поток электронов протекает от батареи через катушку, которая по полярности совпадает с батареей. Магнитное поле сохраняет энергию. (c) Кнопка разомкнута. Ток всё еще протекает в катушке из-за уменьшения магнитного поля.

Обратите внимание на изменение полярности катушки. (d) Напряжение на катушке в зависимости от времени.

Когда кнопка нажат, ток проходит через индуктивность, создавая вокруг нее магнитное поле.

Когда кнопка отжимается, ее контакт разрывается, прерывая протекание тока через индуктивность и вызывая быстрое уменьшение магнитного поля.

Поскольку напряжение, индуцируемое в катушке провода, прямо пропорционально скорости изменения магнитного потока во времени (закон Фарадея: e = NdΦ/dt), это быстрое уменьшение магнитного поля вокруг катушки создает “всплеск” высокого напряжения.

Если речь идет о катушке электромагнита, например, о соленоиде или реле, (сконструированной для создания физической силы при помощи магнитного поля при протекании тока), эффект индуктивной “отдачи” вообще не имеет никакой полезной цели.

Фактически, он очень вреден для коммутатора, так как вызывает чрезмерное искрение контактов, что значительно сокращает их срок службы.

Из практических способов уменьшения высоковольтного переходного процесса, возникающего при размыкании переключателя, нет более простого, чем так называемый коммутирующий диод, показанный на рисунке ниже.

Индуктивная отдача с защитой: (a) Ключ разомкнут. (b) Ключ замкнут, сохранение энергии в магнитном поле. (c) Ключ разомкнут, индуктивная отдача накоротко замыкается диодом.

В этой схеме диод подключен параллельно катушке, поэтому, когда постоянное напряжение будет подаваться на катушку через кнопку, он будет смещен в обратном направлении.

Таким образом, когда катушка находится под напряжением, диод не проводит ток (рисунок выше (b)).

Однако когда ключ размыкается, индуктивность катушки реагирует на уменьшение тока индуцированием напряжения обратной полярности с целью поддержания тока той же величины и в том же направлении.

Это внезапное изменение полярности напряжения на катушке смещает диод в прямом направлении, и диод обеспечивает путь для протекания тока катушки индуктивности, поэтому вся ее накопленная энергия рассеивается медленно, а не мгновенно (рисунок выше (c)).

В результате напряжение, наведенное в катушке резко ее уменьшающимся магнитным полем, довольно мало: просто величина прямого падения напряжения на диоде, а не сотни вольт, как было ранее. Таким образом, во время процесса разряда к контактам ключа прикладывается напряжение, равное напряжению батареи плюс примерно 0,7 В (если используется кремниевый диод).

В языке электроники термин коммутация относится к изменению полярности напряжения или направления тока.

Таким образом, назначение коммутирующего диода состоит в том, чтобы действовать всякий раз, когда напряжение меняет полярность, например, на катушке индуктивности при прерывании протекания через нее тока.

Менее формальный термин для коммутирующего диода – демпфер, поскольку “демпфирует” или “гасит” индуктивную отдачу.

Примечательным недостатком этого метода является дополнительное время, которое добавляет к разрядке катушки. Поскольку наведенное напряжение ограничивается до очень низкого значения, скорость изменения магнитного потока во времени сравнительно невелика.

Помните, что закон Фарадея описывает скорость изменения магнитного потока (dΦ/dt), как пропорциональную наведенному мгновенному напряжению (e или v).

Если мгновенное напряжение ограничено некоторым низким значением, то скорость изменения магнитного потока во времени будет также ограничена низким (медленным) значением.

Если катушка электромагнита “погашена” с помощью коммутирующего диода, магнитное поле буде рассеиваться с относительно низкой скоростью по сравнению с изначальным сценарием (без диода), где поле исчезает почти мгновенно после размыкания ключа.

Количество времени, о котором идет речь, будет, скорее всего, меньше одной секунды, но оно будет заметно больше, чем без коммутирующего диода.

Это может привести к неприемлемым последствиям, если катушка используется для приведения в действие электромеханического реле, поскольку реле будет иметь естественную “временную задержку” обесточивания катушки, и нежелательная задержка даже в доли секунды может нанести ущерб некоторым схемам.

К сожалению, нельзя одновременно и исключить высоковольтный переходной процесс индуктивной отдачи, и сохранить быстрое снятие намагниченности катушки: невозможно нарушить закон Фарадея.

Однако, если медленное снятие намагниченности неприемлемо, можно достигнуть компромисса между переходными напряжением и временем, позволяя напряжению на катушке подняться до некоторого более высокого уровня (но не настолько высокого, как без коммутирующего диода). Схема на рисунке ниже показывает, как это можно сделать.

(a) Последовательно с коммутирующим диодом включен резистор. (b) Диаграмма напряжения. (c) Уровень без диода. (d) Уровень с диодом, но без резистора. (e) Компромиссный уровень с диодом и резистором.

Резистор, включенный последовательно с коммутирующим диодом, позволяет напряжению, наведенному катушкой, подниматься до уровня превышающего прямое падение напряжения на диоде, ускоряя тем самым процесс размагничивания. Это, конечно же, будет давать большее напряжение на контактах, и поэтому резистор должен быть такого номинала, чтобы ограничить переходное напряжение на приемлемом максимальном уровне.

Оригинал статьи:

  • Inductor Commutating Circuits

Источник: https://radioprog.ru/post/181

Электронный коммутатор обмоток трансформатора лабораторных источников питания

 

Николай Петрушов

В первой части нашего повествования, была рассмотрена схема коммутатора вторичной обмотки силового трансформатора, выполненная на электромагнитных реле.

Для тех, кто мало работает с блоком питания в режиме стабилизации тока, и не изменяет выходное напряжение под нагрузкой – схема вполне подойдёт и прослужит очень долго, но и у неё имеются определённые недостатки. При регулировке выходного напряжения БП слышны щелчки срабатываемых реле.

Так как коммутация обмоток происходит с прерыванием тока, контакты реле могут обгорать, особенно в режиме стабилизации  тока с подключенной нагрузкой.

Всех этих недостатков не имеет электронный вариант коммутатора вторичных обмоток трансформатора ЛБП, рассматриваемый ниже.

Схема электронного коммутатора выполнена на симисторах и работает в режиме вольт добавки. Ей абсолютно всё равно, в какой момент полупериода переменного напряжения включится или выключится симистор, и сколько включится симисторов.

Она просто добавляет или уменьшает (но не прерывает) входное напряжение на блок питания, которое зависит от количества включенных симисторов и соответственно выходного напряжения блока питания.

Идея использования вольт добавки, предложенная kotosob-ом с форума сайта “Паяльник”, я здесь лишь предлагаю свой вариант её исполнения. Схема этого варианта коммутатора, так же, как и в первой части, собрана на микросхеме К555ИВ3.

Без неё было бы трудно реализовать алгоритм переключения симисторов, да и увеличилось бы количество отводов вторичной обмотки силового трансформатора и используемых в схеме диодов и симисторов, при аналогичных пределах переключений и используемых напряжений.

В силовой части коммутатора используются четыре симистора (соответственно четыре симисторных оптрона) и три диодных моста, которые при применении симисторов в изолированных корпусах, можно установить на общий радиатор.

Схема блока переключения обмоток трансформатора.

Как видно из схемы, она похожа на релейный вариант коммутатора, рассмотренного в первой части. Для задания порогов переключения, здесь так же используются стабилитроны на рабочее напряжение 6,2 – 6,8 вольт.

Лучше конечно использовать стабилитроны на рабочее напряжение 6,8 вольт, тогда пороги переключений будут следующие – 6,8 v; 13,6 v; 20,4 v; 27,2 v; 34 v; 40,8 v.

В электронном коммутаторе используются четыре симистора, которые коммутируют вторичные обмотки силового трансформатора таким образом, что выходное напряжение с моста, подаваемое на вход блока питания (на электролитические конденсаторы фильтра), изменяется от 8-ми до 44 вольт, с пределом изменения в 6 вольт, в зависимости от выходного напряжения блока питания, то есть равняется 8, 14, 20, 26, 32, 38, 44. Необходимое напряжение вторичных обмоток силового трансформатора для данного варианта блока питания, указано на схеме силовой части коммутатора.

С таким коммутатором можно построить блок питания с выходным напряжением, изменяемым от 0 и до 40-45 вольт, с током нагрузки 5-10 ампер с хорошим КПД во всём диапазоне выходных напряжений.

Схема силовой части.

Читайте также:  Эффект эхо (echo) на микроконтроллере atmega32

Если в фильтре блока питания применить электролитические конденсаторы на рабочее напряжение 80 вольт, то можно построить блок питания, максимальное выходное напряжение которого, может достигать 55-65 вольт.

Для этого необходимо будет намотать силовой трансформатор, первые три секции которого (I, II, III) имеют выходное напряжение по 8 вольт, две последующие (IV, V) по 16 вольт, соответственно проводом, рассчитанным на необходимый ток нагрузки. Напряжения, подаваемые на вход блока питания в этом случае будут следующие – 8, 16, 24, 32, 40, 48, 56 вольт.

Так же все стабилитроны необходимо будет заменить на стабилитроны с напряжением стабилизации 7,5 – 8,2 вольта, для расширения порогов переключения электронного коммутатора. Работа электронной схемы, аналогична схеме релейного коммутатора, описанного в первой части, а силовая часть работает следующим образом.

Если выходное напряжение БП не превышает 6,2-6,8 вольт (рабочее напряжение стабилитрона), то все симисторы закрыты, и на вход БП поступает напряжение 8 вольт с III-части вторичной обмотки силового трансформатора.

При повышении выходного напряжения, открывается первый стабилитрон, на выходе 1 (вывод 9) микросхемы К555ИВ3 появляется логический ноль, загорается светодиод оптрона U3, открывается симистор VS3. К диодам второго моста VD9-VD10 подключается II-часть вторичной обмотки и к 8-ми вольтовой обмотке добавляется 6 вольт.

В итоге выходное напряжение повышается на 6 вольт (8+6). Выпрямительные диоды VD7-VD8 при этом запираются поступающим на них повышенным обратным напряжением с диодов VD9-VD10 и исключаются из работы. В дальнейшем при повышении выходного напряжения БП, открывается второй стабилитрон.

На выходе 2 (вывод 7) микросхемы К555ИВ3 – появляется логический ноль, на выходе 1 (вывод 9) – логическая единица. Загорается светодиод оптрона U2, симистор VS2 открывается, а светодиод  оптрона U3 гаснет и симистор VS3 – закрывается. В работу вступают диоды VD3-VD4 (и VD7-VD8), которые запирают диоды VD5-VD6.

К 8-ми вольтовой обмотке добавляется 12 вольт, а 6 вольт (VS3, VD9-VD10) отключается. Итоговое напряжение на входе БП повышается ещё на 6 вольт (8+12). В дальнейшем при повышении выходного напряжения БП – симисторы VS1-VS3 (точнее будет VS3-VS1), срабатывают в двоичном коде и напряжение ступенями по 6 вольт повышается до максимума. Последним открывается симистор VS4. При уменьшении выходного напряжения блока питания, всё происходит в обратном порядке.

Переключатель обмоток собран на печатной плате, размером 56х77 мм.

Печатная плата коммутатора.

Печатную плату для коммутатора любезно предоставил пользователь нашего сайта Анатолий Соколов (). Печатная плата в формате Sprint-Layout от Анатолия Соколова добавлена к статье в прикреплении (архиве) для скачивания.

Зарубежные аналоги для микросхемы К555ИВ3, как указывалось в первой части – 74LS/HC/HCT 147. В качестве диодных мостов (VD1-VD4, VD5-VD8, VD9-VD12) и силовых симисторов, можно применить любые симисторы и диодные мосты, а так же отдельные диоды, рассчитанные на требуемый ток и соответствующее напряжение.

В качестве транзисторов – любые маломощные транзисторы. Оптроны так же можно применять любые из имеющихся, но только симисторные. транзисторные и диодные не подойдут. Можно вместо них в крайнем случае поставить и маломощные электромагнитные (герконовые) реле.

Резисторы по 330 ом, которые включены последовательно со светодиодами оптронов в этом случае исключаются, а контакты реле подключаются вместо симисторов оптронов.

Приложение:

Скачать архив.

Источник: http://vprl.ru/publ/istochniki_pitanija/bloki_pitanija/ehlektronnyj_kommutator_obmotok_transformatora_laboratornykh_istochnikov_pitanija/11-1-0-61

Автоматический коммутатор нагрузки Grandvolt MGV-BASIC

ОПИСАНИЕ РАБОТЫ УСТРОЙСТВАУстройства MGV-Basic и MGV-Pro предназначены для автоматического резервирования сети свозможностью удалённого SMS и GPRS мониторинга при использовании в качестве резервного источникаэлектроэнергии бензинового, дизельного или газового электрогенератора.

Сила тока, вырабатываемогоиспользуемым электрогенератором – до 63 А (на каждую фазу).Устройство MGV-Pro отличается от MGV-Basic наличием буквенно-цифрового дисплея, позволяющегополучить доступ к информации без использования дополнительного оборудования (ПК, блока индикации иконтроля и т.п.

, используемых для доступа к информации в MGV-Basic).

В состав устройств входят:

– блок автоматического запуска электрогенератора- блок автоматического ввода резерва (АВР)- блок подзарядки аккумуляторной батареи электрогенератора(ток зарядки до 5 А)- промышленный GSM-модем (поставляется как опция)

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

– Контроль состояния 3ф / 1ф сети.- Ручной и автоматический запуск электрогенератора.- Запуск электрогенератора при пропадании одной из фаз сети.- Останов электрогенератора при появлении всех фаз сети.- Контроль напряжения аккумуляторных батареи источника бесперебойного питания(ИБП). – Запуск электрогенератора в случае разряда аккумуляторных батарей ИБП ниже, установленного Пользователем, значения*, останов электрогенератора при заряде аккумуляторных батарей ИБП выше, установленного Пользователем, значения*.- Подзарядку аккумуляторной батареи электрогенератора.- Светозвуковую сигнализацию на этапах запуска, прогрева, работы, охлаждения электрогенератора.- Сохранение в энергонезависимой памяти событий и аварий с записью времени и даты.- Автоматический тестовый еженедельный запуск электрогенератора в, устанавливаемоеПользователем время и день недели*.- Режим «работа/отдых» электрогенератора, с целью недопущения перегрева электрогенератора и экономии топлива*.- Ведение счетчика моточасов электрогенератора.- Возможность подключения блока индикации и программирования(БИП) посредством интерфейса RS-485.

ОПЦИИ

– Возможность подключения GSM модема посредством интерфейса RS-485.- Отправка SMS-сообщений при наступлении событий и (или) аварий.- Выбор отправляемых SMS-сообщений: все события и аварии, основные события и аварии, только аварии.- Выбор языка SMS-сообщений: русский, английский.- Введение до 3-х номеров абонентов с возможностью отключения каждого номера.- Передача телеметрических данных по SMS-запросу(режим работы, счетчик моточасов, напряжениеАКБ ИБП, АКБ ГУ, напряжения сети, частоты вращения коленчатого вала двигателя, количества запусков электрогенератора за выбранный период и т.д.).

– Принудительный запуск, останов электрогенератора по SMS-запросу.

Источник: http://www.profpower.ru/product/avtomaticheskij-kommutator-nagruzki-grandvolt-mgv-basic/

Коммутация нагрузок переменного тока

Доброго времени суток. Речь пойдёт о коммутации нагрузок переменного тока.
На просторах интернета находятся сотни вариантов управления ТЭНами и лампочками через симистор. Вот типовое решение.

Но симистор имеет несколько важных недостатков: — Он может сам включится. — Он не подходит для коммутации мощных нагрузок.

По опыту работы если в качестве С2 использовать CL21(CBB21) 0.

01uF 630V”, Китай” их будет часто пробивать, что приводит к замыканию цепи управления.

Вот как это западло выглядит на сайте всем известного магазина:Вот как такой конденсатор может выглядеть в готовом изделии.На данной схеме резистор R4 не установлен, вся цепь кроме С2 живая. Такой пробой не единичный случай, это просто самый наглядный.

Экономить на конденсаторах не выгодно потому как нагрузка разная бывает, может быть и опасно такое включение. Помимо симисторов существует ещё один вариант. И это контакторы, которыми можно управлять как раз этими самыми симисторами. Это как реле, но большое. На рисунке представлен один из самых часто распространнёных и маленьких экземпляров.

Однако, речь дальше пойдёт о тиристорах.

Я не буду приводить здесь теорию про тиристоры, желающие могут почитать здесь.

Основные отличия от симисторов:

— Больший коммутируемый ток (хотя в СССР выпускались симисторы — монстры).

— Большая надёжность коммутации. Основные отличия от контакторов: — Меньшие габариты и вес. — Большая скорость коммутации. Они выпускаются как в виде отдельных тиристоров:Обычно они устанавливаются парами на теплоотвод. Выглядит это в железе обычно как-то так:Так и в виде модулей, состоящих из двух тиристоров в одном корпусе:В живую они обычно выглядят как блок, установленный на теплоотвод:Основным отличием от симистора сдрайвером будет необходимость включать тиристоры в каждом полупериоде. Из всей теории я приведу следующий рисунок:На нём изображены коммутируемое напряжение (U), коммутируемый ток (i) и импульсы включения тиристоров (iупр.). Как видно из графика коммутация производится при ноле тока, а не напряжения, что принципиально важно. Существует множество способов включения тиристоров. Но основным на сегодня является включение тиристора двуполярными импульсами, при этом частота импульсов должна быть больше сетевой. Таким образом когда мы подаём команду включения тиристорам, они включатся во время ближайшего, подходящего импульса. А поскольку частота импульсов большая то включение произойдёт практически мгновенно. И если ток через тиристор меньше тока удержания, то каждый следующий импульс будет снова открывать тиристор, что при большой частоте импульсов не будет заметно для питаемой нагрузки. Отключение тиристоров происходит при снижении коммутируемого тока ниже тока удержания. Что при пропадании импульсов управления приведёт к скорейшему закрытию тиристора при переходе тока через ноль в конце полупериода. Схема управление тиристорами похожа на такую:Во вложении более крупная картинка и схема. На микросхемах CD4069 и CD4013 собран генератор управляющих импульсов. В точках А и В получаются вот такие сигналы (осторожно модель)Этот генератор может быть общим для достаточно большого числа каналов управления. Его всегда можно заменить 2 выводами микроконтроллера, но разумнее микроконтроллер разместить на отдельной плате. Создание каналов управления производится копирование всего куска поле точек А и В. Трансформатор Т1 используется в первую очередь как гальваническая развязка. К тому на каком магнитопроводе он будет намотан требования очень расплывчатые. Всё что идет до VT1 рекомендуется делать на отдельной плате управления. Соединение плат лучше выполнять между VT1 и R10. В случае использования модульных тиристоров в точках обозначенных + и — подпаиваются проводники с наконечниками, при этом цвет проводников + и — должен быть различным иначе очень легко запутаться. Предохранитель FU1 нужен для обрыва цепи в случае пробоя тиристоров или неправильной их коммутации. В случае перенапряжений обычно выбивает VD1-VD4 и резисторы на высокой стороне. R11 должен быть в корпусе 2512, остальное допустимо применять в корпусе 1206. Резистор R15 должен быть огнестойкий (серенькие такие). Конденсаторы 1206 все кроме С10.

Читайте также:  Операционные системы реального времени

Вот как-то так. Про цепи измерения и питания будет отдельно ибо мне влом.

Источник: http://we.easyelectronics.ru/power-electronics/kommutaciya-nagruzok-peremennogo-toka.html

Как выбрать коммутатор

Как выбрать коммутатор при существующеи разнообразии? Функциональность современных моделей очень разная.

Можно приобрести как простейший неуправляемый свитч, так и многофункциональный управляемый коммутатор, немногим отличающийся от полноценного роутера.

В качестве примера последнего можно привести Mikrotik CRS125-24G-1S-2HND-IN из новой линейки Cloud Router Switch. Соответственно, и цена таких моделей будет гораздо выше.

Поэтому при выборе коммутатора прежде всего нужно определиться, какие из функций и параметров современных свитчей вам необходимы, а за какие не стоит переплачивать. Но сначала – немного теории.

Виды коммутаторов

Неуправляемый или управляемый коммутатор – какой выбрать? Зависит от того, что вам нужно. Если:

  • Вам необходимо просто раздать интернет на несколько устройств (5-8 штук);
  • Объем трафика, который будут потреблять подключаемые девайсы – небольшой;
  • Вам не нужна возможность дополнительных ручных настроек, как-то: фильтрация трафика, ограничение скорости на отдельных портах и т.д.

В этом случае можно выбрать простенький неуправляемый коммутатор стоимостью в 10-15 долларов. Он вполне справится. К примеру, D-Link DES-1005A, Asus GX1005B, TP-Link TL-SF1008D и подобные.

При более сложных требованиях лучше приобрести управляемый. Отличные решения предлагает тот же Микротик, например, Mikrotik RouterBoard RB250GS.

Однако если раньше управляемые коммутаторы отличались от неуправляемых, в том числе, более широким набором функций, то сейчас разница может быть только в возможности или невозможности удаленного управления устройством. В остальном – даже в самые простые модели производители добавляют дополнительный функционал,  частенько повышая при этом их стоимость.

Поэтому на данный момент более информативна классификация коммутаторов по уровням.

Уровни коммутаторов

Для того, чтобы выбрать коммутатор, оптимально подходящий под наши нужды, нужно знать его уровень. Этот параметр определяется на основании того, какую сетевую модель OSI (передачи данных) использует устройство.

  • Устройства первого уровня, использующие физическую передачу данных, уже практически исчезли с рынка. Если кто-то еще помнит хабы – то это как раз пример физического уровня, когда информация передается сплошным потоком.
  • Уровень 2. К нему относятся практически все неуправляемые коммутаторы. Используется так называемая канальная сетевая модель. Устройства разделяют поступающую информацию на отдельные пакеты (кадры, фреймы), проверяют их и направляют конкретному девайсу-получателю. Основа распределения информации в коммутаторах второго уровня – MAC-адреса. Из них свитч составляет таблицу адресации, запоминая, какому порту какой MAC-адрес соответствует. IP-адреса они не понимают.
  • Уровень 3. Выбрав такой коммутатор, вы получаете устройство, которое уже работает с IP-адресами. А также поддерживает множество других возможностей работы с данными: преобразование логических адресов в физические, сетевое протоколы IPv4, IPv6, IPX и т.д., соединения pptp, pppoe, vpn и другие. На третьем, сетевом уровне передачи данных, работают практически все маршрутизаторы и наиболее “продвинутая” часть коммутаторов.
  • Уровень 4. Сетевая модель OSI, которая здесь используется, называется транспортной. Даже не все роутеры выпускаются с поддержкой этой модели. Распределение трафика происходит на интеллектуальном уровне – устройство умеет работать с приложениями и на основании заголовков пакетов с данными направлять их по нужному адресу. Кроме того, протоколы транспортного уровня, к примеру TCP, гарантируют надежность доставки пакетов, сохранение определенной последовательности их передачи и умеют оптимизировать трафик.

Выбираем коммутатор – читаем характеристики

Как выбрать коммутатор по параметрам и функциям? Рассмотрим, что подразумевается под некоторыми из часто встречающихся обозначений в характеристиках. К базовым параметрам относятся:

Количество портов. Их число варьируется от 5 до 48. При выборе коммутатора лучше предусмотреть запас для дальнейшего расширения сети.

Базовая скорость передачи данных. Чаще всего мы видим обозначение 10/100/1000 Мбит/сек – скорости, которые поддерживает каждый порт устройства. Т. е.

выбранный коммутатор может работать со скоростью 10 Мбит/сек, 100 Мбит/сек или 1000 Мбит/сек. Достаточно много моделей, которые оснащены и гигабитными, и портами 10/100 Мб/сек.

Большинство современных коммутаторов работают по стандарту IEEE 802.3 Nway, автоматически определяя скорость портов.

Пропускная способность и внутренняя пропускная способность. Первая величина, называемая еще коммутационной матрицей – это максимальный объем трафика, который может быть пропущен через коммутатор в единицу времени. Вычисляется очень просто: кол-во портов х  скорость порта х 2 (дуплекс).

  К примеру, 8-портовый гигабитный коммутатор имеет пропускную способность в 16 Гбит/сек.
Внутренняя пропускная способность обычно обозначается производителем и нужна только для сравнения с предыдущей величиной.

Если заявленная внутренняя пропускная способность меньше максимальной – устройство будет плохо справляться с большими нагрузками, тормозить и зависать.

Автоматическое определение MDI/MDI-X. Это автоопределение и поддержка обоих стандартов, по которым была обжата витая пара, без необходимости ручного контроля соединений.

Слоты расширения. Возможность подключения дополнительных интерфейсов, например, оптических.

Размер таблицы MAC-адресов. Для выбора коммутатора важно заранее просчитать необходимый вам размер таблицы, желательно с учетом будущего расширения сети. Если записей в таблице не будет хватать, коммутатор будет записывать новые поверх старых, и это будет тормозить передачу данных.

Форм-фактор. Коммутаторы выпускаются в двух разновидностях корпуса: настольный/настенный вариант размещения и для стойки. В последнем случае принят стандартный размер устройства -19-дюймов. Специальные ушки для крепления в стойку могут быть съемными.

Выбираем коммутатор с нужными нам функциями для работы с трафиком

Управление потоком (Flow Control, протокол IEEE 802.3x). Предусматривает согласование приема-отправки данных между отправляющим устройством и коммутатором при высоких нагрузках, во избежание потерь пакетов. Функция поддерживается почти каждым свитчом.

Читайте также:  Радиочастотное (rfid) управление доступом с помощью arduino uno и модуля em-18

Jumbo Frame– увеличенные пакеты. Применяется для скоростей от 1 гбит/сек и выше, позволяет ускорить передачу данных за счет уменьшения количества пакетов и времени на их обработку. Функция есть почти в каждом коммутаторе.



Режимы Full-duplex и Half-duplex.

Практически все современные свитчи поддерживают автосогласование между полудуплексом и полным дуплексом (передача данных только в одну сторону, передача данных в обе стороны одновременно) во избежание проблем в сети.

Приоритезация трафика (стандарт IEEE 802.1p) – устройство умеет определять более важные пакеты (например, VoIP) и отправлять их в первую очередь.

Выбирая коммутатор для сети, где весомую часть трафика будет составлять аудио или видео, стоит обратить внимание на эту функцию

Поддержка VLAN (стандарт IEEE 802.1q).

VLAN – удобное средство для разграничения отдельных участков: внутренней сети предприятия и сети общего пользования для клиентов, различных отделов и т.п.

Зеркалирование трафика. Для обеспечения безопасности внутри сети, контроля или проверки производительности сетевого оборудования, может использоваться зеркалирование (дублирование трафика). К примеру, вся поступающая информация отправляется на один порт для проверки или записи определенным ПО.

Перенаправление портов. Эта функция вам может понадобиться для развертывания сервера с доступом в интернет, или для онлайн-игр.

Защита от “петель” – функции STP и LBD. Особенно важны при выборе неуправляемых коммутаторов. В них обнаружить образовавшуюся петлю – закольцованный участок сети, причину многих глюков и зависаний – практически невозможно. LoopBack Detection автоматически блокирует порт, на котором произошло образование петли.

Протокол STP (IEEE 802.1d) и его более совершенные потомки – IEEE 802.1w, IEEE 802.1s – действуют немного иначе, оптимизируя сеть под древовидную структуру. Изначально в структуре предусмотрены запасные, закольцованные ветви.

По умолчанию они отключены, и коммутатор запускает их только тогда, когда происходит разрыв связи на какой-то основной линии.

Агрегирование каналов (IEEE 802.3ad). Повышает пропускную способность канала, объединяя несколько физических портов в один логический. Максимальная пропускная способность по стандарту – 8 Гбит/сек.

Стекирование. Каждый производитель использует свои собственные разработки стекирования, но в общем эта функция обозначает виртуальное объединение нескольких коммутаторов в одно логическое устройство. Цель стекирования – получить большее количество портов, чем это возможно при использовании физического свитча.

Функции коммутатора для мониторинга и диагностики неисправностей

Диагностика кабеля. Многие коммутаторы определяют неисправность кабельного соединения, обычно при включении устройства, а также вид неисправности – обрыв жилы, короткое замыкание и т.п. Например, в D-Link предусмотрены специальные индикаторы на корпусе:

Защита от вирусного трафика (Safeguard Engine). Методика позволяет повысить стабильность работы и защитить центральный процессор от перегрузок “мусорным” трафиком вирусных программ.

Энергосбережение. Как выбрать коммутатор, который будет экономить вам электроэнергию? Обращайте внимание на наличие функций энергосбережения.

Некоторые производители, например D-Link, выпускают коммутаторы с регулировкой потребления электроэнергии.

Например, умный свитч мониторит подключенные к нему устройства, и если в данный момент какое-то из них не работает, соответствующий порт переводится в “спящий режим”.

Power over Ethernet (PoE, стандарт IEEE 802.af). Коммутатор с использованием этой технологии может питать подключенные к нему устройства по витой паре.

Встроенная грозозащита. Очень нужная функция, однако надо помнить, что такие коммутаторы должны быть заземлены, иначе защита не будет действовать.

Источник: https://lantorg.com/article/kak-vybrat-kommutator

Коммутаторы и их типы

Поговорим об одной немаловажной детали,без которой в наше время не обходится ни одна мототехника(ну или почти ни одна).О коммутаторе.Из множества типов,для мототехники определилось их всего три типа:

  1. Коммутатор с встроеным высоковольтным генератором.(DC CDI)
  2. Коммутатор,нуждающийся в источнике высокого напряжения.(AC CDI)
  3. Катушка-коммутатор.

DC коммутатор

DC коммутатор

   Один из самых распространённых коммутаторов в силу простоты подключения.Самый простой из них имеет на борту всего четыре контакта для следующих проводов:

  • Плюс(12В)
  • Минус
  • Датчик Холла
  • Катушка зажигания

Не смотря на простоту,существует великое множество коммутаторов этого типа.Есть и с ограничителем максимальных оборотов и без,с изменением фаз опережения зажигания,с дополнительными контактами для самых разнообразных потребностей.

Например,к некоторым коммутаторам можно “зацепить” “лентяйку”(боковую подставку),при открытии которой мотор не раскрутится до оборотов,при которых включается сцепление.

Делается это для того,чтобы обезопасить водителя от него самого,а вдруг ему захочется стоящий мопед прогазовать,так и побежит следом в попытке его поймать.Были случаи:).

АС коммутатор Honda

AC коммутатор

   Отличается от DC коммутаторов возможностью обходиться без постоянного тока 12В.Сложно сказать,проще он устроен или сложнее.Скорее можно сказать что иначе,потому как,при наличии более простой конструкции,имеет более сложный вариант подключения к электроцепи.

В отличие от DC коммутаторов,АС коммутаторы бывают преимущественно без ограничителя максимальных оборотов в силу маленьких габаритов и довольно примитивного устройства,они могут похвастаться способностью прекрасно работать при отсутствии целого ряда узлов,без которых DC коммутатор работать не сможет в принципе.Снимите аккмулятор,реле-регулятор,замок зажигания,оставьте только высоковольтную катушку генератора и датчик Холла и всё будет прекрасно заводиться и ехать.Я не говорю,что все они примитивны,есть довольно сложно организованные коммутаторы данного типа,способные конкурировать с DC типом,нор это редкость.Не смотря на отсутствие  необходимости в постоянном токе,АС очень сильно зависят от “переменки” и связи блока мотора с рамой(я имею ввиду общий корпус),и не дай Бог Вам спалить или повредить одну катушку в генераторе,которая вырабатывает высокое напряжение,и можно считать,что Вы уже приехали:мопед не заведётся ни при каких условиях.

Катушка-коммутатор

Катушка-коммутатор Suzuki

   Самая загадошная загадочная вещь из всех,что я встречал.Объединяет в одном лице и коммутатор и катушку зажигания,обходится вообще без датчика Холла.Изучена мало в силу своей непробиваемости и (слава Крутящему Моменту) слабой распространённости.

   Ладно,теперь конкретика…

Сток коммутатор

   Стоковый или стандартный коммутатор,это тот,что устанавливается с завода.

Главное его преимущество перед остальными в том,что он уже расчитан на ту технику,с которой работает,часто он с ограничителем для того,чтобы мотор не раскручивался до оборотов,опасных для жизни и ресурса коренных подшипников,всего кривошипно-шатунного механизма,цилиндро-поршневой группы и прочих узлов и агрегатов.Скажем так,что стоковый коммутатор,это главная причина долговечности грамотно продуманного мотора,его экономичности и надёжности.Те,кто берёт на себя риск заменить стоковый коммутатор на спортивный (тюнинговый),тот,уж поверьте,рискует многим.Ещё более многим рискуют те,кто до конца не осознают,что собираются сделать.Неумелая установка подобных деталей и дальнейшая их эксплуатация со стандартным мотором часто приводят к уменьшению ресурса в разы и летальному исходу мотора,порой в тот же день.

Спорт коммутатор

   Что бывает с мотором после установки спорт коммутатора и неумелом обращении,я уже упомянул в предыдущем разделе.Получается,что коммутатор без “отсечки”,это зло в чистом виде,но пред тем,как делать такие выводы,разберёмся:для чего он нужен,куда его ставят и как его пользуют.

   Главная задача хорошего спорт-коммутаторам в том,чтобы освободить мотор от верхней границы оборотов.Знающий человек никогда не поставит такую деталь на неподготовленный мотор.

Подобные мероприятия проводятся комплексно и им предшествует замена ещё целого ряда деталей,только тогда всё будет работать как надо.

После таких переделок прогрессия оборотов изменяется в сторону более высоких,мотор становится более “крутильным” и приёмистым.

   Коммутатор с изменяемыми фазами опережения зажигания призваны выровнять кривую крутящего момента и компенсировать недостаток мощности в необходимых зонах оборотов.

Если до этого мотор,допустим,слабо тянул в зоне низких и средних оборотов,то теперь коммутатор,грамотно подбирая опережение зажигания,этот провал сглаживает,тем самым обеспечивая более ровную динамику и позволяет выигрывать в разгоне перед своим стоковым “братом”.

Источник: https://pitstopsaki.com/remont/kommutatory-i-ih-tipy/

Ссылка на основную публикацию
Adblock
detector