Простой регулятор температуры

Как собрать терморегулятор в домашних условиях?

Простой регулятор температурыПродолжаем нашу рубрику электронные самоделки, в этой статье будем рассматривать устройства поддерживающие определенный тепловой режим, или же сигнализирующие о достижении какого то значения. Для вас мы предоставили инструкцию о том, как сделать терморегулятор своими руками.

Немного теории

Простейшие измерительные датчики, в том числе и реагирующие на температуру, состоят из измерительного полуплеча из двух сопротивлений, опорного и элемента, меняющего свое сопротивление в зависимости от прилаживаемой к нему температуры. Более наглядно это представлено на картинке ниже.

Как видно из схемы, R1 и R2 являются измерительным элементом самодельного терморегулятора, а R3 и R4 опорным плечом устройства.

Элементом терморегулятора, реагирующим на изменение состояния измерительного плеча, является интегральный усилитель в режиме компаратора. Данный режим переключает скачком выход микросхемы из состояния выключено в рабочее положение. Нагрузкой данной микросхемы является вентилятор ПК.

При достижении температуры определенного значения в плече R1 и R2 происходит смещение напряжения, вход микросхемы сравнивает значение на контакте 2 и 3 и происходит переключение компаратора.

Таким образом поддерживается температура на заданном уровне и производится управление работой вентилятора.

Обзор схем

Напряжение разности с измерительного плеча поступает на спаренный транзистор с большим коэффициентом усиления, в качестве компаратора выступает электромагнитное реле.

При достижении на катушке напряжения, достаточного для втягивания сердечника, происходит ее срабатывание и подключение через ее контакты исполнительных устройств.

При достижении заданной температуры, сигнал на транзисторах уменьшается, синхронно падает напряжение на катушке реле, и в какой-то момент происходит расцепление контактов.

Особенностью такого типа реле является наличие гистерезиса — это разница в несколько градусов между включением и отключением самодельного терморегулятора, из-за присутствия в схеме электромеханического реле. Вариант сборки, предоставленный ниже, практически лишен гистерезиса.

Принципиальная электронная схема аналогового терморегулятора для инкубатора:

Данная схема была очень популярна для повторения в 2000 годах, но и сейчас она не потеряла актуальность и с возложенной на нее функцией справляется. При наличии доступа к старым деталям, можно собрать терморегулятор своими руками практически за даром.

Сердцем самоделки является интегральный усилитель К140УД7 или К140УД8. В данном случае он подключен с положительной обратной связью и является компаратором. Термочувствительным элементом R5 служит резистор типа ММТ-4 с отрицательным ТКЕ, это когда при нагревании его сопротивление уменьшается.

Выносной датчик подключается через экранированный провод. Для уменьшения наводок и ложного срабатывания устройства, длина провода не должна превышать 1 метр.

 Нагрузка управляется через тиристор VS1 и мощность нагревателя целиком зависит от его номинала. В данном случае 150 ватт, электронный ключ — тиристор необходимо установить на небольшой радиатор, для отвода тепла.

В таблице ниже представлены номиналы радиоэлементов, для сборки терморегулятора в домашних условиях.

Устройство не имеет гальванической развязки от сети 220 вольт, при настройке будьте внимательны, на элементах регулятора присутствует сетевое напряжение. На видео ниже рассматривается, как собрать терморегулятор на транзисторах:

Самодельный термостат на транзисторах

Теперь расскажем как сделать регулятор температуры для теплого пола. Рабочая схема срисована с серийного образца. Пригодится тем, кто хочет ознакомиться и повторить, или как образец для поиска неисправности.

Центром схемы является микросхема стабилизатора, подключенная необычным способом, LM431 начинает пропускать ток при напряжении выше 2.5 вольт. Именно такой величины у данной микросхемы внутренний источник опорного напряжения. При меньшем значении она ни чего не пропускает. Эту ее особенность стали использовать во всевозможных схемах терморегуляторов.

Как видим, классическая схема с измерительным плечом осталась R5, R4 и R9 терморезистор.

При изменении температуры происходит сдвиг напряжения на входе 1 микросхемы, и в случае если оно достигло порога срабатывания происходит включение и подается напряжение дальше.

В данной конструкции нагрузкой TL431 являются светодиод индикации работы HL2 и оптрон U1, оптическая развязка силовой схемы от управляющих цепей.

Как и в предыдущем варианте, устройство не имеет трансформатора, а получает питание на гасящей конденсаторной схеме C1R1 и R2.

 Для стабилизации напряжения и сглаживания пульсаций сетевых всплесков, в схему установлен стабилитрон VD2 и конденсатор C3. Для визуальной индикации наличия напряжения на устройстве установлен светодиод HL1.

Силовым управляющим элементом установлен симистор ВТ136 с небольшой обвязкой для управления через оптрон U1.

При данных номиналах диапазон регулирования находится в пределах 30-50°С. При кажущейся сложности конструкция проста в настройке и легка в повторении. Наглядная схема терморегулятора на микросхеме TL431, с внешним питанием 12 вольт для использования в системах домашней автоматики:

Данный терморегулятор способен управлять компьютерным вентилятором, силовым реле, световыми индикаторами, звуковыми сигнализаторами. Для управления температурой паяльника существует интересная схема с использованием той же интегральной микросхемы TL431.

Для измерения температуры нагревательного элемента используют биметаллическую термопару, которую можно позаимствовать с выносного измерителя в мультиметре. Для увеличения напряжения с термопары до уровня срабатывания TL431, установлен дополнительный усилитель LM351. Управление осуществляется через оптрон MOC3021 и симистор T1.

При включении терморегулятора в сеть необходимо соблюдать полярность, минус регулятора должен быть на нулевом проводе, иначе фазное напряжение появится на корпусе паяльника, через провода термопары. Регулировка диапазона производится резистором R3. Данная схема обеспечит долгую работу паяльника, исключит его перегрев и увеличит качество пайки.

Еще одна идея сборки простого терморегулятора рассмотрена на видео:

Регулятор температуры на микросхеме TL431

Также рекомендуем просмотреть еще одну идею сборки термостата для паяльника:

Простой регулятор для паяльника

Разобранных примеров регуляторов температуры вполне достаточно для удовлетворения нужд домашнего мастера. Схемы не содержат дефицитных и дорогих запчастей, легко повторяются и практически не нуждаются в настройке.

 Данные самоделки запросто можно приспособить для регулирования температуры воды в баке водонагревателя, следить за теплом в инкубаторе или теплице, модернизировать утюг или паяльник. Помимо этого можно восстановить старенький холодильник, переделав регулятор для работы с отрицательными значениями температуры, путем замены местами сопротивлений в измерительном плече.

 Надеемся наша статья была интересна, вы нашли ее для себя полезной и поняли, как сделать терморегулятор своими руками в домашних условиях!

Будет интересно прочитать:

Источник: https://samelectrik.ru/kak-sobrat-termoregulyator-v-domashnix-usloviyax.html

Простой терморегулятор своими руками

Иногда дома приходиться иметь с бытовым инкубатором или сушкой для овощей. Зачастую дешевая техника такого рода имеет термореле очень плохого качества, контакты которого быстро выгорают или оно не отличаются хорошей плавностью регулировки. И так, сегодня у нас на повестке дня простой терморегулятор своими руками, мы соберем схему и продемонстрируем его работу.

Простой терморегулятор своими руками – схема

Питание схемы терморегулятора осуществляется с помощью бестрансформаторного блока питания, состоит он из гасящего конденсатора С1 и диодного моста D1. Параллельно мосту включен стабилитрон ZD1, который стабилизирует напряжение в пределах 14В. При желании, можно еще добавить и стабилизатор на 12В.

Основу схемы составляет управляемый стабилитрон TL431. Управление TL431 производиться с помощью делителя напряжения R4, R5 и R6. Датчиком температуры воздуха является NTC терморезистор R4 номиналом 10кОм. При повышении температуры он уменьшает свое сопротивление.

При напряжении более 2,5В на контакте управления TL431, эта микросхема открывается, далее срабатывает  реле, замыкая контакты и включая нагрузку.

При повышении температуры датчика R4, его сопротивление начнет падать. Когда напряжение на контакте управления TL431 станет меньше 2,5В микросхема закроется и отключит реле с нагрузкой.

Подбором резисторов R5 и R6 необходимо добиться необходимого диапазона регулировки температуры. Номинал R5 – отвечает за максимальную температуру, а R6 – за минимальную.

Для устранения эффекта дребезжания контактов реле при включении или отключении параллельно выводам А1 и А2 контактов реле необходимо подключить конденсатор С4. Реле К1 необходимо использовать с как можно меньшим током удержания.

При использовании б/у-шных TL431 и  NTC терморезисторов важно проверить их работоспособность. Для этого желательно ознакомиться с материалами на тему: как проверить TL431 и как проверить термистор.

Вот такой простой терморегулятор своими руками у нас получился.

Фото обратной стороны платы.

Такое устройство сделанное своими руками смело можно использовать, как терморегулятор для инкубатора или сушки. При использовании герметичного терморезистора (датчика температуры), сфера применения его уже расширяется, он неплохо будет играть роль, как терморегулятор аквариума.

Простой терморегулятор своими руками в действии

Источник: http://diodnik.com/prostoj-termoregulyator-svoimi-rukami/

Простая и надёжная схема терморегулятора для инкубатора | Мастер Винтик. Всё своими руками!

С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.

Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.

Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.

Простая, потому что кучу транзисторов заменила одна микросхема.

Надёжная, потому что в схеме используются некоторые моменты:

  1. Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
  2. Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
  3. При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
  4. Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.

На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.

На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.

Третий элемент DD1.3 — сумматор.

Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.

Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.

Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.

Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.

Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт.

Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.

Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.

Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.

Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.

Читайте также:  Компенсатор реактивной мощности

Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать  R3 можно по таблице ниже.

Терморезистор R3
1 kОм 2,7 кОм
2 кОм 4,3 кОм
3,6 кОм 7,5 кОм
10 кОм 10 кОм
15 кОм 15 кОм

Следует учитывать: чем больше сопротивление терморезистора или больше сопротивление R1 — R5, тем меньше диапазон регулирования переменными резисторами.

Можно использовать терморезисторы как с отрицательным, так и с положительным ТКС. С отрицательным ТКС, как сейчас на схеме, а с положительным терморезистор следует установить в низ делителя (например, в разрыв между R3 и R4).

Схема терморегулятора построена на логической микросхеме, а между уровнями логической 0 и 1 есть неопределенное состояние (см. рис), поэтому в данной схеме есть определенный гистерезис (запаздывание между включением и отключением).

Гистерезис очень сильно зависит от типа применяемого терморезистора.

Если Вам ненужно быстрое реагирование схемы на температуру, используйте терморезистор в металлическом корпусе. Типа MMT-4. Гистерезис в данном случае 2,5 — 3 гр.

Если нужна быстрая реакция схемы на температуру, то используйте терморезисторы в неметаллическом корпусе. Гистерезис 0,1 — 0,5 гр. Лампочки включаются и отключаются в несколько раз чаще.

Таблица напряжений по постоянному току микросхемы К561ЛА7

(измеряется цифровым мультиметром в рабочей схеме)

№ вывода Нагреватель выкл / включен
1, 2 4,3 / 5,5
3 0,2 / 8,9
4 3,8 / 8,9
5, 6 4,1 / 0
7
8 7 / 8,9
9 0,2 / 8,9
10 ~
12, 13
14 9 / 7,5

Фото собранной платы

Примечание: маркировка некоторых деталей согласно схемы изменилась.

Фото печатной платы

Благодаря использованию резистора (R13, а не конденсатора) для понижения напряжения, стабилизации и фильтрации питающего микросхему напряжения, а также других «фишек» данная схема терморегулятора используется в инкубаторе более 10 лет и не разу не подвела!

А. Зотов. Волгоградская обл.

P.S. Если Вы решили сделать вышеизложенный терморегулятор, но у вас нет платы или некоторых эл. компонентов, то Вы можете приобрести у нас НАБОР ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ ТЕРМОРЕГУЛЯТОРА ДЛЯ ИНКУБАТОРА.

Фото готовой платы, собранной из набора

Вы можете купить готовый цифровой модуль терморегулятора со встроенным цифровым термометром в нашем магазине.

 Наш «Магазин Мастера«

  • Таблица определения флешки и программы её восстановления
  • Мы привыкли к тому, что объектом возобновления информации наиболее часто считается жёсткий диск, но часто бывает, что флешки тоже оказываются испорчены, а восстанавливать их и не пробуют. В статье ниже мы попытаемся рассказать как восстановить flash-ку. При неисправности флешки можно воспользоваться приведённой ниже таблицей и определить её модель, CHIPа, MEMORY, VID, PID, CHIP VENDOR, размер и утилиту для её восстановления.Подробнее…

  • Как быстро и просто самому отремонтировать радиоаппаратуру?
  • Ремонт аппаратуры своими руками

    Рано или поздно перестаёт работать телевизор, приёмник, модем и т.д. Большая часть процента выхода из строя радиоаппаратуры происходит из за высыхания электролитических конденсаторов.Из за этого прибор начинает долго включаться или не включаться совсем, происходят изменения в работе, зависания и сбои.Устранить такую неисправность легко и быстро может даже начинающий радиолюбитель.Подробнее…

  • Как заменить сенсорную панель своими руками?
  • Не работает или плохо работает сенсор в телефоне или планшете? Одна из частых неисправностей современных сенсорных устройств — повреждение сенсорного экрана.  Его ещё называют «тачскрином», просто «тачем» или «сенсором». Не стоит отчаиваться — его можно заменить самому. Стоит такая панель не дорого, намного дешевле, чем покупать новый телефон.Подробнее…

Источник: http://www.MasterVintik.ru/prostaya-i-nadyozhnaya-sxema-termoregulyatora-dlya-inkubatora/

Регулятор мощности для паяльника своими руками — схемы и варианты монтажа

Моделей паяльников в магазинах множество — от дешёвых китайских до дорогих, со встроенным регулятором температуры, продаются даже паяльные станции.

Другое дело, нужна ли та же станция, если подобные работы нужно выполнять раз в год, а то и реже? Проще купить недорогой паяльник. А у кого-то дома сохранились простые, но надёжные советские инструменты. Паяльник, не оснащённый дополнительным функционалом, греет на полную, пока вилка в сети.

А отключённый, быстро остывает. Перегретый паяльник способен испортить работу: им становится невозможно прочно припаять что-либо, флюс быстро испаряется, жало окисляется и припой скатывается с него.

Недостаточно нагретый инструмент и вовсе может испортить детали — из-за того что припой плохо плавится, паяльник можно передержать впритык к деталям.

Чтобы сделать работу комфортнее, можно собрать своими руками регулятор мощности, который ограничит напряжение и тем самым не даст жалу паяльника перегреваться.

Регуляторы для паяльника своими руками. Обзор способов монтажа

В зависимости от вида и набора радиодеталей, регуляторы мощности для паяльника могут быть разных размеров, с разным функционалом. Можно собрать как небольшое простое устройство, в котором нагрев прекращается и возобновляется нажатием кнопки, так и габаритное, с цифровым индикатором и программным управлением.

Возможные виды монтажа в корпус: вилка, розетка, станция

В зависимости от мощности и задач регулятор можно поместить в несколько видов корпуса. Самый простой и довольной удобный — вилка. Для этого можно использовать зарядное устройство для сотового телефона или корпус любого адаптера. Останется только найти ручку и поместить её в стенке корпуса. Если корпус паяльника позволяет (там достаточно места), можно разместить плату с деталями в нём.

Такой регулятор мощности всегда находится вместе с паяльником — его нельзя забыть или потерять

Другой вид корпуса для несложных регуляторов — розетка. Она может быть как одинарной, так и представлять собой тройник-удлинитель. В последнем можно очень удобно поставить ручку со шкалой.

Корпус удобен для размещения платы с деталямиНа месте одной и розеток стоит ручка переключателя со шкалой

Вариантов монтажа регулятора с индикатором напряжения тоже может быть несколько. Все зависит от сообразительности радиолюбителя и фантазии. Это может быть как очевидный вариант — удлинитель с вмонтированным туда индикатором, так и оригинальные решения.

Счетчик на корпусе дает точные цифры для работ, где важна строго определённая температураПлата закреплена внутри винтами

Собрать можно даже подобие паяльной станции, установить на ней подставку для паяльника (её можно купить отдельно). При монтаже нельзя забывать о правилах безопасности. Детали нужно изолировать — например, термоусадочной трубкой.

Варианты схем в зависимости от ограничителя мощности

Регулятор мощности можно собрать по разным схемам. В основном различия состоят в полупроводниковой детали, приборе, который будет регулировать подачу тока. Это может быть тиристор или симистор. Для более точного управления работой тиристора или симистора в схему можно добавить микроконтроллер.

Можно сделать простейший регулятор с диодом и выключателем — для того чтобы оставить паяльник в рабочем состоянии на какое-то (возможно, длительное) время, не давая ему ни остывать, ни перегреваться.

Остальные регуляторы дают возможность задать температуру жала паяльника более плавно — под различные нужды. Сборка устройства по любой из схем производится схожим способом. В фотографиях и видеороликах приведены примеры того, как можно собрать регулятор мощности для паяльника своими руками.

На их основе можно сделать прибор с нужными лично вам вариациями и по собственной схеме.

Тиристор — своеобразный электронный ключ. Пропускает ток только в одном направлении. В отличие от диода у тиристора 3 выхода — управляющий электрод, анод и катод. Открывается тиристор посредством подачи импульса на электрод. Закрывается при смене направления или прекращении подачи проходящего через него тока.

Тиристор, его главные составные части и отображение на схемах

Симистор, или триак — вид тиристора, только в отличие от этого прибора, двусторонний, проводит ток в обоих направлениях. Представляет собой, по сути, два тиристора, соединённые вместе.

Симистор, или триак. Основные части, принцип действия и способ отображения на схемах. А1 и А2 — силовые электроды, G — управляющий затвор

В схему регулятора мощности для паяльника — зависимости от его возможностей — включают следующие редиодетали.

Резистор — служит для преобразования напряжения в силу тока и обратно. Конденсатор — основная роль этого прибора в том, что он перестаёт проводить ток, как только разряжается. И начинает проводить вновь — по мере того как заряд достигает нужной величины. В схемах регуляторов конденсатор служит для того, чтобы выключить тиристор.

Диод — полупроводник, элемент, который пропускает ток в прямом направлении и не пропускает в обратном. Подвид диода — стабилитрон — используется в устройствах для стабилизации напряжения. Микроконтроллер — микросхема, при помощи которой обеспечивается электронное управление устройством. Бывает разной степени сложности.

Диоды не проводят ток в обратном направленииТак обозначается диод на схемахСтабилитроны используются для стабилизации напряженияКонденсатор используется в основном для выключения тиристораВнешний вид резистора и способ отображения на схемеМикроконтроллер дает возможность программного управления устройством

Схема с выключателем и диодом

Такой тип регулятора самый простой в сборке, с наименьшим количеством деталей. Его можно собирать без платы, на весу. Выключатель (кнопка) замыкает цепь — на паяльник подаётся всё напряжение, размыкает — напряжение падает, температура жала тоже. Паяльник при этом остаётся нагретым — такой способ хорош для режима ожидания. Подойдёт выпрямительный диод, рассчитанный на ток от 1 Ампера.

Самый простой в монтаже регулятор

  1. Подготовить детали и инструменты: диод (1N4007), выключатель с кнопкой, кабель с вилкой (это может быть кабель паяльника или же удлинителя — если есть страх испортить паяльник), провода, флюс, припой, паяльник, нож.
  2. Зачистить, а потом залудить провода.
  3. Залудить диод.

    Припаять провода к диоду. Удалить лишние концы диода. Надеть термоусадочные трубки, обработать нагревом. Можно также использовать электроизоляционную трубку — кембрик. Подготовить кабель с вилкой в том месте, где удобнее будет крепить выключатель. Разрезать изоляцию, перерезать один из находящихся внутри проводов.

    Часть изоляции и второй провод оставить целыми. Зачистить концы разрезанного провода.

  4. Расположить диод внутри выключателя: минус диода — к вилке, плюс — к выключателю.
  5. Скрутить концы разрезанного провода и проводов, подсоединённых к диоду. Диод должен находиться внутри разрыва. Провода можно спаять.

    Подключить к клеммам, затянуть винты. Собрать выключатель.

Регулятор на тиристоре

Регулятор с ограничителем мощности — тиристором — позволяет плавно устанавливать температуру паяльника от 50 до 100%. Для того чтобы расширить эту шкалу (от нуля до 100%), в схему нужно добавить диодный мост. Сборка регуляторов и на тиристоре, и на симисторе совершает сходным образом. Метод можно применить для любого устройства такого типа.

Пример монтажа тиристорного регулятора на плате

Сборка тиристорного (симисторного) регулятора на печатной плате

  1. Сделать монтажную схему — наметить удобное расположение всех деталей на плате. Если плата приобретается — монтажная схема идёт в комплекте.
  2. Подготовить детали и инструменты: печатную плату (её нужно сделать заранее согласно схеме или купить), радиодетали — см.

    спецификацию к схеме, кусачки, нож, провода, флюс, припой, паяльник.

  3. Разместить на плате детали согласно монтажной схеме.
  4. Откусить кусачками лишние концы деталей.

  5. Смазать флюсом и припаять каждую деталь — сначала резисторы с конденсаторами, потом — диоды, транзисторы, тиристор (симистор), динистор.
  6. Подготовить корпус для сборки.
  7. Зачистить, залудить провода, припаять к плате согласно монтажной схеме, установить плату в корпус.

    Заизолировать места соединения проводов.

  8. Проверить регулятор — подключить к лампе накаливания.
  9. Собрать устройство.

Схема с маломощным тиристором

Тиристор небольшой мощности недорогой, занимает мало места. Его особенность — в повышенной чувствительности. Для управления им используются переменный резистор и конденсатор. Подходит для устройств мощностью не более 40 Вт.

Такой регулятор не требует дополнительного охлаждения

Спецификация

Схема с мощным тиристором

Управление тиристором осуществляется за счёт двух транзисторов. Уровень мощности регулирует резистор R2. Регулятор, собранный по такой схеме, рассчитан на нагрузку до 100 Вт.

Регулятор оптимален для нагрузки до 100 Вт

Спецификация

Сборка тиристорного регулятора по приведённой схеме в корпус — наглядно

Сборка и проверка тиристорного регулятора (обзор деталей, особенности монтажа)

Схема с тиристором и диодным мостом

Такое устройство даёт возможность регулировки мощности от нуля до 100%. В схеме использован минимум деталей.

Справа — диаграмма преобразования напряжения

Спецификация

Регулятор на симисторе

Схема регулятора на симисторе с небольшим количеством радиодеталей. Позволяет регулировать мощность от нуля до 100%. Конденсатор и резистор обеспечат чёткую работу симистора — он будет открываться даже при низкой мощности.

В качестве индикатора в таком регуляторе мощности используется светодиод

Сборка симисторного регулятора по приведённой схеме пошагово

Регулятор на симисторе с диодным мостом

Схема такого регулятора не очень сложная. При этом варьировать мощность нагрузки можно в довольно большом диапазоне. При мощности более 60 Вт лучше посадить симистор на радиатор. При меньшей мощности охлаждение не нужно. Метод сборки такой же, как и в случае с обычным симисторным регулятором.

При меньшей мощности нагрузки симистор можно взять и слабееОбразец монтажа регулятора на симисторе с диодным мостом на печатную платуРегулятор с симистором — образец монтажа в корпус

Регулятор мощности с симистором на микроконтроллере

Микроконтроллер позволяет точно установить и отобразить уровень мощности, обеспечить автоматическое отключение регулятора, если с ним долго не работают. Способ монтажа такого регулятора существенно не отличается от монтажа любого симисторного регулятора. Паяется на печатной плате, которая изготавливается предварительно. Очень важно поставить правильную прошивку.

Такой регулятор может заменить паяльную станцию

Спецификация

Рекомендации по проверке и наладке

Перед монтажом собранный регулятор можно проверить мультиметром. Проверять нужно только с подключённым паяльником, то есть под нагрузкой. Вращаем ручку резистора — напряжение плавно изменяется.

В регуляторах, собранных по некоторым из приведённых здесь схем, уже будут стоять световые индикаторы. По ним можно определить, работает ли устройство. Для остальных самая простая проверка — подключить к регулятору мощности лампочку накаливания. Изменение яркости наглядно отразит уровень подаваемого напряжения.

Регуляторы, где светодиод находится в цепи последовательно с резистором (как на схеме с маломощным тиристором), можно наладить. Если индикатор не горит, нужно подобрать номинал резистора — взять с меньшим сопротивлением, пока яркость не будет приемлемой. Слишком большой яркости добиваться нельзя — сгорит индикатор.

Как правило, регулировка при правильно собранной схеме не требуется. При мощности обычного паяльника (до 100 Вт, средняя мощность — 40 Вт) ни один из регуляторов, собранных по вышеприведённым схемам, не требует дополнительного охлаждения. Если паяльник очень мощный (от 100 Вт), то тиристор или симистор нужно установить на радиатор во избежание перегрева.

Радиатор предотвратит перегрев устройства

Регулятор мощности для паяльника можно собрать своими руками, ориентируясь на собственные возможности и потребности.

Существует немало вариантов схем регулятора с различными ограничителями мощности и разными средствами управления. Здесь приведены некоторые, самые простые из них.

А небольшой обзор корпусов, в которые можно смонтировать детали, поможет выбрать формат устройства.

Источник: https://tehznatok.com/remont/regulyator-moshhnosti-dlya-payalnika-svoimi-rukami-shemyi-i-variantyi-montazha.html

Простой терморегулятор на регулируемом стабилитроне TL431

Автор: admin Vladimir | Опубликовано 23-03-2015

Рубрика: Терморегуляторы

Метки: TL431, терморегулятор

style=”display:block; text-align:center;” data-ad-layout=”in-article” data-ad-format=”fluid” data-ad-client=”ca-pub-2167793600289487″

data-ad-slot=”4187947634″>

Привет всем любителям электронных самоделок. Недавно я по быстрому смастерил электронный терморегулятор своими руками, схема устройства очень проста. В качестве исполнительного устройства используется электромагнитное реле с мощными контактами, которые могут выдержать ток до 30 ампер. Поэтому рассматриваемая самоделка может использоваться для разных бытовых нужд.

По нижеприведенной схеме, терморегулятор можно использовать, например, для аквариума или для хранения овощей. Кому то он может пригодиться при использовании совместно с электрическим котлом, а кто-то его может приспособить и для холодильника.

Электронный терморегулятор своими руками, схема устройства

Как я уже говорил, схема очень проста, содержит минимум недорогих и распространённых радиодеталей. Обычно терморегуляторы строятся на микросхеме компараторе. Из-за этого устройство усложняется. Данная самоделка построена на регулируемом стабилитроне TL431:

Теперь поговорим подробнее о тех деталях, которые я использовал.

Детали устройства:

  • Трансформатор понижающий на 12 вольт
  • Диоды; IN4007, или другие с похожими характеристиками 6 шт.
  • Конденсаторы электролитические; 1000 мк, 2000 мк, 47 мк
  • Микросхема стабилизатор; 7805 или другая на 5 вольт
  • Транзистор; КТ 814А, или другой p-n-p c током коллектора не меньше 0,3 А
  • Регулируемый стабилитрон; TL431 или советский КР142ЕН19А
  • Резисторы; 4,7 Ком, 160 Ком, 150 Ом, 910 Ом
  • Резистор переменный; 150 Ком
  • Терморезистор в качестве датчика; около 50 Ком с отрицательным ТКС
  • Светодиод; любой с наименьшим током потребления
  • Реле электромагнитное; любое на 12 вольт с током потребления 100 мА или меньше
  • Кнопка или тумблер; для ручного управления

Как сделать терморегулятор своими руками

В качестве корпуса был использован сгоревший электронный счётчик Гранит-1. Плата, на которой расположились все основные радиодетали также от счетчика. Внутри корпуса поместились трансформатор блока питания и электромагнитное реле:

В качестве реле я решил использовать автомобильное, которое можно приобрести в любом автомагазине. Рабочий ток катушки приблизительно 100 миллиампер:

Так как регулируемый стабилитрон маломощный, его максимальный ток не превышает 100 миллиампер, непосредственно включить реле в цепь стабилитрона не получится. Поэтому пришлось использовать более мощный транзистор КТ814.

Конечно, схему можно упростить, если применить реле, у которого ток через катушку будет меньше 100 миллиампер, например SRD-12VDC-SL-C или SRA-12VDC-AL. Такие реле можно включить непосредственно в цепь катода стабилитрона.

Немного расскажу о трансформаторе. В качестве, которого я решил использовать нестандартный. У меня завалялась катушка напряжения от старого индукционного счетчика электрической энергии:

Как видно на фотографии там имеется свободное место для вторичной обмотки, я решил попробовать намотать её и посмотреть что получится. Конечно площадь поперечного сечение сердечника у него маленькая, соответственно и мощность небольшая.

Но для данного регулятора температуры этого трансформатора достаточно. По расчётам у меня получилось 45 витков на 1 вольт. Для получения 12 вольт на выходе нужно намотать 540 витков. Чтобы уместить их я использовал провод диаметром 0,4 миллиметра.

Конечно, можно использовать готовый блок питания с выходным напряжением 12 вольт или адаптер.

style=”display:block; text-align:center;” data-ad-layout=”in-article” data-ad-format=”fluid” data-ad-client=”ca-pub-2167793600289487″

data-ad-slot=”7590515336″>

Как вы заметили, в схеме стоит стабилизатор 7805 со стабилизированным выходным напряжением 5 вольт, который питает управляющий вывод стабилитрона. Благодаря этому регулятор температуры получился со стабильными характеристиками, которые не будут изменяться от изменения питающего напряжения.

В качестве датчика я использовал терморезистор, у которого при комнатной температуре сопротивление 50 Ком. При нагревании сопротивление данного резистора уменьшается:

Чтобы защитить его от механических воздействий я применил термоусаживающие трубочки:

Место для переменного резистора R1 нашлось с правой стороны терморегулятора. Так как ось резистора очень короткая пришлось напаять на неё флажок, за который удобно поворачивать. С левой стороны я поместил тумблер ручного управления. При помощи него легко проконтролировать рабочее состояние устройства, при этом, не изменяя выставленную температуру:

Несмотря на то, что клемник бывшего электросчетчика очень громоздкий, убирать его из корпуса я не стал. В него чётко входит вилка, от какого либо прибора, например электрообогревателя. Убрав перемычку (на фотографии желтая справа) и включив вместо перемычки  амперметр можно померить силу тока, отдаваемую в нагрузку:

Теперь осталось проградуировать терморегулятор. Для этого нам понадобится цифровой термометр ТМ-902С. Нужно оба датчика устройства соединить вместе при помощи изоленты:

Термометром произвести замер температуры различных предметов горячих, холодных. При помощи маркера нанести шкалу и разметку на терморегуляторе, момент включения реле. У меня получилось от 8 до 60 градусов Цельсия. Если кому-то нужно сдвинуть рабочую температуру в ту или иную сторону, это легко сделать, изменив номиналы резисторов R1, R2, R3:

Вот мы и сделали электронный терморегулятор своими руками. Внешне выглядит вот так:

Чтобы не было видно внутренности устройства, через прозрачную крышку, я ее закрыл скотчем, оставив отверстие под светодиод HL1. Некоторые радиолюбители, кто решил повторить эту схему, жалуются на то, что реле включается, не очень чётко, как бы дребезжит.

Я ничего этого не заметил, реле включается и отключается очень чётко. Даже при небольшом изменении температуры, никакого дребезга не происходит. Если все-таки он возникнет нужно подобрать более точно конденсатор C3 и резистор R5 в цепи базы транзистора КТ814.

Собранный терморегулятор по данной схеме включает нагрузку при понижении температуры. Если кому то наоборот понадобится включать нагрузку при повышении температуры, то нужно поменять местами датчик R2 с резисторами R1, R3.

Источник: http://radiobezdna.ru/termoregulyatory/prostoj-termoregulyator-na-reguliruemom-stabilitrone-tl431.html

Схема терморегулятора

   Поводом для сборки этой схемы послужила поломка терморегулятора в электрическом духовом шкафу на кухне.

Поискав в интернете, особого изобилия вариантов на микроконтроллерах не нашел, конечно есть кое-что, но все в основном рассчитаны на работу с термодатчиком типа DS18B20, а он очень ограничен в температурном диапазоне верхних значений и для духовки не подходит. Задача ставилась измерять температуры до 300°C, поэтому выбор пал на термопары К-типа. Анализ схемных решений привел к паре вариантов. 

Схема терморегулятора – первый вариант

   Термостат собраный по этой схеме имеет заявленный предел верхней границы 999°C. Вот что получилось после его сборки:

   Испытания показали, что сам по себе термостат работает достаточно надежно, но не понравилось в данном варианте отсутствие гибкой памяти. Пошивка микроконтроллера для обеих вариантов – в архиве.

Схема терморегулятора – второй вариант

   Немного поразмыслив пришел к выводу, что возможно сюда присоединить тот же контроллер, что и на паяльной станции, но с небольшой доработкой. В процессе эксплуатации паяльной станции были выявлены незначительные неудобства: необходимость перевода таймеров в 0, и иногда проскакивает помеха которая переводит станцию в режим SLEEP.

Учитывая то, что женщинам ни к чему запоминать алгоритм перевода таймера в режим 0 или 1 была повторена схема той же станции, но только канал фен. А небольшие доработки привели к устойчивой и “помехонекапризной” работе терморегулятора в части управления. При прошивке AtMega8 следует обратить внимание на новые фьюзы.

На следующем фото показана термопара К-типа, которую удобно монтировать в духовке.

   Работа регулятора температуры на макетной плате понравилась – приступил к окончательной сборке на печатной плате.

   Закончил сборку, работа тоже стабильная, показания в сравнении с лабораторным градусником отличаются порядка на 1,5°C, что в принципе отлично. На печатной плате при настройке стоит выводной резистор, пока что не нашел в наличии SMD такого номинала.

   Светодиод моделирует ТЭНы духовки. Единственное замечание: необходимость создания надежной общей земли, что в свою очередь сказывается на конечный результат измерений. В схеме необходим именно многооборотный подстроечный резистор, а во-вторых обратите внимание на R16, его возможно тоже необходимо будет подобрать, в моём случае стоит номинал 18 кОм. Итак, вот что имеем:

   В процессе экспериментов с последним терморегулятором появились ещё незначительные доработки, качественно влияющие на конечный результат, смотрим на фото с надписью 543 – это означает датчик отключен или обрыв.

   И наконец переходим от экспериментов до готовой конструкции терморегулятора. Внедрил схему в электроплиту и пригласил авторитетную комиссию принимать работу 🙂 Единственное что жена забраковала – маленькие кнопки на управлении конвекцией, общее питание и обдув, но это решаемо со временем, а пока выглядит вот так.

   Регулятор заданную температуру держит с точностью до 2-х градусов. Происходит это в момент нагрева, из-за инертности всей конструкции (ТЭНы остывают, внутренний каркас выравнивается температурно), в общем в работе схема мне очень понравилась, а потому рекомендуется для самостоятельного повторения. Автор – ГУБЕРНАТОР.

   Форум по регуляторам температуры на МК

Источник: http://radioskot.ru/publ/bp/skhema_termoreguljatora/7-1-0-787

Как самостоятельно сделать терморегулятор?

Перед монтажом аппарата, лучше поближе ознакомиться с принципом его работы. Российский рынок предлагает внушительное количество моделей от разных компаний практически все они функционируют по одной и той же схеме, независимо от своего назначения.

По этому плану, изготавливаются устройства для поддержания атмосферы в аквариуме, инкубаторе, пола и т. д. Он позволяет поддерживать тепловой режим с точностью до ±0,5 0С.

Аппарат включает в себя сильфон для жидкого состава, золотник, шток и регулируемый клапан.

схема простого терморегуляторасхема терморегулятора для инкубатора

Инструкция по сборке

Необходимые материалы, детали и инструменты:

  • лупа;
  • плоскогубцы;
  • паяльник;
  • изолирующая лента;
  • несколько отвёрток;
  • провода медные;
  • полупроводники;
  • стандартные красные светодиоды;
  • плата;
  • текстолит форгированный;
  • лампы;
  • стабилитрон;
  • терморезистор;
  • тиристор.
  • дисплей и генератор внутреннего типа мощностью в 4Мгу (для создания цифровых устройств на микроконстроллере);

Пошаговая инструкция:

  1. Прежде всего, необходима соответствующая микросхема, к примеру, К561ЛА7, CD4011
  2. Плату необходимо подготовить к прокладыванию путей.
  3. К подобным схемам неплохо подходят терморезисторы с мощностью 1 kOm до 15 kOm, и он обязан находиться внутри самого объекта.
  4. Нагревающий прибор обязан быть включен в цепь резистора, из-за того, что перемена мощности, напрямую зависящая от снижения градусов, оказывает влияние на транзисторы.
  5. Впоследствии, такой механизм будет согревать систему до того момента, пока мощность внутри термодатчика не возвратится к первоначальному значению.
  6. Датчики регулятора подобного плана нуждаются в настройке. Во время значительных перепадов в окружающей атмосфере, необходимо контролировать нагрев внутри объекта.

Сборка цифрового прибора:

  1. Микроконтроллер следует соединить вместе с датчиком температуры. Он должен иметь выходы портов, которые необходимы для установки стандартных светодиодов, работающих совместно с генератором.
  2. После подключения устройства в сеть с напряжением в 220V, светодиоды будут автоматически включаться. Это будет свидетельством о том, что прибор находится в рабочем состоянии.
  3. В конструкции микроконтроллера находиться память. Если настройки прибора сбиваются, память автоматически их возвращает в изначально оговоренные параметры.

Собирая конструкцию, нельзя забывать о техники безопасности. Во время применения термодатчика в водянистой или влажной атмосфере, его выводы обязаны герметично изолироваться. Значение терморезистора R5 может обозначаться от 10 до 51 кОм. При этом, сопротивление резистора R5 обязано иметь аналогичное значение.

Взамен обозначенных микросхемы К140УД6 можно использовать К140УД7, К140УД8, К140УД12, К153УД2. В роли стабилитрона VD1 можно внедрять любой инструмент с мощностью стабилизации 11…13 V.

В случае, когда нагреватель превышает напряжение в 100 ВТ, тогда диоды VD3-VD6 обязаны превосходить по мощности (к примеру, КД246 или их аналоги, с обратной мощностью минимум в 400В), при этом тринистор необходимо монтировать на маленькие радиаторы.

Значение FU1 также следует сделать более большим. Управление аппаратом сводится к подбору резистора R2, R6 с целью безопасного закрывания и открывания тринистора.

Устройство

схема механического терморегулятора

Температура всегда остаётся на одном уровне благодаря включению и выключению нагревательного прибора (ТЭН). Подобный принцип управления используется на всех незамысловатых конструкциях.

Может показаться, что схема терморегулятора очень проста, но как только дело доходит для сбора прибора, появляется масса вопросов, связанных с технической частью.

Устройство терморегулятора включает в себя:

  1. Температурный датчик — создаётся на основе компаратора DD1.
  2. Ключевой схемой терморегулятора является компаратор DA1, изготовленный на операционном усилителе.
  3. Нужный температурный показатель выставляется резистором R2, который присоединяется к инвертирующему входу 2 платы DA1.
  4. В роли термодатчика выступает терморезистор R5 (вида ММТ-4), присоединённый ко входу 3- го устройства.
  5. Схема конструкции не имеет гальванической развязки с сетью, и берёт энергию от параметрического стабилизатора на деталях R10, VD1.
  6. В роли блока питания для аппарата можно взять дешёвый сетевой адаптер. Во время его подключения нужно руководствоваться правилами и требованиями к новой проводке, так как условия помещения могут быть электроопасны.

Незначительный запас конденсатора C1 способствует постепенному нарастанию мощности, что приводит к плавному (не более 2 секунд) включению электрических ламп.

Затраты при самостоятельной сборке

Сегодня любой подобный гаджет можно приобрести в магазине. Диапазон цен довольно велик, а стоимость многих моделей свыше 1000 рублей. В плане финансовых вложений, это является довольно не выгодным, поэтому намного дешевле сделать его своими руками.

Затраты при самостоятельной сборке ниже в несколько раз, а именно:

  • плата К561ЛА7 обойдутся не более 50 рублей;
  • терморезистор мощностью в 1 kOm до 15 kOm — около 5 рублей;
  • светодиод (2 шт) — 10 руб.;
  • стабилитрон — 50 руб;
  • тиристор — 20 руб;
  • дисплей — 200 руб (для создания цифровых устройств на микроконстроллере);

На покупку ламп, фольги и других материалов уйдёт не более 100 рублей. Выходит, затраты на самостоятельную сборку придётся потратить не более 430 рублей и немного личного времени. Владелец может полностью адаптировать прибор для своих нужд, использую для этого незамысловатую схему.

Принцип действия

Схема терморегулятора многофункциональна. Отталкиваясь от её основания, можно создать любой адаптированный аппарат, который будет максимально удобным и простым. Мощность питания выбирается в соответствии с имеющимся напряжением катушки реле.

В принципе работы регулировочного прибора лежит особенность газов и жидкостей сжиматься или расширяться во время остывания или нагревания. Поэтому в основе действия водяных и газовых комплектаций положена одна и та же суть.

Между собой они отличаются только в быстроте реакции на перемену температуры в доме.

Принцип действия аппарата основан на следующих этапах:

  1. В результате изменения температуры обогреваемого объекта, происходит перемена работы теплоносителя в отопительном механизме.
  2. Вместе с этим, это заставляет сифон увеличивать или уменьшать свои габариты.
  3. После этого, происходит смещение золотника, который балансирует впуск теплоносителя.
  4. Внутренняя часть сифона заполнена газом, способствуя равномерной регулировке температуры. Встроенный термодатчик следит за внешней температурой.
  5. Каждому значению уровня тепла приравнивается конкретное значение силы давления рабочей атмосферы внутри сифона. Недостающее давление возмещает при помощи пружины, которая контролирует работу штока.
  6. В результате повышения градусов конус клапана начинает передвигаться в сторону закрытия до того момента, пока уровень рабочего давления в сифоне не станет уравновешенным благодаря усилиям пружины.
  7. В случае понижения градусов, работа пружины носит обратный характер.

Результат работы зависит от вида и функциональности регулирующего клапана, находящегося в прямом подчинении от контура обогрева и диаметра подводящей трубы.

Виды

Компании-изготовители предлагают клиентам 3 вида терморегуляторов, каждый из которых имеет различные внутренние сигналы. Они контролируют процесс нагревания теплоносителя и выравнивают температурный порядок.

Способы расширения сигналов:

  1. Непосредственно от теплоносителя. Считается недостаточно эффективным, поэтому используется нечасто. Его работа основана на погружном датчике или подобным ему механизмам. В сравнении с другими видами, он относится к числу самых дорогостоящих.
  2. Внутренних воздушных волн. Является наиболее надёжным и экономичным вариантом. Он балансирует воздух во время его перепадов, а не уровень нагрева воды. Легко монтируется в квартире. Связывается с отопительными коммуникациями при помощи кабеля, по которому передаётся сигнал. Терморегуляторы этого вида непрерывно дополняются новыми функциями и достаточно удобны в использовании.
  3. Внешних воздушных волн. Высокая эффективность достигается за счёт уличного датчика, давая незамедлительный ответ на любые погодные изменения. Знаки в виде сигнала, посылающие диафрагмой, дают системе команду на открытие или закрывание трубы с отеплительным прибором.

Помимо этого, аппараты могут быть электрическими и электронными.

По схеме и варианту получения сигнала, устройства разделяются на полуавтоматические и автоматические, которые, в свою очередь могут:

  1. Контролировать уровень нагрева радиатора и ветки магистрали.
  2. Следить за мощностью котла.

Обзор терморегуляторов на рынке

Терморегулятор IWarm 710

К числу наиболее популярных моделей на сегодняшний день относятся E 51.716 и IWarm 710. Их негорючий, выполненный из пластполимера корпус имеет небольшие размеры, но большое число полезных задач и встроенный аккумулятор. Имеет довольно большой встроенный дисплей, который отображает соответствующие температурные характеристики.

Стоимость этих моделей представлена в пределах 2700 тыс. рублей.

К особенностям E 51.716 можно отнести то, что он имеет кабель длиной в 3 м, способен балансировать температуру одновременно от самого пола, и то, что прибор может встраиваться в стену в любом положении.

Единственное о чём следует подумать перед его монтажом, как именно он будет располагаться, чтобы кнопки переключения не закрывались посторонними предметами, и были легко доступны.

К недостаткам терморегулятора относится незначительных набор функций, однако аналогичные приборы выполняют их довольно легко. В эксплуатации это может вызвать дискомфорт. Также, в памяти E 51.716 и IWarm 710 нет функции автоматического нагревания, поэтому это придётся делать самостоятельно.

Электронные регуляторы с механическим принципом работы:

  1. Регулирование работы основано на автоматике, и осуществляются при помощи кнопок, расположенных на панели.
  2. Включают в себя дисплей, на котором обозначается прежние и заданные градусы.
  3. Есть возможность настраивать прибор самостоятельно: число, время работы, цикличность подогрева с сохранением конкретного режима, также можно указывать степень нагрева.
  4. В сравнении с механическими аналогами, температура электрических моделей легко регулируется приблизительно на 0,5 значений.

На покупку такой модели уйдёт не более 4 тысяч.

Электронные комплектации:

  1. Самостоятельно управляют температурой.
  2. Всего один прибор может контролировать атмосферу на несколько дней вперёд и отдельно для каждой комнаты.
  3. Позволяют устанавливать режим «отсутствие», и не затрачивать на это лишние средства, если никого нет дома.
  4. Система автоматически анализирует качество работы устройства в каждой комнате. Владельцу не придётся догадываться о возможных неисправностях в работе, так как все недочёты система выдаст самостоятельно.
  5. Производители дорогих моделей предусмотрели возможность управления режимами, находясь далеко от дома. Регулировка осуществляется при помощи встроенного Wi-Fi роутера.

Стоимость подобных аппаратов зависит от набора встроенных функций, поэтому варьируется от 6000 до 10000 тыс. рублей и выше.

Источник: http://slarkenergy.ru/oborudovanie/schetchik/termoregulyatory-svoimi-rukami.html

Ссылка на основную публикацию
Adblock
detector