Регулятор мощности паяльника

Схемы тиристорных регуляторов мощности паяльника, подробно

Регулятор мощности паяльника

Чтобы пайка была красивой и качественной, необходимо правильно выбрать мощность паяльника, обеспечить температуру жала. Все это зависит от марки припоя.

На ваш выбор предоставляю несколько схем тиристорных регуляторов регулирования температуры паяльника, которые можно изготовить в домашних условиях.

Они просты легко заменят промышленные аналоги, к тому же цена и сложность будет отличаться.

Электрические принципиальные схемы регуляторов температуры паяльника

Чтоб регулировать температуру жала паяльника используются паяльные станции, которые в автоматическом и ручном режимах поддерживает заданную температуру. Доступность паяльной станции ограничивается размером кошелька.

Я решил эту проблему, изготовив ручной регулятор температура, имеющий плавную регулировку. Схема легко дорабатывается до автоматического поддержания заданного режима температуры.

Но я сделал вывод, что ручной регулировки достаточно, так как температура помещения и ток сети стабильны.

Классическая тиристорная схема регулятора

Классическая схема регулятора была плоха тем, что имела излучающие помехи, издаваемые в эфир и сеть. Радиолюбителям эти помехи мешают при работе.

Если доработать схему, включив в нее фильтр, размеры конструкции значительно увеличатся.

Но это схема может использоваться и в других случаях, например, если необходимо отрегулировать яркость ламп накаливания или нагревательных приборов, мощность которых 20-60 Вт. Поэтому я представляю эту схему.

Чтобы понять, как это работает, рассмотрим принцип работы тиристора. Тиристор представляет собой полупроводниковый прибор закрытого или открытого типа. Чтоб открыть его, на управляющий электрод подается напряжение равное 2-5 В. Оно зависит от выбранного тиристора, относительно катода (буква k на схеме).

Тиристор открылся, между катодом и анодом образовалось напряжение равное нулю. Через электрод его невозможно закрыть. Он будет открыт до того времени, пока значение напряжения катода (k) и анода (a) не будет близко к нулю. Вот такой принцип.

Схема работает следующим образом: через нагрузку (обмотка паяльника или лампа накаливания) подается напряжение на диодный мост выпрямителя, выполненный диодами VD1-VD4. Он служит для преобразования переменного тока в постоянный, который меняется по синусоидальному закону (1 диаграмма). В крайнем левом положении сопротивление среднего вывода резистора равно 0.

При увеличении напряжения происходит зарядка конденсатора С1. Когда напряжение С1 будет равно 2-5 В, на VS1 пойдет ток через R2. При этом произойдет открытие тиристора, закорачивание диодного моста, максимальный ток пройдет через нагрузку (диаграмма сверху).

Если повернуть ручку резистора R1, произойдет увеличение сопротивления, конденсатор С1 будет заряжаться дольше. Следовательно, открытие резистора произойдет не сразу. Чем мощнее R1, тем больше времени уйдет на заряд С1. Вращая ручку вправо или влево, можно регулировать температуру нагрева жала паяльника.

На фото выше предоставлена схема регулятора, собранная на тиристоре КУ202Н. Чтоб управлять этим тиристором (в паспорте указан ток 100мА, реально – 20 мА), необходимо уменьшить номиналы резисторов R1, R2, R3 исключаем, емкость конденсатора увеличиваем. Емкость С1 необходимо повысить до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще один вариант схемы, только упрощенный, деталей минимум. 4 диода заменены одним VD1. Отличие данной схемы заключается в том, что регулировка происходит при положительном периоде сети.

Отрицательный период, проходя через диод VD1, остается без изменений, мощность можно регулировать от 50% до 100%. Если исключить VD1 из схемы, мощность можно будет регулировать в диапазоне от 0% до 50%.

Если применить динистор КН102А в разрыв от R1 и R2, придется заменить С1 на конденсатор емкостью 0,1 мкФ. Для этой схемы подойдут такие номиналы тиристоров: КУ201Л (К), КУ202К (Н,М,Л), КУ103В, напряжением для них более 300 В. Диоды любые, обратное напряжение которых не меньше, чем 300 В.

Выше упомянутые схемы успешно подойдут для регулировки ламп накаливания в светильниках. Регулировать светодиодные и энергосберегающие лампы не удастся, так как они имеют электронные схемы управления. Это приведет к миганию или работе лампы на полную мощность, что в конечном итоге выведет ее из строя.

Если вы хотите применить регуляторы для работы в сети 24,36 В, придется уменьшить номиналы резисторов и заменить тиристор на соответствующий. Если мощность паяльника 40 Вт, напряжение сети 36 В, он будет потреблять 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Эта схема отличается от предыдущей полным отсутствием изучаемых радиопомех, так как процессы протекают в тот момент, когда напряжение сети равно 0.

Приступая к созданию регулятора, я исходил из следующих соображений: комплектующие должны иметь низкую цену, высокую надежность, малые габариты, сама схема должна быть проста, легко повторяемая, КПД должен быть близким к 100%, помехи должны отсутствовать. Схема должна иметь возможность модернизации.

Принцип работы схемы следующий. VD1-VD4 выпрямляют напряжение сети. Получающееся постоянное напряжение изменяется по амплитуде равной половине синусоиды частотой 100 Гц (1 диаграмма). Ток, проходя через R1 на VD6 — стабилитрон, 9В (2 диаграмма), имеет другую форму. Через VD5 импульсы заряжают С1, создавая 9 В напряжения для микросхем DD1, DD2. Для защиты применяется R2.

Он служит для ограничения напряжения, поступаемого на VD5, VD6 до 22 В и формирует тактовый импульс для работы схемы. R1 передает сигнал на 5, 6 вывод элемента 2 либо не логическую цифровую микросхему DD1.1, которая в свою очередь инвертирует сигнал и преобразует его в короткий прямоугольный импульс (3 диаграмма).

Импульс исходит с 4-го вывода DD1 и приходит на вывод D №8 триггера DD2.1, который работает в RS режиме. Принцип работы DD2.1 такой же и, как и DD1.1 (4 диаграмма). Рассмотрев диаграммы №2 и 4, можно сделать выводы, что отличия практически нет. Получается, что с R1 можно подать сигнал на вывод №5 DD2.1. Но это не так, R1 имеет множество помех.

Придется устанавливать фильтр, что не целесообразно. Без двойного формирования схемы стабильной работы не будет.

Схема управления регулятора собрана на базе триггера DD2.2, работает она по следующему принципу. C вывода №13 триггера DD2.1 поступают импульсы на 3 вывод DD2.2, перезапись уровня которых происходит на выводе №1 DD2.2, которые на данном этапе находятся на D входе микросхемы (5 вывод). Противоположный уровень сигнала находится на 2 выводе.

Предлагаю рассмотреть принцип работы DD2.2. Предположим, что на 2 выводе, логическая единица. С2 заряжается до необходимого напряжения через R4, R5. Когда появится первый импульс с положительным перепадом на 2 выводе образуется 0, через VD7 произойдет разрядка С2.

Последующий перепад на 3 выводе установит на 2 выводе логическую единицу, С2 начнет накапливать емкость через R4, R5. Время зарядки зависит от R5. Чем оно больше, тем дольше будет происходить зарядка С2. Пока конденсатор С2 не накопит 12 емкости, на 5 выводе будет 0.

Перепад импульсов на 3 входе не будет влиять на изменение логического уровня на 2 выводе. При достижении полного заряда конденсатора, произойдет повторение процесса. Количество импульсов, заданных резистором R5, будет поступать на DD2.2. Перепад импульсов будет происходить только в те моменты, когда напряжение сети будет переходить через 0.

Вот почему отсутствуют помехи на данном регуляторе. С 1 вывода DD2.2 на DD1.2 подаются импульсы. DD1.2 исключает влияние VS1 (тиристор) на DD2.2. R6 установлен для ограничения тока управления VS1. На паяльник подается напряжение за счет открытия тиристора.

Это происходит из-за того, что на тиристор поступает положительный потенциал с управляющего электрода VS1. Этот регулятор позволяет производить регулировку мощности в диапазоне 50-99%. Хоть резистор R5 – переменный, за счет включенного DD2.2 регулировка паяльника осуществляется ступенчатым образом.

Когда R5 = 0, происходит подача 50% мощности (5 диаграмма), если повернуть на определенный угол, будет 66% (6 диаграмма), затем 75% (7 диаграмма). Чем ближе к рассчитанной мощности паяльника, тем плавне работа регулятора. Допустим, имеется паяльник на 40 Вт, его мощность можно регулировать в районе 20-40 Вт.

Конструкция и детали регулятора температуры

Детали регулятора располагаются на стеклотекстолитовой печатной плате. Плата помещена в пластиковый корпус от бывшего адаптера, имеющего электрическую вилку. Ручка из пластика надета на ось резистора R5. На корпусе регулятора имеются отметки с цифрами, позволяющие понимать, какой температурный режим выбран.

Шнур паяльника припаян к плате. Подключение паяльника к регулятору можно сделать разъемным, чтобы иметь возможность подключить другие объекты. Схема потребляет ток не превышающий 2мА. Это даже меньше, чем потребление светодиода в подсветке выключателя. Специальные меры по обеспечению режим работы устройства не требуются.

При напряжении 300 В и токе 0,5 А применяются микросхемы DD1, DD2 и серии 176 либо 561; диоды любые VD1-VD4. VD5, VD7 — импульсные, любые; VD6 — маломощный стабилитрон с напряжением 9 В. Конденсаторы любые, резисторе тоже. Мощность R1 должна быть 0,5 Вт. Дополнительной настройки регулятора не потребуется. Если детали исправны и при подключении не возникало ошибок, он заработает сразу.

Читайте также:  Первые цифровые оптические ультрафиолетовые датчики от silicon labs

Схема была разработана давно, когда лазерных принтеров и компьютеров не было.

По этой причине печатная плата изготавливалась по дедовскому методу, использовалась диаграммная бумага, шаг сетки которой 2,5 мм.

Далее чертеж приклеивался «Моментом» на бумагу по плотнее, а сама бумага на фольгированный стеклотекстолит. Зачем сверлились отверстия, дорожки проводников и контактных площадок вычерчивались вручную.

У меня сохранился чертеж регулятора. На фото показан. Изначально применялся диодный мост номиналом КЦ407 (VD1-VD4). Их разрывало пару раз, пришлось заменить 4 диодами типа КД209.

Как снизить уровень помех от тиристорных регуляторов мощности

Чтоб уменьшить помехи, излучаемые тиристорным регулятором, применяют ферритовые фильтры. Они представляют собой ферритовое кольцо, имеющее обмотку.

Эти фильтры встречаются в импульсных блоках питания телевизоров, компьютеров и других изделий. Любой тиристорный регулятор можно оснастить фильтром, который будет эффективно подавлять помехи.

Для этого необходимо пропустить через ферритовое кольцо сетевой провод.

https://www.youtube.com/watch?v=PVmdbN-q8zs

Ферритовый фильтр следует устанавливать вблизи источников, издающих помехи, непосредственно в месте установки тиристора. Фильтр может быть расположен как снаружи корпуса, так и внутри. Чем больше количество витков, тем качественней фильтр будет подавлять помехи, но и достаточно продеть провод, идущий к розетке, через кольцо.

Кольцо можно изъять из интерфейсных проводов компьютерной периферии, принтеров, мониторов, сканеров. Если посмотреть на провод, который соединяет монитор или принтер с системным блоком, можно заметить цилиндрическое утолщение на нем. Именно в этом месте расположен ферритовый фильтр, служащий для защиты от высокочастотных помех.

Берем нож, разрезаем изоляцию и извлекаем ферритовое кольцо. Наверняка у ваших друзей или у вас завалялся старый интерфейсный кабель од кинескопного монитора или струйного принтера.

Источник: https://www.proterem.ru/elektrika/shemy-tiristornyh-reguljatorov-moshhnosti.html

Устройство для регулировки мощности паяльника | Каталог самоделок

Многие начинающие радиолюбители сталкиваются с тем, что им приходится часто менять паяльники.

Имеющиеся в их распоряжении китайские приборы разогреваются до температуры термоядерного синтеза, а их жало выгорает как бенгальские огни в новогоднюю ночь.

Таким паяльником совершенно невозможно паять – флюс моментально испаряется и на жале постоянно образуются окислы. Это очень неприятно и раздражительно.

Эту проблему легко решить, собрав замечательный регулятор мощности по следующей схеме:

Он поможет управлять уровнем нагрева жала паяльника.

В интернете можно разыскать более простые схемы, но представленная в этой статье способна управлять очень мощными нагрузками благодаря замене одного лишь симистора.

К тому сборка такого устройства потребует незначительных затрат – купить необходимо лишь симистор требуемой мощности.

Итак, мощный симистор выступает в роли силового компонента этой схемы.

Принцип его работы практически не отличается от принципа работы тиристора, за исключением того, что в отличие от последнего симистор является симметричным, т. е. у него отсутствуют анод и катод.

Протекание тока возможно в обоих направлениях. А управляет этим симистором симметричный динистор или diac DB-3 (отечественный аналогичный компонент КН102).

Его можно отыскать в нерабочем балласте энергосберегающей лампы, изъять из платы электронного трансформатора или приобрести в магазине.

Динистор здесь выступает в роли разрядника. У него имеется определенное напряжение срабатывания, и он открывается только в том случае, если к нему приложить это напряжение. А минимальное значение напряжения пробоя этого динистора составляет 28-30 В.

Конденсатор C1 будет накапливать заряд во время каждой полуволны сетевого напряжения.

И как только он зарядится до напряжения открывания динистора, то последний сработает, и заряд конденсатора через него подастся на управляющий вывод симистора, вследствие чего тот сработает.

Цепочка из компонентов VD1, VD2, C2 и R3 для нормального открывания симистора при минимально возможной выходной мощности.

Принцип работы всех похожих схем один и тот же – чем дольше задержка срабатывания симистора, тем ниже выходная мощность.

Отличительной чертой этой схемы является то, что она прекрасно работает при любой мощности на выходе. И заменой лишь одного симистора можно создать чудовищно мощный регулятор, который сможет управлять нагрузками в десятки киловатт.

Если планируется управление только паяльником, то устанавливать симистор на теплоотвод не нужно. Но для более высоких нагрузок теплоотвод обязателен.

Компактная печатная плата может быть размещена в спичечном коробке.

А при желании можно поместить такой регулятор в рукоять паяльника или как на картинке:

В итоге получается нечто, напоминающее паяльную станцию. Многие промышленные образцы паяльников китайского производства, дополненные таким регулятором, продаются как станции. Так что этот регулятор тоже можно назвать полноценной станцией.

Прикрепленные файлы: СКАЧАТЬ.

Источник: https://volt-index.ru/muzhik-v-dome/ustroystvo-dlya-regulirovki-moshhnosti-payalnika.html

Как сделать регулятор мощности для паяльника? Регулятор мощности для паяльника своими руками: схемы и инструкция

Домашний уют 1 декабря 2015

Устройства для настройки уровня напряжения, подающегося на нагревательный элемент, нередко используются радиолюбителями для предотвращения преждевременного разрушения жала паяльника и повышения качества пайки.

Наиболее распространенные схемы регуляторов мощности для паяльника содержат двухпозитронные контактные переключатели и тринисторные устройства, установленные в подставке. Эти и другие приборы обеспечивают возможность выбора необходимого уровня напряжения.

Сегодня применяются самодельные и заводские установки.

Простой регулятор мощности для паяльника

Если нужно получить 40 Вт из паяльника на 100 Вт, можно применить схему на симисторе ВТ 138-600. Принцип работы заключается в обрезке синусоиды. Уровень среза и температуру нагрева можно регулировать, используя резистор R1. Неоновая лампочка выполняет функцию индикатора. Ставить ее не обязательно. На радиатор устанавливается симистор ВТ 138-600.

Корпус

Вся схема обязательно должна быть помещена в закрытый диэлектрический корпус. Желание сделать прибор миниатюрным не должно влиять на безопасность при его использовании. Помните, что устройство работает от источника напряжения 220 В.

Видео по теме

Тринисторный регулятор мощности для паяльника

В качестве примера можно рассмотреть устройство, рассчитанное на нагрузку от нескольких ватт до сотни. Диапазон регулирования номинальной мощности такого прибора изменяется от 50% до 97%. В устройстве используется тринистор КУ103В с удерживающим током не более одного миллиампера.

Через диод VD1 беспрепятственно проходят отрицательные полуволны напряжения, обеспечивая примерно половину всей мощности паяльника. Ее можно регулировать тринистором VS1 в течение каждого положительного полупериода.

Устройство включается встречно-параллельно диоду VD1. Тринистор управляется по фазоимпульсному принципу.

Генератор вырабатывает импульсы, поступающие на управляющий электрод, состоящий из цепи R5R6C1, задающей время, и однопереходного транзистора.

Позицией ручки резистора R5 определяется время от положительного полупериода. Схема регулятора мощности требует температурной стабильности и повышения помехоустойчивости. Для этого можно зашунтировать управляющий переход резистором R1.

Цепь R2R3R4VT3

Генератор питается импульсами напряжением до 7В и длительностью 10 мс, сформированными цепью R2R3R4VT3. Переход транзистора VT3 является стабилизирующим элементом. Он включается в обратном направлении. Мощность, которую рассеивает цепь резисторов R2-R4, будет уменьшена.

Схема регулятора мощности включает в себя конденсатор С1КМ5, резисторы — МЛТ и R5 – СП-0,4. Транзистор можно использовать любой.

Плата и корпус для прибора

Для сборки данного устройства подойдет плата из фольгированного стеклопластика диаметром 36 мм и толщиной 1 мм. Для корпуса можно использовать любые предметы, например пластиковые коробки или футляры из материала с хорошей изоляцией. Понадобится база под элементы вилки. Для этого к фольге можно припаять две гайки М 2,5 таким образом, чтобы штыри прижимали плату к корпусу при сборке.

Недостатки тринисторов КУ202

Если мощность паяльника небольшая, регулирование возможно только в узкой области полупериода. В той, где удерживающее напряжение тринистора хотя бы немного ниже тока нагрузки. Температурная стабильность не может быть достигнута, если использовать такой регулятор мощности для паяльника.

Повышающий регулятор

Большая часть устройств для стабилизации температуры работает только на снижение мощности. Регулировать напряжение можно от 50-100% или от 0-100%. Мощности паяльника может оказаться недостаточно в случае подачи питания ниже 220 В или, например, при необходимости выпаять большую старую плату.

Действующее напряжение сглаживается электролитическим конденсатором, увеличивается в 1,41 раза и питает паяльник. Постоянная мощность, выпрямленная на конденсаторе, достигнет 310 В при питании 220 В. Оптимальная температура нагрева может быть получена даже при 170 В.

Мощные паяльники не нуждаются в повышающих регуляторах.

Необходимые детали для схемы

Чтобы собрать удобный регулятор мощности для паяльника своими руками, можно использовать метод навесного монтажа возле розетки. Для этого нужны малогабаритные комплектующие. Мощность одного резистора должна составлять не менее 2 Вт, а остальных – 0,125 Вт.

Описание схемы повышающего регулятора мощности

На электролитическом конденсаторе C1 с мостом VD1 выполнен входной выпрямитель. Его рабочее напряжение не должно быть меньше 400 В. На полевом транзисторе IRF840 размещается выходная часть регулятора. С этим устройством можно использовать паяльник до 65 Вт без радиатора. Они могут нагреваться выше нужной температуры даже при пониженной мощности питания.

Читайте также:  Простой ибп на основе электронного трансформатора

Управление ключевым транзистором, размещенным на микросхеме DD1, производится от ШИМ-генератора, частота которого задается конденсатором C2. Параметрический стабилизатор монтируется на приборах C3, R5 и VD4. Он питает микросхему DD1.

Для защиты выходного транзистора от самоиндукции устанавливается диод VD5. Его можно не ставить, если регулятор мощности паяльника не будет использоваться с другими электрическими приборами.

Возможности замены деталей в регуляторах

Микросхема DD1 может быть заменена на К561ЛА7. Выпрямительный мостик делается из диодов, рассчитанных на минимальный ток 2А. Устройство IRF740 можно использовать как выходной транзистор. Схема не нуждается в накладке, если все детали исправны и при ее сборке не было допущено ошибок.

Другие возможные варианты устройств для рассеивания напряжения

Собираются простые схемы регуляторов мощности для паяльника, работающие на симисторах КУ208Г. Вся их хитрость в конденсаторе и неоновой лампочке, которая, меняя свою яркость, может послужить в качестве индикатора мощности. Возможное регулирование – от 0% до 100%.

При отсутствии симистора или лампочки можно применить тиристор КУ202Н. Это весьма распространенный прибор, имеющий множество аналогов. С его использованием можно собрать схему, работающую в диапазоне от 50% до 99% мощности.

Ферритовое кольцо от компьютерного шнура можно использовать для изготовления петли, чтобы погасить возможные помехи от переключения симистора или тиристора.

Стрелочный индикатор

В регулятор мощности паяльника может быть интегрирован стрелочный индикатор для большего удобства при использовании. Сделать это совсем несложно. Неиспользуемая старая аудиоаппаратура может помочь с поиском таких элементов. Приборы несложно найти на местных рынках в любом городе. Хорошо, если один такой лежит дома без дела.

Для примера рассмотрим возможность интегрирования в регулятор мощности для паяльника индикатора М68501 со стрелкой и цифровыми отметками, который устанавливался в старых советских магнитофонах. Особенность настройки заключается в подборе резистора R4.

Наверняка придется подбирать прибор R3 дополнительно, если будет использован другой индикатор. Необходимо соблюдение соответствующего баланса резисторов при понижении мощности паяльника.

Дело в том, что стрелка индикатора может отображать снижение мощности на 10-20% при фактическом потреблении паяльником 50%, то есть наполовину меньше.

Заключение

Регулятор мощности для паяльника можно собрать, руководствуясь множеством инструкций и статей с приведенными примерами возможных разнообразных схем.

От хороших припоев, флюсов и температуры нагревательного элемента во многом зависит качество спайки.

Сложные устройства для стабилизации или элементарное интегрирование диодов может применяться при сборке аппаратов, необходимых для регулирования поступающего напряжения.

Такие приборы широко используются с целью понижения, а также повышения мощности, подающейся на нагревательный элемент паяльника в диапазоне от 0% до 141%. Это очень удобно.

Появляется реальная возможность работать при напряжении ниже 220 В. На современном рынке доступны качественные аппараты, укомплектованные специальными регуляторами. Заводские устройства работают только на понижение мощности.

Повышающий регулятор придется собирать самостоятельно.

Источник: fb.ruХобби
Как сделать костюм Колобка для мальчика своими руками: выкройка и рекомендации

Если на детском утреннике малыш получил роль Колобка, то родителям придется потрудиться, чтобы отыскать подходящий костюм, который не будет стеснять движений малыша и обойдется не слишком дорого. Можно сделать костюм …

Дом и семья
Как сделать костюм супергероя для мальчика своими руками?

В нашей жизни бывают самые разные ситуации, и неважно, как мы в них попадаем. Если вам вдруг понадобился костюм супергероя для мальчика, то нет ничего проще. Существует множество возможностей по его созданию. Сегодня …

Дом и семья
Как сделать марлевые подгузники для новорожденного своими руками?

С появлением в семье новорожденного малыша ее члены обретают множество хлопот и обязанностей. Так, ребеночек в первую очередь должен быть накормлен и правильно одет. В этом случае ему будет комфортно, а новоиспеченная…

Дом и семья
Как сделать театр теней для детей своими руками

В комнате полумрак, только ярко светит настольная лампа. Стоит поднять руки – и на стене появляются тени. А если сложить руки в причудливые формы или пошевелить пальцами – тени оживают и превращаются в загадочны…

Дом и семья
Как сделать массажный коврик для детей своими руками?

Массажный коврик – универсальное средство для профилактики плоскостопия и общего воздействия на стопы в домашних условиях. Принцип работы этого изделия заключается в стимуляции активных точек ступней благодаря его нео…

Домашний уют
Как сделать уличные вазоны для цветов своими руками?

Благоустройство участка может стать довольно увлекательным занятием для дачника, однако его не всегда можно назвать легким, кроме того, такие работы отнимают много времени. Но особенно интересно создавать элементы экс…

Домашний уют
Как сделать плавучий якорь для лодки своими руками

Многие интересуются, для чего нужен плавучий якорь. Устройство требуется для замедления хода судна, которое потерпело крушение или потеряло способность плыть. В особенности это касается тех случаев, когда аварийная си…

Домашний уют
Как сделать наливной пол для гаража своими руками?

Своим названием наливной пол обязан технологии устройства. Это вариант выполнения стяжки с помощью заливки самовыравнивающейся смеси. В качестве отличительной особенности наливного пола на цементной основе выступает т…

Домашний уют
Как сделать поводок? Поводок для собаки своими руками

Социологи сообщают, что собак держат 41% жителей России. Среди прочих домашних питомцев лишь кошки опережают по численности «лучших друзей человека». Это и неудивительно, все-таки собака — животное, …

Домашний уют
Как сделать дисковый окучник для мотоблока своими руками?

Если вы имеете дачный участок, то на нём наверняка выращиваете картофель, возделывание которого будет проще производить с помощью специальных инструментов. Среди них можно выделить дисковый окучник для мотоблока. Свои…

Источник: http://monateka.com/article/32321/

Повышающий регулятор мощности паяльника

Повышающий регулятор мощности паяльника

Предлагаемый вниманию прибор предназначен для регулирования мощности паяльников и других нагревательных приборов мощностью до 100 Вт. Его можно использовать также для питания осветительных приборов с лампами накаливания такой же мощности при пониженном напряжении в сети.

Отличительная особенность прибора — его способность регулировать мощность, передаваемую в нагрузку, не только в сторону её уменьшения, но и в сторону увеличения относительно номинального значения. Интервал регулирования очень широк — от 1 до 180 % номинальной мощности подключённой нагрузки.

Как известно, амплитудное значение синусоидального сетевого напряжения в 1,41 раза больше эффективного.

За счёт этого, подключив к сети выпрямитель со сглаживающим фильтром, можно получить постоянное на­пряжение около 310 В.

Из него несложно сформировать прямоугольные импульсы такой амплитуды, а меняя их коэффициент заполнения, можно регулировать эффективное значение импульсного напряжения от нуля до 1,41 эффективного значения исходного синусоидального напряжения.

Тепловая мощность питаемого таким напряжением паяльника или другого нагревательного прибора будет меняться от нуля до удвоенной номинальной мощности. Предлагаю вниманию читателей регулятор, собранный на микроконтроллере. Он имеет кнопочное управление и цифровую индикацию установленной мощности.

Три режима работы, выбираемые нажатиями на соответствующие кнопки, позволяют быстро разогревать паяльник даже при пониженном напряжении в сети, а затем поддерживать его рабочую температуру.

Установленную для каждого режима работы мощность также можно изменять нажатиями на кнопки. Заданное значение автоматически сохраняется в энергонезависимой памяти микроконтроллера.

К регулятору можно подключать паяльники мощностью до 100 Вт, а также осветительные приборы с лампами накаливания. Схема регулятора мощности изображена на рис.

Его основа микроконтроллер PIC16F628 (DD1), в котором имеется модуль ШИМ, формирующий на выходе  RB3  прямоугольные  импульсы программно изменяемой  скважности. Частота следования этих импульсов при работе микроконтроллера от встроенного RC генератора — около 360 Гц.

Их коэффициент заполнения (величина, обратная скважности) пропорционален установленному значению выходной мощности. Импульсы поступают на излучающий диод оптрона U1, необходимого для гальванической развязки силовой и низковольтной частей прибора.

С коллектора фототранзистора оптрона управляющие импульсы поступают на затвор полевого транзистора VT3, который коммутирует нагрузку. Стабилитрон VD6, включённый между затвором и истоком транзистора, ограничивает амплитуду управляющих импульсов до безопасного значения.

Формирователь импульсов питается от выпрямителя сетевого напряжения на диодном мосте VD5 со сглаживающим конденсатором С4.

Для ограничения тока зарядки этого конденсатора в момент включения устройства в сеть применён терморезистор RK1. Фильтр L1C1C2 предотвращает проникновение помех от прибора в питающую сеть.

К выходам RB4—RB7 микроконтроллера через преобразователь кода DD2 подключён четырёхразрядный семиэлементный светодиодный индикатор HG1, в котором используются только три разряда. Общие аноды элементов разрядов подключены к эмиттерам транзисторов VT1, VT2, VT4.

С выходами RA3, RA6, RA7 микроконтроллера соединены светодиоды, которые показывают выбранный режим работы. К входам RBO—RB2 подключены кнопки управления.

Читайте также:  Рекомендации по очистке лазеров в проигрывателях cd

Цифровая часть прибора питается от стабилизатора напряжения на микросхеме DA1.  Его выходное напряжение — 5 В при токе нагрузки до 0,4 А. В приборе применены резисторы МЛТ и импортные оксидные конденсаторы.

Транзисторы КТ503Д можно заменить приборами той же серии с любым буквенным индексом, транзистор 2SK2761 — на IRF830 или КП707В2. Оптрон — на РС120. Вместо светодиода FYL-3014UGC можно применить любой зелёного, а вместо FYL-3014SRC — красного цвета свечения. Кнопки — любые малогабаритные.

Индикатор CA56-21SRWA можно заменить на BQ- M51DRD или использовать три одноразрядных семиэлементных индикатора с общим анодом, например, АЛС324Б или АЛСЗЗЗБ2.

Катоды одноимённых элементов таких индикаторов объединяют и подключают к соответствующим выходам преобразователя кода через резисторы R9—R15.В качестве С1, С2 необходимо использовать импортные конденсаторы, предназначенные для работы в цепях переменного тока.

В крайнем случае можно применить конденсаторы К73-17 на постоянное напряжение 630В. Дроссель L1 и терморезистор RK1 — от блока питания IBM PC.

Все детали устройства, за исключением блока питания (состоящего из трансформатора Т1, диодов VD1—VD4, микросхемы DA1, конденсаторов СЗ, С5, С6), смонтированы на печатной плате, чертёж которой приведён на рис.

Индикатор HG1 устанавливают на краю платы перпендикулярно её поверхности, его выводы соединяют с соответствующими контактными площадками отрезками тонкого монтажного провода. Блок питания монтируют на отдельной печатной плате, чертёж которой не приводится.

В нём можно использовать любой малогабаритный понижающий трансформатор с напряжением на вторичной обмотке 7…10В при токе нагрузки 0,4 А. Пригодны некоторые  унифицированные трансформаторы  серии  ТПП, например ТПП220-127/220-50.

Чтобы получить требуемое напряжение, в этом трансформаторе необходимо соединить последовательно все вторичные обмотки, за исключением одной напряжением 2,5 В. Кроме того, следует соединить выводы 3 и 7 первичных  обмоток, а напряжение 220 В подавать на выводы 2 и 9. Стабилизатор DA1 должен быть снабжён теплоотводом площадью 5…7см2 из алюминиевого листа.

Для питания регулятора можно использовать и готовый трансформаторный или импульсный блок питания, обеспечивающий стабилизированное напряжение 5 В при токе нагрузки не менее 0,4 А. Например, импульсный блок питания от неисправного DVD-плейера.

Повышающий регулятор мощности паяльника и внешний вид  показан на рис

Он собран в корпусе привода CD-ROMперсонального компьютера. На передней панели расположены индикатор HG1, кнопки управления и светодиоды. На верхней крышке закреплены держатели для паяльника, а на задней стенке установлена розетка XS1 для его подключения.

После сборки на регулятор необходимо подать напряжение питания и убедиться в нормальной работе его цифровой части. После этого следует проверить осциллографом амплитуду и форму импульсов на затворе транзистора VT3. Их амплитуда должна быть не менее 10В, а форма — близка к прямоугольной.

Если это не так, необходимо подобрать резистор R8.

Обращаю внимание читателей, что во время выполнения описанных выше операций общий провод осциллографа приходится соединять с истоком транзистора VT3, имеющим гальваническую связь с питающей сетью. Работая с подключённым таким образом осциллографом, следует соблюдать осторожность, чтобы не получить электрический удар.

Эксплуатируя прибор, необходимо помнить, что через него нельзя питать электроприборы, содержащие индуктивные элементы (трансформаторы, дроссели, электродвигатели), а также любые электронные узлы.

Подавая на нагрузку мощность, превышающую номинальную, помните, что это приводит к резкому сокращению её ресурса, а возможны и более серьёзные неприятности.

Прошивка микроконтроллера скачать

Закладка Постоянная ссылка.

Источник: http://vse-v-seti.ru/povyshayushhij-regulyator-moshhnosti-payalnika/

Простая схема регулятора мощности для паяльника

Стремясь повысить качество пайки и предохранить жало паяльника от преждевременного разрушения из-за перегрева, радиолюбители нередко используют различные устройства, позволяющие регулировать среднее значение напряжения на обмотке нагревательного элемента паяльника.

При этом изменяется мощность, выделяемая нагревательным элементом, а значит, и температура жала паяльника.

Часто применяемые для этой цели контактные духпозиционные переключатели, которые монтируют, как правило, в подставке для паяльника, неудобны в пользовании.

Во-первых, после того, как паяльник снят с такой подставки, требуется некоторое время для его «догревания» перед пайкой, а во-вторых, снятый с подставки он вскоре перегревается.

Для регулирования мощности паяльника лучше всего подходят тиристорные регуляторы мощности. Многие радиолюбители уже применяют такие тиристорные регуляторы мощности — как самодельные, так и выпускаемые промышленностью для осветительных приборов. Однако они не всегда обеспечивают плавную и стабильную регулировку мощности.

Дело в том, что у тиристоров (тринисторов) средней мощности, чаще всего используемых в регуляторах, велико значение удерживающего тока (минимального анодного тока, при котором тиристор может удерживаться в открытом состоянии).

Для тиристоров серии КУ202 по техническим условиям этот ток может достигать 300 мА при температуре окружающей среды — 60° С.

При реальных условиях эксплуатации он, конечно, меньше, но все же остается соизмеримым с током, протекающим через нагреватель паяльника (180 мА при мощности 40 Вт и напряжении 220 В).

Иными словами, с этими тиристорами надежное регулирование при малой мощности нагрузки либо вообще невозможно, либо происходит лишь в узкой центральной области полупериода, где ток нагрузки хотя бы немного превышает удерживающий ток тринистора (тиристора).

К тому же ток удержания — параметр, зависящий от многих факторов, в том числе и от температуры тиристора, поэтому работа такого регулятора не может быть температурно стабильной.

Отсюда следует, что при маломощной нагрузке для регулятора необходимо выбирать тиристоры с малым током удержания.

Ниже описана конструкция тиристорного регулятора мощности, рассчитанного на работу с нагрузкой, имеющей номинальную мощность от нескольких ватт до 100 Вт.

Регулятор выполнен в виде сетевой штепсельной вилки и позволяет регулировать мощность в пределах примерно от 50 до 97 % от номинальной.

В регуляторе применен тринистор КУ10ЗВ, у которого удерживающий ток не превышает десятых долей миллиампера.

Принципиальная схема тиристорного регулятора мощности для регулировки температуры жала паяльника.

Отрицательные полуволны сетевого напряжения беспрепятственно проходят через диод VD1, обеспечивая около половины мощности паяльника.

Тиристор VS1, включенный встречно-параллельно диоду VD1, регулирует мощность в течение положительных полупериодов. Принцип управления тринистором — фазоимпульсный.

На управляющий электрод тринистора поступают импульсы, вырабатываемые генератором, состоящим из аналога одно-переходного транзистора (VT1. VT2) и времязадающей цепи R5R6C1.

Время от начала положительного полупериода сетевого напряжения до момента срабатывания генератора и открывания тринистора определяется положением движка переменного резистора R5. Для повышения помехоустойчивости и улучшения температурной стабильности тринистора его управляющий переход зашунтирован резистором R1.

Цепь R2R3R4VT3 формирует из сетевого напряжения трапецеидальные импульсы длительностью 10 мс и напряжением примерно 7 В, которыми питается генератор.

В качестве стабилизирующего элемента применен эмиттерный переход транзистора VT3, включенный в обратном направлении. Такой «стабилитрон» работает при значительно меньшем токе стабилизации (десятки микроампер против 5… 10 мА у КС168А).

Это позволило, во первых, сэкономить место на печатной плате и, во вторых, уменьшить мощность, рассеиваемую цепью резисторов R2—R4.

Если предполагается работа с припоями, имеющими температуру плавления менее 180°С, то входную часть регулятора следует собирать по схеме на рис. слева, а либо б. Регулятор, собранный по схеме рис.

а, имеет пределы регулирования примерно от 0 до 95 % номинальной мощности нагрузки, а по схеме рис.

б — при разомкнутых контактах выключателя SA1 примерно от 0 до 50 % (при замыкании контактов SA1 входная часть становится такой же, как на рис. выше.

В регуляторе применены резистор R5 — СП-0,4, остальные резисторы — МЛТ; конденсатор С1 — КМ-5; транзисторы подойдут с любыми буквенными индексами.

Регулятор собран в карболитовой коробке (с крышкой на резьбе) диаметром 45 и высотой 20 мм, использован футляр от фотопринадлежностей. Внешний вид регулятора показан на рис. в начале статьи. Можно использовать любую другую подходящую коробку, но обязательно из хорошего изоляционного материала. Ручка регулятора не должна быть металлической.

Все детали собраны на печатной плате диаметром 36 мм из фольгированного стеклотекстолита толщиной 1 мм. К фольге платы припаяны две гайки М2,5, в которые при сборке ввинчивают штыри вилки через отверстия в корпусе, при этом плата оказывается фиксированной в футляре.

ВНИМАНИЕ!

Эта конструкция имеет бестрансформаторное питание от сети переменного тока. Собирая, налаживая и эксплуатируя ее, обращайте особое внимание на соблюдение техники безопасности при работе с электроустановками (см., например, статью – Общие правила электробезопасности).

Справочные материалы:
Симисторы и тиристоры TAG – основные характеристики, цоколевка
Расшифровка буквенной маркировки интегральных, SMD предохранителей

Источник: http://www.xn--b1agveejs.su/radiotehnika/164-regulyator-moschnosti-payalnika.html

Ссылка на основную публикацию
Adblock
detector