Светодиоды и их применение

Принцип работы светодиода и его устройство – обзор всех видов LED

В данной информационной статье мы постараемся в полной мере описать принцип работы светодиодов всех разновидностей, имеющихся в природе на сегодняшний день. Рассмотрим общее устройство LED и разберемся как получаются светоизлучающие диоды разных цветов.

Принцип работы

Наверное, каждый человек знает, что принцип действия светодиода заключается в его «свечении» при подключении к источнику питания. Однако за счет чего это достигается? Давайте разберемся более детально в этом вопросе.

Для создания видимого светового потока конструкция светодиода предусматривает наличие двух полупроводников, один из которых в своем составе должен содержать свободные электроны, а другой – «дыры».

Таким образом, между полупроводниками возникает «P-N» переход, в результате которого электроны от донора переходят в другой полупроводник (реципиент) и занимают свободные дыры с выделением фотонов. Эта реакция проходит только при наличии источника постоянного тока.

Принцип действия разобрали, однако благодаря чему происходит этот процесс? Для этого необходимо рассмотреть конструктивную особенность светодиода.

Как устроен светодиод

В независимости от модели светодиода (СОВ, OLED, SMD и т.д.) они состоят из следующих элементов:

  1. Анод (подача положительной полуволны на кристалл);
  2. Катод (подача отрицательной полуволны постоянного тока на кристалл полупроводника);
  3. Отражатель (отражение светового потока на рассеиватель);
  4. Чип или кристалл полупроводника (излучение светового потока за счет «P-N» перехода);
  5. Рассеиватель (увеличение угла свечения светодиода).

Теперь ознакомимся со способами получения различных цветов.

Получение светодиода определенного цвета

Ранее мы разобрали принцип работы светодиода и выяснили, что световой поток образуется при возникновении «P-N» перехода в полупроводнике с выделением фотонов видимых человеческому глазу. Однако каким же образом можно получить различное свечение светодиода? Для этого существует несколько вариантов. Рассмотрим каждый из них.

Покрытие люминофором

Данная технология позволяет получить практически любой цвет, однако зачастую используется для получения белых светодиодов. Для нее применяют специальный реагент – люминофор, которым покрывают красный или синий светодиод. После обработки синий светоизлучающий диод начинает светить белым.

RGB — технология

Подобный тип устройств способен излучать любой оттенок светового спектра за счет применения в одном кристалле 3-х светодиодов: красного, зеленого и синего. В зависимости от интенсивности свечения каждого из них, меняется излучаемый свет.

Применение различных примесей и различных полупроводников

Благодаря данной технологии, изменяется длина волны излучаемого светового потока в зоне «P-N» перехода. А как известно, в зависимости от длинны волны, ее цвет меняется. Более наглядно это можно увидеть на следующем фото:

Теперь давайте разберем следующий вопрос: какими электрическими характеристиками обладают данные устройства и что нужно для их надежной работы.

Электрические характеристики

Светодиоды – это устройства, излучающие световой поток при прохождении через них стабилизированного постоянного напряжения низкого номинала (3-5В). За счет создания разности потенциалов на аноде и катоде в кристалле возникает электрический ток, создающий световой поток.

Для полноценной работы LED, величина тока должна быть на уровне 20-25 мА. Однако для мощных светодиодов, ток потребления может достигать 1400 мА.

Теперь рассмотрим основные разновидности LED, их достоинства и недостатки.

Устройство светодиода индикаторного типа (DIP)

Данный тип LED – это «первопроходцы» в сфере светодиодной техники. Они предназначаются для промышленности в качестве индикаторов.

Они состоят из 3-х или 5-и миллиметрового корпуса, анода, катода, кристалла, золотого (в бюджетных вариантах медного) проводника, соединяющего анод с кристаллом и рассеивателя.

На практике применяются очень редко, т.к. имеют ряд недостатков:

  • большой размер;
  • малый угол свечения (до 1200);
  • низкое качество кристалла (при длительной работе яркость излучения падает до 70%);
  • слабый световой поток за счет малой пропускной способности кристалла (до 20мА).

Как устроен мощный светодиод

Мощные светоизлучающие диоды (например, фирмы cree) предназначены для создания интенсивного светового потока за счет прохождения через кристалл большого тока (до 1400 мА).

На кристалле выделяется большое количество тепла, которое с помощью алюминиевого радиатора отводится от кристалла полупроводника. Также этот радиатор служит в качестве отражателя для увеличения светового потока.

Для надежной работы мощных LED необходимо наличие в схеме специального драйвера рассчитанного на прохождение большого потока электронов, который помимо стабилизации напряжения должен ограничивать ток, соответствующий номинальной работе устройства.

Устройство филаментного светодиода

Светодиоды типа filament были изобретены еще в начале 2008 года. Однако пик их популярности приходится на 2014-2016 года. Они стали популярными у дизайнеров, поскольку напоминали обычные лампы накаливания и потребляли минимальное количество электроэнергии. Рекомендуем почитать интересную статью про филаментные светодиодные лампы.

Конструкция

Филаментные LED – это устройства, состоящие из сапфирового или обычного стекла диаметр, которого не превышает 1,5мм и специально выращенных кристаллов полупроводников (28 штук) соединённых последовательно на изолированной подложке.

Эти светодиоды помещаются в специальную колбу, покрываемую люминофором, за счет чего можно получить любой цвет. Основное достоинство LED устройств, разработанных по данной технологии – это угол свечения, достигающий 3600.

Филаментные светоизлучающие диоды некоторые источники относят к классу COB (смотрите раздел ниже), поскольку кристаллы выращиваются на стекле или сапфире по аналогичной технологии.

Устройство и принцип работы светодиода COB

Технология СОВ или же Chip-On-Board – это одна из современных разработок в сфере электроники, заключающаяся в помещении большого количества кристаллов полупроводника с помощью диэлектрического клея на алюминиевую подложку. Также изготовление светодиодов подобного типа возможно на стеклянной матрице (COG) однако принцип работы у них одинаков.

Полученная матрица покрывается люминофором. В результате удается достичь равномерного свечение COB светодиода любого оттенка по всей площади. Данные устройства широко применяются в разработке телевизоров, ноутбуков и планшетов.

Принцип работы

Несмотря на то, что СОВ светодиоды имеют специфическое название, принцип его действия полностью аналогичен обычным индикаторным светоизлучающим диодам разработанных в 1962 году. При прохождении тока через кристаллы полупроводника возникает «P-N» переход и как следствие – световой поток.

Устройство и принцип работы органического светодиода OLED

Самое новое достижение в сфере производства – это технология OLED. Она позволяет производить высокотехнологические телевизоры с тонким дисплеем, миниатюрные смартфоны, планшеты и еще многие другие приборы, без которых не обойтись в современном обществе.

Устройство OLED

Светоизлучающий диод OLED состоит из:

  • анода, изготовленного из смеси оксида индия с оловом;
  • подложки из фольги, стекла или же пластика;
  • алюминиевого или кальциевого катода;
  • излучающей прослойки на основе полимера;
  • токопроводящего слоя из органических веществ.

Как работает данная технология?

Принцип действия OLED аналогичен светодиодам СОВ, SMD и DIP и заключается в образовании «P-N» перехода в полупроводниках. Однако отличительной особенностью технологии ОЛЕД является применение специальных полимеров, из которых состоит светоизлучающая прослойка, за счет которой увеличивается срок службы светодиода, световой поток видимого спектра и угол свечения.

Достоинства

  • минимальные размеры;
  • низкое энергопотребление;
  • равномерное свечение по всей площади;
  • длительный срок эксплуатации;
  • увеличенный срок службы;
  • широкий угол свечения (до 2700);
  • низкая себестоимость.

Мы рассмотрели основные типы светоизлучающих диодов, которые применяются в современном мире, однако на ряду с ними, корейские ученые пошли дальше и разработали LED на основе волокон, которые по их обещаниям вытеснят все устаревшие типы устройств.

Давайте рассмотрим, что они собой представляют.

Устройство и принцип работы светодиода на основе волокон

Для производства светодиодов данной ниши применяют нити терефталата полиэтилена обработанные раствором PEDOT:PSS polystyrene sulfonate. После обработки нить будущего светодиода просушивают при температуре 1300С.

После, заготовку обрабатывают по технологии OLED специальным полимером poly-(p-phenylenevinylene) polymer и полученные волокна покрывают тонким слоем суспензии литий-алюминиевого фторида.

Выводы

Мы рассмотрели основные типы светодиодов, которых как Вы можете видеть существует огромное количество. Однако по принципу работы они все одинаковы.

Также можно сказать, что благодаря применению современных материалов и технологий производства можно добиться высоких технических показателей и более надежной и длительной работы светодиодов.

Для наглядности рекомендуем просмотреть видео, в котором Вы подробно ознакомитесь с конструкцией LED:

Источник: http://ledno.ru/svetodiody/ustrojstvo-i-princip-raboty-led.html

Устройство и принцип работы светодиодов

С момента открытия красного светодиода (1962 г.) развитие твердотельных источников света не останавливалось ни на миг. Каждое десятилетие отмечалось научными достижениями и открывало для ученых новые горизонты.

В 1993 году, когда японским ученым удалось получить синий свет, а затем и белый, развитие светодиодов перешло на новый уровень.

Перед физиками всего мира стала новая задача, суть которой заключалась в использовании светодиодного освещения в качестве основного.

В наше время можно сделать первые выводы, свидетельствующие об успехах становления светодиодного освещения и продолжающейся модернизации светодиода. На прилавках магазинов появились светильники со светодиодами, изготовленными по технологии COB, COG, SMD, filament.

Что такое светодиод?

Светодиод – это полупроводниковый компонент с электронно-дырочным переходом, создающий оптическое излучение при пропускании электрического тока в прямом направлении.

В отличие от нити накала и люминесцентных источников света, испускаемый свет светодиодом лежит в небольшом диапазоне спектра. То есть кристалл светоизлучающего диода испускает конкретный цвет (в случае со светодиодами видимого спектра). Для получения определенного спектра излучения в светодиодах используют специальный химический состав полупроводников и люминофора.

Устройство, конструкция и технологические отличия

Существует много признаков, по которым можно классифицировать светодиоды на группы. Одним из них является технологическое отличие и небольшое различие в устройстве, которое вызвано особенностью электрических параметров и будущей сферой применения светодиода.

DIP

Цилиндрический корпус из эпоксидной смолы с двумя выводами стал первым конструктивом для светоизлучающего кристалла. Закругленный цветной или прозрачный цилиндр служит линзой, формируя направленный пучок света. Выводы вставляются в отверстия печатной платы (DIP) и с помощью пайки обеспечивают электрический контакт.

Излучающий кристалл располагается на катоде, который имеет форму флажка, и соединяется с анодом тончайшим проводом. Существуют модели с двумя и тремя кристаллами разного цвета в одном корпусе с количеством выводов от двух до четырёх.

Кроме этого, внутри корпуса может быть встроен микрочип, управляющий очередностью свечения кристаллов либо задающий чистоту его мигания.

Светодиоды в DIP корпусе относятся к слаботочным, используется в подсветке, системах индикации и гирляндах.

В попытках нарастить световой поток, появился аналог с усовершенствованным устройством в DIP корпусе с четырьмя выводами, известный как «пиранья». Однако увеличенная светоотдача нивелировалась размерами светодиода и сильным нагревом кристалла, что ограничило область применения «пираньи». А с появлением SMD технологии их производство практически прекратилось.

SMD

Полупроводниковые приборы с креплением на поверхность печатной платы коренным образом отличаются от предшественников. Их появление расширило возможности конструирования систем освещения, позволило снизить габариты светильника и полностью автоматизировать монтаж. Сегодня SMD-светодиод – это самый востребованный компонент, используемый для построения источников света любых форматов.

Основа корпуса, на которую крепится кристалл, является хорошим проводником тепла, что в разы улучшило отвод тепла от светоизлучающего кристалла.

В устройстве белых светодиодов между полупроводником и линзой присутствует слой люминофора для задания нужной цветовой температуры и нейтрализации ультрафиолета.

В SMD-компонентах с широким углом излучения линза отсутствует, а сам светодиод имеет форму параллелепипеда.

COB

Chip-On-Board – одно из новейших практических достижений, которое в ближайшем будущем займет лидерство по производству белых светодиодов в искусственном освещении.

Отличительная черта устройства светодиодов по технологии COB заключается в следующем: на алюминиевую основу (подложку) через диэлектрический клей крепят десятки кристаллов без корпуса и подложки, а затем полученную матрицу покрывают общим слоем люминофора.

В результате получается источник света с равномерным распределением светового потока, исключающий появление теней.

Разновидностью COB является Chip-On-Glass (COG), которая подразумевает размещение множества мелких кристаллов на поверхности из стекла. В частности, широко известны филаментные лампы на 220 В, в которых излучающим элементом служит стеклянный стержень со светодиодами, покрытыми люминофором.

Принцип работы светодиода

Несмотря на рассмотренные технологические особенности, работа всех светодиодов базируется на общем принципе действия излучающего элемента.

Преобразование электрического тока в световой поток происходит в кристалле, который состоит из полупроводников с разным типом проводимости. Материал с n­-проводимостью получают путем его легирования электронами, а материал с p-проводимостью – дырками.

Таким образом, в сопредельных слоях создаются дополнительные носители заряда противоположной направленности. В момент подачи прямого напряжения начинается движение электронов и дырок к p-n-переходу.

Заряженные частицы преодолевают барьер и начинают рекомбинировать, в результате чего протекает электрический ток. Процесс рекомбинации дырки и электрона в зоне p-n-перехода сопровождается выделением энергии в виде фотона.

Вообще, данное физическое явление применимо ко всем полупроводниковым диодам. Но в большинстве случаев длина волны фотона находится за пределами видимого спектра излучения.

Чтобы заставить элементарную частицу двигаться в диапазоне 400-700 нм ученым пришлось провести немало экспериментов с подбором подходящих химических элементов.

В результате появились новые соединения: арсенид галлия, фосфид галлия и более сложные их формы, каждая из которых характеризуется своей длиной волны, а значит, и цветом излучения.

Кроме полезного света, испускаемого светодиодом, на p-n-переходе выделяется некоторое количество теплоты, которая снижает эффективность полупроводникового прибора. Поэтому в конструкции мощных светодиодов должна быть продумана возможность реализации эффективного отвода тепла.

Источник: https://ledjournal.info/spravochnik/ustrojstvo-i-princip-raboty-svetodioda.html

Светодиоды и их применение

28 июля 2016 г. в 18:06, 143

Светодиод это полупроводниковый прибор, который имеет электронно-дырочный переход, способный создавать оптическое излучение при пропускании через него в прямом направлении электрического тока. На английском светодиод (светоизлучающий диод) звучит как Light Emitting Diode, а в аббревиатуре, как LED.

Мощные и современные светодиоды, так не похожие на свои прототипы, сейчас активно применяются в большом количестве сфер, начиная с освещения жилых помещений, производственных, административных и заканчивая архитектурной, даже уличной подсветкой.

В течение последних лет область применения светоизлучающих диодов прилично расширилась.

Если ранее светодиоды относились к индикаторам электронных приборов, то сегодня, где только их не увидишь, на дорожных знаках, на светофорах, на приборной панели машин и т.д.

Отметим тот факт, что автопромышленность без светодиодов уже не обходится, их очень активно внедряют в сигнальные огни торможения, а также габаритные фонари.

Широкую область применения источников света LED можно легко объяснить технологическими достижениями в разработке мощных диодов, благодаря чему с каждым годом такое освещение все увереннее вытесняет уже привычные, но порядком устаревшие источники освещения, такие как, лампы накаливания (ЛОН), галогенные лампы накаливания, компактные люминесцентные лампы (ЛЛ) и т.д. Перечислять весь фронт, их применения можно бесконечно:

  • освещение на промышленных/производственных предприятиях, рабочих мест,
  • освещение подъездов и коридоров домов,
  • освещение в магазинах прилавков и витрин.

Светодиоды, которые используют для подсветок, тоже являются мощными LED, по многим параметрам, а именно, световой поток, надежность в эксплуатации, отличный индекс цветопередачи, световая отдача и поэтому они совершенно не уступают и порой превосходят привычные для нас источники освещения, в осветительных приборах.

Если сравнивать с другими лампочками, то главные преимущества LED — это срок службы с номиналом до 50000 часов, а также направленное излучение. Светоизлучающие диоды не содержат ртути, как газоразрядные или люминесцентные лампочки, что значительно облегчает, уже наболевшую проблему с утилизацией.

Время выхода светового потока на максимальное значение, сразу после включения лампы, это всего доля секунды, благодаря чему вы можете подбирать освещение любого тона, начиная с желтого теплого и заканчивая белым дневным или голубым холодным.

Использование светодиодов, как источников света, помогает значительно уменьшить расходы на электроэнергию. Именно поэтому так важно и нужно рассматривать два самых основных фактора, где преимущества применения LED наиболее существенно. Такими факторами являются, отсутствие обслуживания приборов и экономия на электрической энергии.

Используя светодиодные источники вместо устаревших лампочек накаливания, экономия на электроэнергию составит 95%, а вместо люминесцентных около 50%.

В России периодически предпринимаются попытки полностью перевести весь город или определенные районы на полупроводниковое освещение. И это имеет большой смысл, поскольку светодиодные лампы сегодня это самые мощные и экономичные источники освещения.

Источник: https://www.elec.ru/articles/svetodiody-i-ih-primenenie/

Устройство светодиода и принцип действия

Светодиод сокращённо (СД), светоизлучающий диод (СИД), light emitting diode сокращённо LED – это полупроводниковое устройство, которое способно создавать световое излучение различной интенсивности при подключении его в прямом направлении к электрическому току.

Светодиод: устройство.

Основа светодиода – полупроводниковый кристалл. Кристалл размещается на металлическое основание катод, который также является отражателем.

Кристалл соединяется тонкой проволокой с анодным выводом. Вся конструкция помещается в корпус колбу нужной формы, верхняя часть колбы состоит из рассеивающей или собирающей линзы. От формы линзы зависит угол рассеивания светового потока, чем более плоская линза, тем шире угол рассеивания и наоборот, чем выпуклей линза, тем уже световой поток.

Для изготовления кристалла светодиода могут, используются такие  полупроводниковые материалы как арсенид галлия, алюминия галлия арсенид, галлия фосфид, галлия арсенид-фосфид, кремний и пр.

В зависимости от материала, из которого сделан кристалл, светодиод может излучать заданный спектр свечения.

Все светодиоды можно поделить на два основных типа:

Индикаторные – маломощные светодиоды используются как индикаторы в различных приборах (см. рис. сверху).

Осветительные – более мощные светодиоды, используются в осветительных приборах.

Типы осветительных диодов:

  • SMD.
  • HP – высокой яркости.
  • HP – высокой мощности.

Устройство осветительного светодиода.

Светодиод: принцип действия.

Принцип действия светодиода основан на так называемом p-n (электронно-дырочном) переходе.

Светодиод включает в себя полупроводниковый p-n переход, где материал — n обогащён отрицательными носителями заряда (приобретают дополнительные электроны), а материал – p положительными носителями заряда (приобретают «дырки» места, где отсутствуют электроны на орбитах атомов).

Когда в диоде возникает электрическое поле, электроны из материала — n и дырки из материала – p, устремляются к p – n переходу, где электроны инжектируются в – p материал.

При подаче отрицательного напряжения со стороны – n проходит ток в материал – p (прямое смещение).

При переходе из – n в – p избыточные электроны рекомбинируют с «дырками» при этом выделяется энергия из элементарных частиц фотонов и светодиод испускает свечение.

Обозначение светодиода в электрических схемах.

Светодиод может работать только при пропускании через него тока в прямом направлении (анод положительный потенциал относительно катода).

Недопустимо подключение светодиода обратной полярностью к источнику напряжения, светодиоды обычно имеют невысокое обратное пробивное напряжение, поэтому если в схеме возможно обратное напряжение светодиод нужно дополнительно защитить параллельно подключённым обычным диодом.

Подключать светодиод к источнику напряжения можно только через ограничитель тока, например через последовательно подключённый резистор.

Некоторые диоды могут иметь встроенную в корпус токоограничивающую цепь.

Для мощных светодиодов также применяются схемы, с широтно импульсной модуляцией которые могут поддерживать среднее значение тока на заданном уровне.

При пропускании через светодиод тока превышающего предельно допустимые параметры, светодиод мгновенно перегревается и выходит из строя.

Преимущества применения светодиодов в качестве источников света.

Высокая светоотдача до 146 люмен на ватт.

Современные светодиоды имеют широкий спектр свечения от 2700 К (теплый белый) до 6500 К (холодный белый).

Низкая инерционность, светодиод включается сразу на полную яркость.

Угол излучения от 15 до 180 градусов.

Механическая прочность и вибростойкость.

Светодиоды не чувствительны к низким температурам.

Продолжительный срок службы светодиодов, некоторые светодиоды могут работать до 100000 часов.

На продолжительность службы светодиодов не влияет количество циклов включения-выключения, в отличие от газоразрядных ламп и ламп накаливания.

Экологичность – в отличие от люминесцентных ламп для производства светодиодов не используются опасные материалы, такие как ртуть и фосфор.

Недостатки светодиодов.

При недостаточном отводе тепла у мощных светодиодов происходит деградация и падение яркости кристалла.

Светодиоды чувствительны к перепадам напряжения, повышенное напряжение приводит к перегреву светодиода и сокращает срок его службы.

Применение светодиодов.

Современные мощные светодиоды применяются в промышленном и бытовом освещении, светодиоды используются в качестве источников света в лампах, фонарях, светильниках, светодиодных лентах.

Светодиоды применяются в подсветке жидкокристаллических экранов телевизоров, мониторов, мобильных телефонов.

Маломощные светодиоды применяются в качестве индикаторов для бытовых и промышленных приборов, используются в панелях управления и пр.

Источник: http://led-lampu.ru/ustrojstvo-svetodioda-i-princip-dejstviya.html

Все о светодиодах (LED)

Все быстрее растет популярность светодиодов и все шире становится территория применения их в светотехнике.

Потребители, производители и продавцы стараются не отставать от современных нововведений, но лишь дизайнеры в полной мере ощутили все уникальные возможности светодиодов. Время, когда интерес к светодиодам проявляли лишь ученые, давно прошло.

В наши дни тема «светодиоды» никого не удивит и поговаривают, что перспектива использования исключительно светодиодов очень реальна.

Что же представляет собой светодиод?

Светодиод – прибор полупроводниковый, принцип работы которого заключается в преобразовании электрического тока в световое излучение. На английском: diode, light emitting или LED.

Структура светодиода

Состоит светодиод из кристалла полупроводникового на подложке, оптической системы и корпуса с контактными выводами. Раньше применялись корпусные светодиоды для индикации, в наше время светодиоды значительно отличаются от первичных. На рисунке схематически представлена конструкция современного светодиода.

Особенности светодиода

В сравнении с лампой накаливания и люминесцентной лампой, электрический ток преобразуется в светодиоде в световое излучение, что теоретически позволяет сделать это без потерь. На практике светодиод при должном теплоотводе имеет минимальный нагрев, что придает незаменимость для некоторых приложений.

В узкой части светодиодного спектра излучается чистым цветом, а это особенно ценно для дизайнеров, при этом важно, что ИК и УФ излучения отсутствуют. Срок службы достигает ста часов (а это почти в сто раз больше срока службы лампы накаливания и в десять раз больше срока люминесцентной лампы!), в связи с исключительной надежностью и механической прочности.

Необходимо отметить и высокую безопасность прибора, так как светодиод низковольтный.

Получение белого света с помощью светодиода

Различают 3 способа получения белого света с помощью светодиода:

  1. Смешивание цветов (технология RGB). Красные, зеленые и голубые светодиоды плотно размещены на одной матрице, излучение их смешивается с помощью линзы (или другой оптической системы). Итог – белый свет.
  2. Принцип люминесцентной лампы. Светодиод излучает в ультрафиолетовом диапазоне, а на его поверхность наносится 3 люминофора, которые излучают красным, голубым и зеленым светом.
  3. Заключается в нанесении на голубой светодиод зеленого, желто-зеленного и красного люминофора. Все или только два излучения смешивается и образуется близкий к белому или белый свет.

Рис. 1. Световая отдача различных типов светодиодов в сравнении с другими источниками света

Оптические и электрические характеристики светодиодов

Как уже говорил, светодиоды являются низковольтными приборами и применяются для индикации, потребляя 2-4В постоянного напряжения при 50мА токе.

Светодиод, используемый для освещения, имеет такое же потребление напряжения, но при токе от нескольких сотен мА до А в проекте.

Включение отдельных светодиодов в модуле может быть последовательным, а суммарное напряжение при этом более высокое (12 или 24 В).

Светодиод может выйти из строя, если при его подключении не соблюдать полярность. Для светодиода изготовителем определяется напряжение пробоя и составляет 5В.

Характеристики яркости: световой поток, осевая сила света, диаграмма направленности. Разные конструкции светодиодов позволяют излучать свет в телесном углу 4-1400.

Длина волны, цветовая температура и координаты цветности определяют цвет.

Сравнение эффективности светодиодов и других источников происходит с помощью светоотдачи – величина светового потока на 1 В электрической мощности. Цена 1 люмена – интересная маркетинговая характеристика.

Необходимость стабилизации тока через светодиод

Совсем незначительные перемены напряжения приводят к большим переменам тока, поскольку в рабочем режиме ток имеет экспоненциальную зависимость от напряжения.

А яркость светодиода нестабильна из-за прямой пропорциональности светового выхода к току, исходя из этого, появляется необходимость стабилизировать ток.

Кроме этого, если ток превышает допустимый предел, то происходит перегрев, что приводит к ускоренному старению светодиода.

Регулируется ли яркость светодиода?

Да, очень хорошо регулируется яркость светодиодов за счет метода широтно–импульсной модуляции (ШИМ). Для этого необходим управляющий блок, который в реальности может быть совмещен с конвертером, блоком питания и контроллером управления цветом RGB матрицы.

Суть метода: на светодиод подается импульсно-модулированный ток, сигнальная частота составляет сотни или тысячи Гц, а импульсная ширина может измениться. Светодиод не гаснет, а средняя яркость – управляема.

При процессе диммирования в светодиоде небольшая перемена цветовой температуры несравнима со смещением для ламп накаливания.

Важно отметить, что за счет снижения напряжения питания нельзя регулировать яркость светодиода.

Срок службы светодиода

Существует мнение, что светодиод исключительно долговечен, но это ошибочное мнение. Разберемся почему. Температура светодиода повышается в процессе службы после постоянного пропускания тока, а значит, старение наступает быстрее при увеличении пропуска тока.

В связи с этим относительно короче срок службы у мощных светодиодов по сравнению с маломощными, и в настоящее время составляет от 20 до 50 тысяч часов.

Старение характеризуется уменьшением яркости, а когда происходит снижение от 30% до 50%, то светодиод необходимо заменить.

Существует ли вред светодиодного света для глаз?

Из-за монохроматического спектра излучения, светодиод имеет кардинальное отличие от спектра лампы накаливания и солнечного спектра.

Но сказать плохо это или хорошо точно нельзя, так как исследований в этой области не проводилось, а данных о вреде воздействия светодиода на человеческий глаз нет.

Но все-таки надежда, что серьезное изучение влияния светодиода на человеческий глаз все-таки состоится.

Целесообразное применение светодиодов

Практически во всех светотехнических областях нашли свое применение светодиоды. Исключение является лишь освещение производственных территорий, хотя для аварийного освещения они все-таки используются.

Из-за чистого цвета, светодиоды пользуются огромной популярностью в дизайнерском освещении и в светодинамических системах.

В местах, где высокие требования электробезопасности, жесткая экономия электроэнергии, частое и дорогое обслуживание очень выгодно применение светодиодов.

Возможности светодиодов и их применение

Первые светодиоды, в 60х годах 20 века, были изобретены в эпоксидной оболочке, которые при подключении к электротоку выделяли монохроматический свет.

До 80х годов массовое применение их как источников света было ограничено высокими затратами на производство, низкой яркостью и отсутствием светодиодов белого и синего цвета.

Поэтому применение светодиоды находили лишь для наружных электронных табло, которыми оборудовали системы для регулирования дорожного движения, медицинское оборудование и оптоволоконные системы.

До начала 21 века появление синих, белых и сверх ярких диодов, постоянное снижение рыночной стоимости, привлекло внимание производителей к такому виду источника света.

Стали использовать светодиоды как индикаторы режимов работы электронных устройств, а также для подсветки ЖК экранов мобильных телефонов и другого оборудования.

Стремительное развитие и широкое применение светодиодов основных цветов привело к тому, что появилась возможность получения цветов любых оттенков и конструирования из них дисплеев с полноцветной графикой и анимацией.

В связи с малой потребностью в электроэнергии светодиоды стали оптимальным выбором для декоративного освещения, особенно где наблюдаются проблемы с энергетикой.

Главными качествами конкурентоспособности светодиодов по отношению к лампам накаливания и люминесцентным лампам:

  1. срок службы (в 6-8 раз превышает срок люминесцентных ламп);
  2. простота в эксплуатации;
  3. нет необходимости регулярного обслуживания;
  4. антивандальные свойства.

Существенным аспектом, который влияет на отсутствие стремительного распространения, является высокая стоимость светодиода.

Основные преимущества светодиодов

Экономичность в работе

Удобные светодиоды

Структура светодиодного модуля многокомпонентная и имеет неприхотливую схему подключения. Возьмем цепочку из полусотни светодиодов, в которой 1-2 неисправных диода не выводят из строя фрагмент и не влияют на световое излучение. Такой огромный ресурс решает проблему с заменой светодиодов. Помимо этого, светодиоды способно функционировать при самых различных температурах.

Надежность

Существует такая надежность, от которой зависят жизни людей.

Светодиоды применяются в устройствах отображения информации, для примера светофоры и дорожные знаки, и это ведет к увеличению расстояния, которое воспринимает человеческий глаз.

Именно по этой причине во многих европейских городах нет светофоров, а вместо них светодиодные схемы, которые также используют в надводных и воздушных системах.

Другими важными свойствами светодиодов являются антивандальные качества и прочность. Прибор изготовлен из пластика, что значительно уменьшает возможность повредить светодиод.

3-4 вольта – необходимое напряжение для работы светодиода, поэтому они очень распространены там, где требуются повышенные меры безопасности или отсутствует высокое напряжение.

Применение проводов с сильной изоляцией большого сечения не требуется при низком напряжении и это значительно облегчает подключение к сети. Существует порог срабатывания у газоразрядных трубок и для загорания источника света необходимо подать напряжение.

А светоизлучающие диоды при подключении к сети сразу излучают свет и яркость, возможно, регулировать путем изменения напряжения. Также важным достоинством является устойчивость к низким температурам. Этого свойства не хватает газоразрядным источникам, так как при минусовой температуре у них возникают проблемы с неоном.

Эстетически красивый вид

Если бы технологии LED не были изобретены, то обязательно их придумали дизайнеры. Светодиоды имеют неограниченные возможности для манипуляций с цветовым спектром. Практически незаметные плавные световые переходы для человеческого глаза уступают живописи по выразительности, но далеко впереди по сравнению с другими источниками света.

Уникальная светодинамика светодиодных модулей удовлетворит желания самого великого дизайнера. Важно заметить, что не только эстетическое, но и экологическое значение имеет своеобразная игра со спектром: спектры, комфортные для глаза человека, часто бывают, дискомфортны для растительности.

Для решения такой проблемы применяется зональное разделение растений и человеческой зоны.

Компактность и представительный вид

Нельзя не сказать о компактности прибора. Очень выразительный и необычный вид приобретают стенды, украшенные светодиодами. Со временем в некоторых развитых странах возрастает доля рынка таких изделий и символом такой своеобразной революции является светодиодное полотно в 500 м над главной улицей Las-Vegas.

Недостатки светодиодов

  1. Высокая стоимость.
    Является главным недостатком таких приборов. Затраты на светодиоды в 2 раза превышают стоимость неонового изделия такой же яркости. Но в современном мире растет конкуренция и объемы производства, что со временем медленно, но верно понижают стоимость.

    По прогнозам специалистов, цены скоро понизятся больше чем в 10 раз.

  2. Сложность конструирования объемных букв и изображений.
    Для этого потребуется объединить огромное количество отдельных светодиодов, которые обеспечат яркий свет и привлекут внимание человека.

    Поэтому необходимы универсальные модули, которые в дальнейшем будут интегрироваться в разные образы.

Применение светодиодов

  1. Световая реклама – вывески, борды;
  2. при замене неона;
  3. для дизайна помещений, лестниц и мебели;
  4. ландшафтная и архитектурная подсветка;
  5. дисплеи;
  6. информационные табло;
  7. дисплеи с бегущей строкой;
  8. освещение в автобусах, автомобилях, грузовиках;
  9. светофоры;
  10. подсветка ЖК-дисплеев мобильных телефонов, цифровых камер.

Прогноз специалистов – цены на светодиоды значительно упадут. При таком развитии событий неон, люминесцентные лампы и другие известные источники света уйдут на второй план. Перспектива светодиодов не только в низкой цене, но и в гибкости конструкции, особенно ценно это для дизайнеров и изготовителей рекламы. Очень легко объединить светодиоды в разные формы и фигуры и также легко присоединить к любой поверхности. Автономное использование осветительных приборов отходит на второстепенный план и теперь модно и удобно встраивать свет в объекты, что придает интерьеру фантастический вид и освобождает зрительное пространство.

Восхитительное зрелище формируют используемые светодиоды насыщенного цвета в зонировании пространства и создании цветовых акцентов. Очень интересно наблюдать за внедрением светодиодных технологий в нашу жизнь. При сочетании конструкций из светодиодов создаются необычные и удивительные формы для дизайна привычных помещений.

Остро стоит вопрос о наружном освещении. Обслуживание такого вида освещения очень сложное и поэтому здесь находят свое применение светодиоды.

Характеристики модулей светодиодов значительно превышают альтернативы, а стоимость в процессе эксплуатации оказывается вполне сравнимой. Насыщенный и яркий свет светодиодных модулей незаменим при подсветке воды и фонтанов.

С помощью светодиодного освещения можно создавать захватывающие дух картины. Необходимость светодиодов в современном мире очевидна.

Перевод статьи опубликованной в журналах: lespiedGrafika, Латвия и Reklamos ir Marketingo Idejos, Литва.

Источник: http://www.svetlon.ru/spravochnik/28-vse-o-svetodiodakh-led.html

Светодиоды: подробно простым языком

Светодиод — диод с простым P-N переходом, главной особенностью которого является то, что он испускает свет, когда через него проходит ток. Используется во многих цифровых дисплеях, а также в других типах индикаторных устройств.

Светодиод

Принцип работы светодиода

Основные рабочие характеристики любого светоизлучающего диода сходны с характеристиками обычного диода.

Когда подается напряжение, то электроны двигаются от материала N-типа через P-N переход и соединяются с отверстиями в материале P-типа.

В обычных диодах энергия, которая возникает в результате соединения электронов с отверстиями, выделяется в виде тепла. Однако, когда речь идет о светодиодах, то энергия в них выделяется в первую очередь в виде света.

Схема светодиода

Светодиоды могут изготавливаться таким образом, что будут испускать красный, зеленый, голубой, инфракрасный или ультрафиолетовый свет.

Это достигается путем изменения количества и типа материалов, которые используются в качестве присадки. Яркость света также может изменяться, что осуществляется с помощью управления количеством тока, проходящего через светодиод.

Однако, как и любой другой диод, СИД имеет предельные значения тока, которые он может выдержать.

Где используются светодиоды

Одной из основных областей применения светодиодов является использование их в качестве сигнальных лампочек. Например, этот прибор может использоваться для того, чтобы проконтролировать идет ли по цепи ток или она обесточена.

Цепь с сигнальной лампочкой представляет собой ряд приборов, последовательно соединенных между собой: светодиод, резистор, выключатель и источник постоянного тока.

Схема типичной цепи с сигнальной лампочкой

Когда выключатель цепи с сигнальной лампочкой замкнут, то напряжение прямого смещения от источника тока подается на светодиод (который разработан таким образом, чтобы срабатывать только, когда имеется прямое смещение).

Электроны, которые прорываются через P-N переход, соединяются с отверстиями, в результате чего энергия высвобождается в виде света.

Резистор, установленный в этой цепи, ограничивает протекание тока по ней, с тем, чтобы защитить светодиод от повреждений, которые может вызвать чрезмерный ток.

Светодиоды могут также использоваться в цифровых дисплеях, например, в наручных часах или калькуляторах.

С помощью высвечивания различных комбинаций из семи элементов на дисплее можно отображать любую цифру от нуля до девяти.

Цифровой дисплей на калькуляторе из семи элементов

Каждый светодиод соединен последовательно с резистором и выключателем, где каждый выключатель представляет собой внешнюю управляющую цепь. Выключатели имеют обозначения от А до G, чтобы соответствовать элементам дисплея.

Семь последовательных проводов соединены параллельно с источником постоянного тока. Для того, чтобы подать питание на какой-либо светодиод, замыкается соответствующий выключатель.

Каждый последовательно включенный в цепь резистор ограничивает ток, проходящий по проводу, и, тем самым, предотвращает повреждение светодиодов от чрезмерно большого тока.

Схема внешней цепи управления для цифрового дисплея калькулятора

Цифры появляются на цифровом дисплее в результате различных сочетаний семи выключателей. Например, если выключатели А и В замкнуты, то соответствующие элементы на дисплее загорятся и образуют цифру 1. Подобным же образом цифра 2 может быть образована с помощью выключателей A, C, D, F и G, которые будут замкнуты одновременно.

Замыкая соответствующие выключатели в определенных комбинациях, на дисплее можно получать цифры от 0 до 9. Если элементы расположить несколько иным образом, то на дисплее можно получить знак плюса, минуса, десятичные точки или же буквы алфавита.

Светодиоды могут использоваться даже для обеспечения искусственного освещения для роста растений. Основными преимуществами светодиодов в этом случае являются: низкое потребление электричества и тепловыделения, а также возможность настройки необходимого спектра излучения.

Источник: http://kipiavp.ru/pribori/svetodiod.html

Свойства и характеристики светодиодов

Светодиод – низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4В постоянного напряжения при токе до 50 мА.

Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше – от нескольких сотен мА до 1А в проекте.

В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода.

Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов.

Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.

Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

Реакция светодиода на повышение температуры такова: p-n-переход – это «кирпичик» полупроводниковой электронной техники, представляющий собой соединённые вместе два куска полупроводника с разными типами проводимости (один с избытком электронов – «n-тип», второй с избытком дырок – «p-тип»).

Если к p-n переходу приложить «прямое смещение», т.е. подсоединить источник электрического тока плюсом к р-части, то через него потечёт ток.

Современные технологии позволяют создавать интегральные схемы, содержащие огромное количество p-n переходов на одном кристалле; так, в процессоре Pentium-IV их количество измеряется десятками миллионов [1].

Нас интересует, что происходит после того, как через прямо смещённый p-n переход пошёл ток, а именно момент рекомбинации носителей электрического заряда – электронов и дырок, когда имеющие отрицательный заряд электроны «находят пристанище» в положительно заряженных ионах кристаллической решётки полупроводника.

Оказывается, что такая рекомбинация может быть излучательной, при этом в момент встречи электрона и дырки выделяется энергия в виде излучения кванта света – фотона. В случае безизлучательной рекомбинации энергия расходуется на нагрев вещества.

В природе существует как минимум 5 видов излучательной рекомбинации носителей зарядов, в том числе так называемая прямозонная рекомбинация. Впервые это явление в далёкие 20-е годы исследовал О.В. Лосев, наблюдавший свечение кристаллов карборунда (карбид кремния SiC).

Для большинства полупроводниковых диодов это явление – просто «побочный эффект», не имеющий практического смысла. Для светодиодов же излучательная рекомбинация – физическая основа их работы.

Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.

Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

Ток через светодиод нужно стабилизировать.

Как видно из рисунка, в рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока.

Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать.

Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

Светодиоды допускается «запитывать» в импульсном режиме, при этом импульсный ток, протекающий через прибор, может быть выше, чем значения постоянного тока (до 150 мА при длительности импульсов 100 мкс и частоте импульсов 1 кГц).

Для управления яркостью светодиодов (и цветом, в случае смешения цветов) используется широтно-импульсная модуляция (ШИМ) – метод, очень распространённый в современной электронике.

Это позволяет создавать контроллеры с возможностью плавного изменения яркости (диммеры) и цвета (колор-чейнджеры) [6].

Конвертор (в англоязычной терминологии driver) для светодиода — то же, что балласт для лампы. Он стабилизирует ток, протекающий через светодиод.

Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания – этого-то как раз делать нельзя, – а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет. Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.

Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение.

Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20 – 50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости.

Когда яркость снижается на 30% или наполовину, светодиод надо менять.

Старение светодиода связано не только со снижением его яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно изменение цвета светодиодов в процессе старения и сравнить с другими источниками [2].

Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, потому что, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют.

Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально. Проблемой заинтересовался академик Михаил Аркадьевич Островский — крупный специалист в области цветного зрения.

Технологии изготовления светодиодов и светодиодных модулей существующих на сегодняшний день: что касается выращивания кристаллов, то основная технология — металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы.

В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон.

Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок — в р-области.

За один процесс, который длится несколько часов, можно вырастить структуры на 6 — 12 подложках диаметром 50 — 75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек.

Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5 — 2 млн долларов.

Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это — технология, требующая высокой культуры.

Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к п- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24×0,24 до 1×1 мм2.

Следующим шагом является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его.

Если это белый светодиод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол.

Около половины стоимости светодиода определяется этими этапами высокой технологии.

Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности.

В связи с этим на смену традиционной технологии и несколько более совершенной SMD-технологии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board).

Светодиод, изготовленный по технологии СОВ, схематически изображен на рисунке.

Светодиоды, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора — в этом случае она делается из металла.

Так создаются светодиодные модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и светодиодные лампы с таким же цоколем, как у низковольтных галогенных, призванные им на замену.

А для мощных светильников и прожекторов изготавливаются светодиодные сборки на круглом массивном радиаторе.

Раньше в светодиодных сборках было очень много светодиодов. Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль [7].

Светодиоды находят применение практически во всех областях светотехники, за исключением освещения производственных площадей, да и там могут использоваться в аварийном освещении.

Светодиоды оказываются незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах.

Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию, и где высоки требования по электробезопасности.

Источник: http://radio.bobrodobro.ru/32219

Ссылка на основную публикацию
Adblock
detector
",css:{backgroundColor:"#000",opacity:.6}},container:{block:void 0,tpl:"
"},wrap:void 0,body:void 0,errors:{tpl:"
",autoclose_delay:2e3,ajax_unsuccessful_load:"Error"},openEffect:{type:"fade",speed:400},closeEffect:{type:"fade",speed:400},beforeOpen:n.noop,afterOpen:n.noop,beforeClose:n.noop,afterClose:n.noop,afterLoading:n.noop,afterLoadingOnShow:n.noop,errorLoading:n.noop},o=0,p=n([]),h={isEventOut:function(a,b){var c=!0;return n(a).each(function(){n(b.target).get(0)==n(this).get(0)&&(c=!1),0==n(b.target).closest("HTML",n(this).get(0)).length&&(c=!1)}),c}},q={getParentEl:function(a){var b=n(a);return b.data("arcticmodal")?b:(b=n(a).closest(".arcticmodal-container").data("arcticmodalParentEl"),!!b&&b)},transition:function(a,b,c,d){switch(d=null==d?n.noop:d,c.type){case"fade":"show"==b?a.fadeIn(c.speed,d):a.fadeOut(c.speed,d);break;case"none":"show"==b?a.show():a.hide(),d();}},prepare_body:function(a,b){n(".arcticmodal-close",a.body).unbind("click.arcticmodal").bind("click.arcticmodal",function(){return b.arcticmodal("close"),!1})},init_el:function(d,a){var b=d.data("arcticmodal");if(!b){if(b=a,o++,b.modalID=o,b.overlay.block=n(b.overlay.tpl),b.overlay.block.css(b.overlay.css),b.container.block=n(b.container.tpl),b.body=n(".arcticmodal-container_i2",b.container.block),a.clone?b.body.html(d.clone(!0)):(d.before("
"),b.body.html(d)),q.prepare_body(b,d),b.closeOnOverlayClick&&b.overlay.block.add(b.container.block).click(function(a){h.isEventOut(n(">*",b.body),a)&&d.arcticmodal("close")}),b.container.block.data("arcticmodalParentEl",d),d.data("arcticmodal",b),p=n.merge(p,d),n.proxy(e.show,d)(),"html"==b.type)return d;if(null!=b.ajax.beforeSend){var c=b.ajax.beforeSend;delete b.ajax.beforeSend}if(null!=b.ajax.success){var f=b.ajax.success;delete b.ajax.success}if(null!=b.ajax.error){var g=b.ajax.error;delete b.ajax.error}var j=n.extend(!0,{url:b.url,beforeSend:function(){null==c?b.body.html("
"):c(b,d)},success:function(c){d.trigger("afterLoading"),b.afterLoading(b,d,c),null==f?b.body.html(c):f(b,d,c),q.prepare_body(b,d),d.trigger("afterLoadingOnShow"),b.afterLoadingOnShow(b,d,c)},error:function(){d.trigger("errorLoading"),b.errorLoading(b,d),null==g?(b.body.html(b.errors.tpl),n(".arcticmodal-error",b.body).html(b.errors.ajax_unsuccessful_load),n(".arcticmodal-close",b.body).click(function(){return d.arcticmodal("close"),!1}),b.errors.autoclose_delay&&setTimeout(function(){d.arcticmodal("close")},b.errors.autoclose_delay)):g(b,d)}},b.ajax);b.ajax_request=n.ajax(j),d.data("arcticmodal",b)}},init:function(b){if(b=n.extend(!0,{},a,b),!n.isFunction(this))return this.each(function(){q.init_el(n(this),n.extend(!0,{},b))});if(null==b)return void n.error("jquery.arcticmodal: Uncorrect parameters");if(""==b.type)return void n.error("jquery.arcticmodal: Don't set parameter \"type\"");switch(b.type){case"html":if(""==b.content)return void n.error("jquery.arcticmodal: Don't set parameter \"content\"");var e=b.content;return b.content="",q.init_el(n(e),b);case"ajax":return""==b.url?void n.error("jquery.arcticmodal: Don't set parameter \"url\""):q.init_el(n("
"),b);}}},e={show:function(){var a=q.getParentEl(this);if(!1===a)return void n.error("jquery.arcticmodal: Uncorrect call");var b=a.data("arcticmodal");if(b.overlay.block.hide(),b.container.block.hide(),n("BODY").append(b.overlay.block),n("BODY").append(b.container.block),b.beforeOpen(b,a),a.trigger("beforeOpen"),"hidden"!=b.wrap.css("overflow")){b.wrap.data("arcticmodalOverflow",b.wrap.css("overflow"));var c=b.wrap.outerWidth(!0);b.wrap.css("overflow","hidden");var d=b.wrap.outerWidth(!0);d!=c&&b.wrap.css("marginRight",d-c+"px")}return p.not(a).each(function(){var a=n(this).data("arcticmodal");a.overlay.block.hide()}),q.transition(b.overlay.block,"show",1*")),b.overlay.block.remove(),b.container.block.remove(),a.data("arcticmodal",null),n(".arcticmodal-container").length||(b.wrap.data("arcticmodalOverflow")&&b.wrap.css("overflow",b.wrap.data("arcticmodalOverflow")),b.wrap.css("marginRight",0))}),"ajax"==b.type&&b.ajax_request.abort(),p=p.not(a))})},setDefault:function(b){n.extend(!0,a,b)}};n(function(){a.wrap=n(document.all&&!document.querySelector?"html":"body")}),n(document).bind("keyup.arcticmodal",function(d){var a=p.last();if(a.length){var b=a.data("arcticmodal");b.closeOnEsc&&27===d.keyCode&&a.arcticmodal("close")}}),n.arcticmodal=n.fn.arcticmodal=function(a){return e[a]?e[a].apply(this,Array.prototype.slice.call(arguments,1)):"object"!=typeof a&&a?void n.error("jquery.arcticmodal: Method "+a+" does not exist"):q.init.apply(this,arguments)}}(jQuery)}var debugMode="undefined"!=typeof debugFlatPM&&debugFlatPM,duplicateMode="undefined"!=typeof duplicateFlatPM&&duplicateFlatPM,countMode="undefined"!=typeof countFlatPM&&countFlatPM;document["wri"+"te"]=function(a){let b=document.createElement("div");jQuery(document.currentScript).after(b),flatPM_setHTML(b,a),jQuery(b).contents().unwrap()};function flatPM_sticky(c,d,e=0){function f(){if(null==a){let b=getComputedStyle(g,""),c="";for(let a=0;a=b.top-h?b.top-h{const d=c.split("=");return d[0]===a?decodeURIComponent(d[1]):b},""),c=""==b?void 0:b;return c}function flatPM_testCookie(){let a="test_56445";try{return localStorage.setItem(a,a),localStorage.removeItem(a),!0}catch(a){return!1}}function flatPM_grep(a,b,c){return jQuery.grep(a,(a,d)=>c?d==b:0==(d+1)%b)}function flatPM_random(a,b){return Math.floor(Math.random()*(b-a+1))+a}