7-элементная логопериодическая антенна

Антенны. Обзор

Антенна — устройство для излучения и приёма сигналов посредством радиоволн (разновидности электромагнитного излучения). Антенна является конвертером электрического тока радиочастотного диапазона в электромагнитное излучение и наоборот.

Форма, размеры и конструкция антенн разнообразны и зависят от длины излучаемых или принимаемых волн и назначения антенны. Различают антенны приемные и антенны передающие. Требования, предъявляемые к антеннам передающим, обычно на порядок выше, чем к антеннам приемным.

В качестве приемных применяются антенны в виде отрезка провода, комбинаций из таких отрезков, отражающих металлических зеркал в виде металлической сетки с ячейкой определенных размеров, металлической фольги или пластины, полостей с металлическими стенками, в которых вырезаны щели, спиралей из металлических проводов и др.

Основные типы антенн

  • Штыревые антенны:
    • отрезок провода
    • простой штырь
    • наклонный штырь
    • антенна зенитного излучения штыревая
  • Антенны зенитного излучения
  • Диполи
    • горизонтальный диполь
    • наклонный диполь
  • Апертурные антенны
  • Логарифмические периодические (логопериодические) антенны
  • Антенны волнового канала
    • рупорные антенны
    • щелевые антенны
    • зеркальные антенны
    • линзовые антенны
  • Антенны бегущей волны
    • диэлектрические стержневые антенны
    • спиральные антенны
    • импедансные антенны
    • антенны вытекающей волны
    • антенны «волновой канал»
  • Фазированные антенные решетки (ФАР)
    • пассивные (с одним передающим/приемным устройством на антенну)
    • активные (с одним передающим/приемным устройством на каждый модуль антенны)
  • Спутниковые антенны
    • Офсетные антенны
    • Прямофокусные антенны

В быту чаще всего используются антенны штыревые, диполи, логопериодические, волновой канал и в последнее время, в связи с развитием спутникого телевидения, офсетные антенны.

Характеристики антенн

Каждая антенна, как пассивное линейное устройство, может работать в режимах передачи и приема радиоволн. В обоих режимах антенна характеризуется направленными, поляризационными, фазовыми свойствами и входным импедансом. К основным характеристикам и параметрам, описывающим эти свойства, относятся:

  • полоса пропускания
  • поляризация
  • входной импеданс и коэффициент стоячей волны (КСВ)
  • диаграмма направленности (ДН)
  • коэффициент направленного действия (КНД)
  • эквивалентная изотропно-излучаемая мощность (ЭИИМ)
  • коэффициент усиления антенны (КУ)
  • фазовая диаграмма (ФД)
  • коэффициент полезного действия (КПД)
  • шумовая температура антенны (ТА)

Нас, как бытовых пользователей антенны, больше всего интересует диаграмма направленности и коэффициент усиления антенны.

Диаграмма направленности — зависимость амплитуды вектора напряженности поля антенны в равноудаленных точках дальней зоны от угловых координат точки наблюдения.

Иными словами, в каком (каких) направлении антенна будет лучше принимать интересующий нас сигнал и на сколько лучше.

Диаграмма Направленности иногда описывается не только в плоскости, но и в трехмерном отображении. Для упрощения ее рассмотрения принимают две проекции :

  • горизонтальную (азимутальная)
  • вертикальную (по углу места)

Коэффициент усиления антенны показывает, насколько уровень наводимого в ней сигнала превышает уровень сигнала на эталонной антенне. В качестве эталонной антенны принимают полуволновый вибратор или изотропную антеннну (полностью ненаправленная антенна, имеющая пространственную диаграмму направленности в виде сферы).

В реальности такой антенны не существует, но она является удобным эталоном, с помощью которого можно сравнивать параметры существующих антенн.

Рассмотрим два основных, широко применяемых в быту для приема радиоволн эфирного телевидения, вида антенн

Антенна “Волновой канал”

Антенны типа “Волновой канал” получили широкое распространение в различных профессиональных и бытовых устройствах радиосвязи и радиолокации.

Большинство телевизионных коллективных и индивидуальных антенн промышленного производства также являются антеннами типа “Волновой канал”.

Это связано с тем, что такие антенны достаточно компактны и обеспечивают получение большого коэффициента усиления при сравнительно небольших габаритах. За рубежом антенну “Волновой канал”называют антенной Уда – Яги, по имени впервые описавших ее японских изобретателей.

Антенна “Волновой канал” представляет собой набор элементов: активного – вибратора, и пассивных – рефлектора и нескольких директоров, установленных на одной общей стреле.

Принцип действия антенны в следующем. Вибратор определенной длины, находящийся в электромагнитном поле сигнала, резонирует на частоте сигнала, и в нем наводится ЭДС. В каждом из пассивных элементов также наводится ЭДС, и они переизлучают вторичные электромагнитные поля. Эти вторичные поля, в свою очередь, наводят дополнительные ЭДС в вибраторе.

Размеры пассивных элементов и их расстояния от вибратора должны быть выбраны такими, чтобы дополнительные ЭДС, наведенные в вибраторе вторичными полями, были в фазе с основной ЭДС, наведенной в нем первичным полем. Тогда все ЭДС будут складываться арифметически, обеспечив увеличение эффективности антенны по сравнению с одиночным вибратором.

Для этого рефлектор делается немного длиннее вибратора, а директоры – короче.

Симметричное расположение элементов антенны относительно направления на передатчик создает условия для сложения наведенных ЭДС в вибраторе только для сигнала, приходящего с главного направления.

Сигналы, приходящие под углом к главному направлению, создают в вибраторе ЭДС, сдвинутые по фазе относительно основного, и поэтому складываются алгебраически так, как складываются векторы. Их векторная сумма получается меньше арифметической.

Сигнал же, приходящий с заднего направления, создает в вибраторе наведенные ЭДС, противофазные основной, и они вычитаются. Таким образом, обеспечивается направленное свойство антенны, формируется узкая диаграмма ее направленности, что соответствует увеличению коэффициента усиления.

Элементы антенн “Волновой канал”, которые будут рассмотрены ниже, расположены в пространстве горизонтально, и такие антенны используют для приема сигналов с горизонтальной поляризацией, когда вектор напряженности электрического поля Е также горизонтален. Для приема сигналов с вертикальной поляризацией антенна должна быть повернута на 90° так, чтобы ее элементы стали вертикальными.

В связи с тем, что элементы антенны расположены в разных точках пространства, фазы наведенных в них первичным полем электродвижущей силы (ЭДС) будут зависеть от координат каждого элемента и их размеров, так как от длины элемента зависит его резонансная частота, а фаза наведенной ЭДС зависит от настройки элемента.

Нужно также учесть, что телевизионный сигнал занимает сравнительно широкую полосу частотного спектра, и свойства антенны должны быть хотя бы примерно одинаковыми для всей полосы частот принятого сигнала. Наконец, для хорошего согласования антенны с фидером ее входное сопротивление должно иметь чисто активный характер.

Отсюда становится ясно, насколько сложно проектирование антенн типа “Волновой канал”, особенно при большом количестве элементов антенны. В настоящее время разработано множество вариантов таких антенн с разным числом директоров различных размеров и с различным расстоянием между ними. Процесс проектирования многоэлементной антенны типа “Волновой канал” вообще не однозначен.

Перед проектировщиком, могут быть поставлены разные задачи: либо добиться максимального коэффициента усиления антенны, либо – максимального коэффициента защитного действия, либо – наименьшей неравномерности коэффициента усиления в полосе принимаемых частот, либо – минимального уровня боковых лепестков диаграммы направленности или другие факторы.

Кроме того, в процессе проектирования некоторыми размерами антенны приходится задаваться, а остальные получать в результате расчета. Этим объясняется то, что в разных источниках литературы приводятся различные размеры элементов антенн при одинаковом их числе.

К сожалению, в литературе при описаниях антенн отсутствуют сведения о том, какие исходные данные были положены в основу проектирования данной конкретной антенны. Следует также учесть, что большинство вариантов многоэлементных антенн “Волновой канал” подобрано экспериментальным путем, что сильно осложняет возможности повторяемости таких конструкций.

Многоэлементная антенна “Волновой канал”, по принципу работы аналогичная многоконтурному полосовому фильтру, нуждается в тщательной настройке элементов.

Известно, что как бы точно ни были подобраны индуктивности катушек и емкости конденсаторов многоконтурного фильтра, он подлежит обязательной настройке по приборам в связи с тем, что невозможно заранее учесть разбросы различных паразитных параметров, таких как емкости монтажа и индуктивности рассеяния, активные сопротивления катушек на высокой частоте и сопротивления потерь конденсаторов, индуктивности и сопротивления соединительных проводников. Аналогично и при изготовлении многоэлементной антенны “Волновой канал”: даже точное соблюдение всех ее размеров не избавляет от необходимости выполнения тщательной настройки по приборам, так как невозможно учесть разбросы в ее конструкции, такие как непараллельность элементов в горизонтальной плоскости, скручивание несущей стрелы, неизбежное под нагрузкой из-за того, что всегда имеется неоднородная по длине трубы эллиптичность ее сечения, а скручивание стрелы приводит к тому, что элементы антенны уже не находятся в одной плоскости. Определенное влияние на работу антенны, которое невозможно учесть, оказывают находящиеся поблизости местные предметы, металлические и неметаллические. Наконец, невозможно абсолютно точно выдержать все размеры, всегда будут отклонения в пределах допусков, а при изменениях окружающей температуры эти отклонения меняются.

Практика показывает, что антенна “Волновой канал” не нуждается в настройке и обеспечивает получение паспортных характеристик, если она содержит не более трех элементов: вибратор, рефлектор и только один директор. Коэффициент усиления такой антенны составляет 6 дБ, что вполне достаточно для ее использования в зоне ближнего приема.

Рассмотрим трехэлементную антенну, которая показана на рис. 1. Элементы антенны выполнены из металлической трубки диаметром 12- 20 мм.

Рис. 1. Трехэлементная антенна “Волновой канал”

Мачта и стрела также могут быть металлическими. При этом элементы антенны должны быть надежно электрически соединены со стрелой с помощью пайки или сварки. Расположение элементов антенны соответствует горизонтальной поляризации сигнала.

Если необходимо принимать сигнал с вертикальной поляризацией, антенна поворачивается так, чтобы ее элементы заняли вертикальное положение. При этом верхняя часть мачты (по длине рефлектора) должна быть выполнена из изоляционного материала.

Коэффициент усиления трехэлементной антенны “Волновой канал” составляет 5,1—5,6 дБ, что соответствует увеличению напряжения сигнала на выходе антенны в 1,8—1,9 раз по сравнению с одиночным полуволновым вибратором.

Угол раствора главного лепестка диаграммы направленности по половинной мощности составляет 70°.

Трехэлементная антенна, установленная на мачте высотой 15—20 м, при равнинной местности может обеспечить нормальный прием телевизионных передач на расстоянии до 60 км от передатчика мощностью 5 кВт при высоте передающей антенны 200 м.

Логопериодическая антенна

Логопериодическая антенна – широкополосная направленная антенна, работающая в десятикратном и более широком диапазоне волн. По коэффициенту усиления антенна эквивалентна трех-четырехэлементной антенне «волновой канал». Может быть использована для приема сигналов многопрограммных телецентров при любых сочетаниях каналов метровых и дециметровых волн (каналы 1—41).

Один из простых вариантов антенны показан на рис.2. Антенна состоит из ряда параллельных вибраторов, подключенных к двухпроводной линии с последовательной переполюсовкой точек питания вибраторов.

Длины вибраторов и расстояния между ними убывают в геометрической прогрессии в направлении к точкам подключения фидера.

Позади самого длинного вибратора устанавливают короткозамыкающую перемычку, улучшающую согласование антенны с фидером и обеспечивающую симметрирование.

рис. 2 Логопериодическая антенна Логос 9

Кабель пропускают внутри одной из трубок двухпроводной линии и припаивают со стороны самого короткого вибратора.

Характеристики антенны зависят от знаменателя геометрической прогрессии, характеризующего скорость убывания длин вибраторов и расстояний между ними.

Коэффициент усиления антенны 6—7 дБ, уровень побочных лепестков в пределах 12 — 14 дБ, КБВ — более 0,5. Кабель снижения применяется с волновым сопротивлением 75 Ом.

Модели антенн современных производителей

Модели современных производителей антенн, выпускающих продукцию под марками Дельта, Локус, Логос, чаще всего представляют собой соединение двух антенн: волновой канал (с двумя или четырьмя вибраторами) для приема радиоволн МВ-диапазона и логопериодическую для приема радиоволн ДМВ-диапазона. Обычно каждая модель имеет несколько модификаций: антенна без усилителя (пассивная), антенна с усилителем ДМВ, антенна с широкополосным (МВ и ДМВ) усилителем.

Оптовая продажа антенн

Мы осуществляем оптовую продажу эфирных комнатных и наружных (уличных) и спутниковых антенн.Продавая антенны оптом, мы осуществляем доставку до любой транспортной компании и отправку во все регионы России.

При подготовке статьи были использованны материалы из открытых источников.

Источник: http://korona-cord.ru/blog/article/antenny/

Новая страница 1

Источник: http://deljuriy.narod.ru/LogoPeriod.htm

4.7. ЛОГОПЕРИОДИЧЕСКИЕ АНТЕННЫ

4.7. ЛОГОПЕРИОДИЧЕСКИЕ АНТЕННЫ

Направленные свойства большинства антенн изменяются при изменении длины волны принимаемого сигнала. У узкополосных антенн резко падает коэффициент усиления, а у широкополосных его изменение носит монотонный характер.

Один из типов антенн с неизменной формой диаграммы направленности в широком диапазоне частот – антенны с логарифмической периодичностью структуры ЛПА. Эти антенны отличаются широким диапазоном: отношение максимальной длины волны принимаемого сигнала к минимальной превосходит десять.

Во всем диапазоне обеспечивается хорошее согласование антенны с фидером, а коэффициент усиления практически остается постоянным.

Внешний вид ЛПА показан на рис. 4.11,а. Она образована собирательной линией в виде двух труб, расположенных одна над другой, к которым крепятся плечи вибраторов поочередно через один. Схематически такая антенна показана на рис. 4.11,6.

Сплошными линиями изображены плечи вибраторов, соединенные с верхней трубой собирательной линии, а штриховой линией – соединенные с нижней трубой.

Рабочая полоса частот антенны со стороны наибольших длин волн зависит от размеров наиболее длинного вибратора В1, а со стороны наименьших длин волн – от размера, наиболее короткого вибратора. Вибраторы вписаны в равнобедренный треугольник с углом при вершине а и основанием, равным наибольшему вибратору.

Для логарифмической структуры полотна антенны должно быть выполнено определенное соотношение между длинами соседних вибраторов, а также между расстояниями от них до вершины структуры. Это соотношение носит название периода структуры т:

Таким образом, размеры вибраторов и расстояния до них от вершины треугольника уменьшаются в геометрической прогрессии. Характеристики антенны определяются периодом структуры и углом при вершине описанного треугольника.

Чем меньше угол а и чем больше период структуры т (который всегда остается меньше единицы), тем больше коэффициент усиления антенны и меньше уровень заднего и боковых лепестков диаграммы направленности. Однако при этом увеличивается число вибраторов структуры, растут габариты и масса антенны.

Поэтому при выборе угла и периода структуры приходится принимать компромиссное решение. Наиболее часто угол а выбирают в пределах 30… 60°, а период структуры т -в пределах 0, 7… 0, 9.

Подключение фидера к ЛПА, показанной на рис. 4. 11, а, производится без специального симметрирующего и согласующего устройства следующим образом. Кабель с волновым сопротивлением 75 Ом вводится внутрь нижней трубы с конца А и выходит у конца Б. Здесь оплетка кабеля припаивается к концу нижней трубы, а центральная жила – концу верхней трубы.

В зависимости от длины волны принимаемого сигнала в структуре антенны возбуждаются несколько вибраторов, размеры которых наиболее близки к половине длины волны сигнала. Поэтому ЛПА по принципу действия напоминает несколько антенн “Волновой канал”, соединенных вместе, каждая из которых содержит вибратор, рефлектор и директор.

На данной длине волны сигнала возбуждается только одна тройка вибраторов, а остальные настолько расстроены, что не оказывают влияния на работу антенны.

Это приводит к тому, что коэффициент усиления ЛПА оказывается меньше, чем коэффициент усиления антенны “Волновой канал” с таким же числом элементов, но зато полоса пропускания получается значительно шире.

Как видно из приведенных конструкций антенн бегущей волны и логопериодических, для достижения широкополосности используется принцип взаимной расстройки элементов антенны подобно тому, как в широкополосных усилителях расширение полосы пропускания достигается взаимной расстройкой контуров. Как для усилителей, так и для антенн можно считать общим принципом постоянство для данной конструкции произведения коэффициента усиления на полосу пропускания. Чем шире полоса пропускания, тем меньше коэффициент усиления при данных габаритах антенны.

В радиолюбительской литературе проводилось много различных вариантов ЛПА. Здесь можно предложить конструкцию ЛПА, рассчитанной на работу в диапазоне 12-метровых каналов, размеры которой сведены в табл. 4. 8.

Таблица 4. 8 Размеры 12-канальной ЛПА, мм

В таблице приводится длина В каждого вибратора в соответствии с рис. 4. 11, 6, а также расстояние от данного вибратора до следующего – А. Собирательная линия образована двумя трубами диаметром 30 мм при расстоянии между осевыми линиями труб 45 мм.

Антенна содержит 10 вибраторов (20 половинок), которые выполнены из трубок диаметром 8… 15 мм. Расчет антенны проведен, исходя из значении угла при вершине описанного треугольника а = 45° и периода структуры т = 0, 84.

Расчетный коэффициент усиления антенны составляет 6 дБ, что соответствует увеличению напряжения сигнала на выходе этой антенны в 2 раза по сравнению с полуволновым вибратором. Коэффициент усиления практически не изменяется по диапазону. Длина труб собирательной линий составляет 2900 мм.

Трубы немного выступают за точки установки самых коротких полувибраторов.

Для обеспечения параллельности труб собирательной линии и их стяжки используют три пары брусков из оргстекла высотой 120 мм, шириной 50 мм и толщиной 25 мм, в которых делаются полуцилиндрические проточки глубиной 14 мм на расстоянии, соответствующем расстоянию между трубами. Каждая пара брусков стягивается винтами с гайками. Среднюю пару этих брусков устанавливают в центре тяжести антенны и крепят к мачте.

Антенна приведенной выше конструкции является плоской. Существуют также объемные конструкции логопериодических антенн, которые характеризуются тем, что трубы собирательной линии не параллельны, а разведены под некоторым углом.

Вместо жестких вибраторов полотно антенны может быть выполнено из провода или антенного канатика. Описание конструкций двух таких антенн приводилось в журнале “Радио”, 1960 г.

, № 8, а описание плоской упрощенной проволочной ЛПА – в журнале “Радио”, 1963 г., № 5.

Но самая простая логопериодическая антенна может быть быстро выполнена из подручных материалов. Такая антенна показана на рис. 4. 12 и рассчитана на прием телевизионных передач дециметрового диапазона с 24-го по 51-й канал. Несущая конструкция треугольной формы собирается из деревянных брусков квадратного сечения 15х15 мм.

Бруски скрепляются между собой треугольными фанерными косынками, прибитыми к брускам с одной стороны треугольника гвоздиками. С другой стороны в бруски 1 и 2 вбиваются гвоздики на расстояниях от точки А, указанных на рисунке. Полотно антенны образуют два куска медного провода 6 диаметром 1-1, 5 мм.

Один кусок прямой формы прокладывается по бруску 4 до точки А, а второй, огибая гвоздики зигзагом, припаивается к прямому проводу в точке А и на пересечениях с ним. К вершине треугольника гвоздиками прибивается диск 5 из белой жести диаметром 40 мм с маленьким отверстием в центре.

Антенна крепится к мачте из дерева или металла в центре тяжести, лежит в горизонтальной плоскости и вершиной треуголь-


Рис. 4. 12. Логопериодическая антенна ДМВ

ника направлена на передатчик. Полотно антенны располагается на верхней поверхности треугольника. Телевизионный кабель поднимается по мачте, подходит к середине бруска 3, подвязывается к бруску 4 по его нижней поверхности капроновой леской. В вершине треугольника оплетка кабеля припаивается к точке А, а центральная жила – к центру диска.

Антенну можно выполнить комнатной или наружной. В комнатном варианте вместо мачты применяется вертикальная стойка на тяжелой подставке. Антенну в комнате необходимо тщательно ориентировать и подобрать место установки, так как часто, сдвигая антенну, удается значительно улучшить изображение.

На равнинной местности такая наружная антенна обеспечивает уверенный прием телепередач на расстоянии до 30 км от телецентра, хотя имеются сообщения телезрителей, принимающих этой антенной дециметровые программы Останкинского телецентра на расстоянии 80 км при хорошем качестве изображения.

Источник: http://lib.qrz.ru/node/1067

Логопериодическая антенна

Настоящее изобретение относится к радиотехнической промышленности, точнее к приемно-передающей антенной технике, а более конкретно к логопериодической антенне, предназначенной для приема сигналов в системах радиосвязи и телевидения.

Известна логопериодическая антенна (Онищенко И.П. “Приемные антенны”, 1989 г., Москва, Изд. ДОСААФ СССР, стр. 72-76), содержащая две периодические структуры, являющиеся антенными полуполотнами, которые размещены в двух плоскостях под острым углом относительно друг друга.

Каждое из антенных полуполотен сформировано вибраторами различной длины от 1 min до 1 max, изменяющейся по логопериодическому закону, при этом вибратор, имеющий самую малую длину 1 min, обращен к источнику сигнала.

Вибраторы имеют треугольную зубчатую форму, изготовлены из тонкостенных труб или из медной проволоки и привариваются или припаиваются к двум несущим трубчатым элементам, диаметр каждого из которых обычно равен 30-40 мм.

Верхняя и нижняя структуры производятся одинаковыми и крепятся на деревянной мачте повернутыми на 180° одна относительно другой.

Размеры вибраторов обычно выбираются в пределах 1 min = λ min/ 2 (около 300 мм), 1 max = λ mах/2 (около 1400 мм), где λ min, λ max – значения длины волны принимаемого сигнала на границах метрового ТВ диапазона. Эта логопериодическая антенна присоединяется с телевизору с помощью коаксиального кабеля, раположенного внутри нижнего несущего трубчатого элемента.

Известна логопериодическая антенна (Карл Ротхаммель “Антенны”, 2001, Минск, Изд.“ Наш город”, том 2, стр.

158 – 161), принятая за прототип предлагаемого изобретения, содержащая ряд вибраторов различной длины от 1 min < 1300 мм до 1 max < 6000 мм, каждый из которых выполнен, например, в виде проволочного каркаса, имеющего форму “меандра”.

Вибратор может иметь треугольную зубчатую форму, а угол между сторонами зубца вибратора, одинаковыми по длине, равен β.

Соседние вибраторы в антенных полуполотнах этой логопериодической антенны соединены по концам между собой и закрепленены на двух несущих трубчатых элементах зубцами в разные стороны с возможностью формирования антенных полуполотен в двух плоскостях.

При выполнении У-образной компоновки две структуры, то есть антенные полуполотна, сформированные несущими элементами с вибраторами, устанавливают в двух плоскостях, расположенных под углом ψ раскрыва, обычно равным 45°, и закрепляют на деревянной мачте. К клеммам питания в вершине угла раскрыва подключен симметричный фидер, выполняющий функцию кабеля передачи сигнала. Антенные полуполотна изолируются между собой с помощью деревянной распорки, установленной между антенными полуполотнами в их средней части, и дополнительной распорки, установленной между самыми длинными вибраторами антенных полуполотен.

Однако описанная конструкция этой логопериодической антенны имеет симметричное входное сопротивление 100-120 Ом, поэтому для хорошего согласования с широко используемыми несимметричными кабелями требуется специальное симметрирующее устройство.

Каждое антенное полуполотно является самостоятельным конструктивным элементом, и для сборки антенны необходимо наличие дополнительных крепежных элементов к мачте, распорке, месту присоединения фидера.

Кроме того, несущие трубчатые элементы, на которых закрепляются полуполотна, изготовлены из изолятора, что противоречит обязательному требованию соединения всех элементов антенны с системой молниезащиты (ГОСТ Р 51269-99 “Антенны приемные телевизионного и звукового радиовещания в диапазонах ОВЧ и УВЧ”.)

Угол ψ раскрыва этой логопериодической антенны равен 45°, что делает антенну достаточно громоздкой, так, например, длина распорки, установленной между максимально длинными вибраторами антенных полуполотен, около 1800 мм, что создает трудности при установке и обслуживании антенны.

Сокращение угла ψ раскрыва с целью сокращения габаритов этой известной логопериодической антенны приводит, однако, к уменьшению коэффициента усиления и снижению его равномерности в границах рабочего диапазона, но, несмотря на все описанные выше недостатки, следует заметить, что зубчатая конфигурация вибраторов минимизирует реактивную и нормализует активную составляющую волнового сопротивления во всей полосе рабочих частот, а это в свою очередь улучшает согласование элементов логопериодической антенны с кабелем (фидером) и повышает эффективность системы антенна-кабель. По этой причине авторы предлагаемого изобретения выбрали в качестве прототипа указанное выше техническое решение.

Следует заметить, что наиболее перспективным с точки зрения развития вещания является дециметровый волновой (ДМВ) диапазон, так как в нем еще существует свободное поле для передачи сигнала, но здесь происходит сильное затухание электромагнитной волны, а следовательно, сигнала. Вот поэтому именно в ДМВ диапазоне и проводятся основные теоретические исследования и осуществляются поиски необходимых технически решений.

В процессе создания предлагаемого изобретения его авторами были проведены теоретические исследования, сопровождаемые рассчетами на компьютере с помощью программы MMANA, на основании которых базировался сравнительный анализ двух вариантов виртуальных изменений габаритов и конструкций, необходимых для работы в ДМВ телевизионном (ТВ) диапазоне и относящихся, соответственно, к конструкции известной логопериодической антенны (прототипа) и к конструкции новой логопериодической антенны (предлагаемое изобретение. В первом варианте габариты конструкции прототипа теоретически были уменьшены до масштабов логопериодической антенны предлагаемого изобретения, работающей в ДМВ диапазоне, а во втором варианте, напротив, были теоретически увеличены габариты логопериодической антенны заявителей до масштабов логопериодической антенны-прототипа, которая работает в метровом волновом (MB) диапазоне, что проводилось с целью проверки возможности получения необходимых электрических параметров логопериодической антенны во всем рабочем диапазоне частот, включающем MB и ДМВ ТВ диапазоны.

В результате было установлено, что сокращение угла ψ раскрыва, длины вибраторов и несущих трубчатых элементов у логопериодической антенны-прототипа с целью уменьшения ее габаритов приводит к ухудшению электрических параметров логопериодической антенны, а именно к уменьшению коэффициента усиления и снижению его равномерности в границах ДМВ диапазона, а также к уменьшению коэффициента защитного действия (КЗД) и к недопустимому (более 2) увеличению коэффициента стоячей волны (КСВ) в рабочем диапазоне частот.

В основу настоящего изобретения положена задача создания логопериодической антенны такой конструкции, которая позволяла бы повысить коэффициент усиления логопериодической антенны и коэффициент защитного действия при работе на стандартную нагрузку 50, 75 Ом, а также расширить полосу рабочих частот, сохранить прежнюю величину коэффициента стоячей волны (КСВ) при сокращении габаритов самой логопериодической антенны, уменьшении количества конструктивных элементов и обеспечении возможности подключения нагрузки несимметрично.

Поставленная задача решается тем, что в логопериодической антенне, предназначенной для приема сигналов, содержащей два антенных полуполотна, лежащих в двух плоскостях и сформированных рядами из n (n – натуральное целое число) вибраторов зубчатой формы, имеющих длину, увеличивающуюся по логопериодическому закону от первого вибратора длиной от 1 min до n-го вибратора длиной 1 max, закрепленных своими концами на несущих трубчатых элементах, в одном из которых размещен кабель передачи сигнала на приемник сигнала, причем угол между сторонами зубца каждого из вибраторов от второго до (n-1)-гo равен β, согласно изобретению, антенные полуполотна лежат в параллельных плоскостях, угол β’ между сторонами зубца первого вибратора выбирают из соотношения β’=β/2, угол β’’ между сторонами зубца n-го вибратора выбирают из соотношения β’’

Источник: http://www.FindPatent.ru/patent/225/2253926.html

логопериодическая антенна

Настоящее изобретение относится к радиотехнической промышленности, точнее к приемно-передающей антенной технике, а более конкретно к логопериодической антенне, предназначенной для приема сигналов в системах радиосвязи и телевидения.

Известна логопериодическая антенна (Онищенко И.П. “Приемные антенны”, 1989 г., Москва, Изд. ДОСААФ СССР, стр. 72-76), содержащая две периодические структуры, являющиеся антенными полуполотнами, которые размещены в двух плоскостях под острым углом относительно друг друга.

Каждое из антенных полуполотен сформировано вибраторами различной длины от 1 min до 1 max, изменяющейся по логопериодическому закону, при этом вибратор, имеющий самую малую длину 1 min, обращен к источнику сигнала.

Вибраторы имеют треугольную зубчатую форму, изготовлены из тонкостенных труб или из медной проволоки и привариваются или припаиваются к двум несущим трубчатым элементам, диаметр каждого из которых обычно равен 30-40 мм. Верхняя и нижняя структуры производятся одинаковыми и крепятся на деревянной мачте повернутыми на 180° одна относительно другой.

Размеры вибраторов обычно выбираются в пределах 1 min =min/ 2 (около 300 мм), 1 max =mах/2 (около 1400 мм), гдеmin,max – значения длины волны принимаемого сигнала на границах метрового ТВ диапазона. Эта логопериодическая антенна присоединяется с телевизору с помощью коаксиального кабеля, раположенного внутри нижнего несущего трубчатого элемента.

Известна логопериодическая антенна (Карл Ротхаммель “Антенны”, 2001, Минск, Изд.“ Наш город”, том 2, стр.

158 – 161), принятая за прототип предлагаемого изобретения, содержащая ряд вибраторов различной длины от 1 min < 1300 мм до 1 max < 6000 мм, каждый из которых выполнен, например, в виде проволочного каркаса, имеющего форму “меандра”.

Вибратор может иметь треугольную зубчатую форму, а угол между сторонами зубца вибратора, одинаковыми по длине, равен.

Соседние вибраторы в антенных полуполотнах этой логопериодической антенны соединены по концам между собой и закрепленены на двух несущих трубчатых элементах зубцами в разные стороны с возможностью формирования антенных полуполотен в двух плоскостях.

При выполнении У-образной компоновки две структуры, то есть антенные полуполотна, сформированные несущими элементами с вибраторами, устанавливают в двух плоскостях, расположенных под угломраскрыва, обычно равным 45°, и закрепляют на деревянной мачте. К клеммам питания в вершине угла раскрыва подключен симметричный фидер, выполняющий функцию кабеля передачи сигнала. Антенные полуполотна изолируются между собой с помощью деревянной распорки, установленной между антенными полуполотнами в их средней части, и дополнительной распорки, установленной между самыми длинными вибраторами антенных полуполотен.

Однако описанная конструкция этой логопериодической антенны имеет симметричное входное сопротивление 100-120 Ом, поэтому для хорошего согласования с широко используемыми несимметричными кабелями требуется специальное симметрирующее устройство.

Каждое антенное полуполотно является самостоятельным конструктивным элементом, и для сборки антенны необходимо наличие дополнительных крепежных элементов к мачте, распорке, месту присоединения фидера.

Кроме того, несущие трубчатые элементы, на которых закрепляются полуполотна, изготовлены из изолятора, что противоречит обязательному требованию соединения всех элементов антенны с системой молниезащиты (ГОСТ Р 51269-99 “Антенны приемные телевизионного и звукового радиовещания в диапазонах ОВЧ и УВЧ”.)

Уголраскрыва этой логопериодической антенны равен 45°, что делает антенну достаточно громоздкой, так, например, длина распорки, установленной между максимально длинными вибраторами антенных полуполотен, около 1800 мм, что создает трудности при установке и обслуживании антенны.

Сокращение углараскрыва с целью сокращения габаритов этой известной логопериодической антенны приводит, однако, к уменьшению коэффициента усиления и снижению его равномерности в границах рабочего диапазона, но, несмотря на все описанные выше недостатки, следует заметить, что зубчатая конфигурация вибраторов минимизирует реактивную и нормализует активную составляющую волнового сопротивления во всей полосе рабочих частот, а это в свою очередь улучшает согласование элементов логопериодической антенны с кабелем (фидером) и повышает эффективность системы антенна-кабель. По этой причине авторы предлагаемого изобретения выбрали в качестве прототипа указанное выше техническое решение.

Следует заметить, что наиболее перспективным с точки зрения развития вещания является дециметровый волновой (ДМВ) диапазон, так как в нем еще существует свободное поле для передачи сигнала, но здесь происходит сильное затухание электромагнитной волны, а следовательно, сигнала. Вот поэтому именно в ДМВ диапазоне и проводятся основные теоретические исследования и осуществляются поиски необходимых технически решений.

В процессе создания предлагаемого изобретения его авторами были проведены теоретические исследования, сопровождаемые рассчетами на компьютере с помощью программы MMANA, на основании которых базировался сравнительный анализ двух вариантов виртуальных изменений габаритов и конструкций, необходимых для работы в ДМВ телевизионном (ТВ) диапазоне и относящихся, соответственно, к конструкции известной логопериодической антенны (прототипа) и к конструкции новой логопериодической антенны (предлагаемое изобретение. В первом варианте габариты конструкции прототипа теоретически были уменьшены до масштабов логопериодической антенны предлагаемого изобретения, работающей в ДМВ диапазоне, а во втором варианте, напротив, были теоретически увеличены габариты логопериодической антенны заявителей до масштабов логопериодической антенны-прототипа, которая работает в метровом волновом (MB) диапазоне, что проводилось с целью проверки возможности получения необходимых электрических параметров логопериодической антенны во всем рабочем диапазоне частот, включающем MB и ДМВ ТВ диапазоны.

В результате было установлено, что сокращение углараскрыва, длины вибраторов и несущих трубчатых элементов у логопериодической антенны-прототипа с целью уменьшения ее габаритов приводит к ухудшению электрических параметров логопериодической антенны, а именно к уменьшению коэффициента усиления и снижению его равномерности в границах ДМВ диапазона, а также к уменьшению коэффициента защитного действия (КЗД) и к недопустимому (более 2) увеличению коэффициента стоячей волны (КСВ) в рабочем диапазоне частот.

В основу настоящего изобретения положена задача создания логопериодической антенны такой конструкции, которая позволяла бы повысить коэффициент усиления логопериодической антенны и коэффициент защитного действия при работе на стандартную нагрузку 50, 75 Ом, а также расширить полосу рабочих частот, сохранить прежнюю величину коэффициента стоячей волны (КСВ) при сокращении габаритов самой логопериодической антенны, уменьшении количества конструктивных элементов и обеспечении возможности подключения нагрузки несимметрично.

Поставленная задача решается тем, что в логопериодической антенне, предназначенной для приема сигналов, содержащей два антенных полуполотна, лежащих в двух плоскостях и сформированных рядами из n (n – натуральное целое число) вибраторов зубчатой формы, имеющих длину, увеличивающуюся по логопериодическому закону от первого вибратора длиной от 1 min до n-го вибратора длиной 1 max, закрепленных своими концами на несущих трубчатых элементах, в одном из которых размещен кабель передачи сигнала на приемник сигнала, причем угол между сторонами зубца каждого из вибраторов от второго до (n-1)-гo равен, согласно изобретению, антенные полуполотна лежат в параллельных плоскостях, угол’ между сторонами зубца первого вибратора выбирают из соотношения’=/2, угол’’ между сторонами зубца n-го вибратора выбирают из соотношения’’

Источник: http://www.freepatent.ru/patents/2253926

Ссылка на основную публикацию
Adblock
detector
",css:{backgroundColor:"#000",opacity:.6}},container:{block:void 0,tpl:"
"},wrap:void 0,body:void 0,errors:{tpl:"
",autoclose_delay:2e3,ajax_unsuccessful_load:"Error"},openEffect:{type:"fade",speed:400},closeEffect:{type:"fade",speed:400},beforeOpen:n.noop,afterOpen:n.noop,beforeClose:n.noop,afterClose:n.noop,afterLoading:n.noop,afterLoadingOnShow:n.noop,errorLoading:n.noop},o=0,p=n([]),h={isEventOut:function(a,b){var c=!0;return n(a).each(function(){n(b.target).get(0)==n(this).get(0)&&(c=!1),0==n(b.target).closest("HTML",n(this).get(0)).length&&(c=!1)}),c}},q={getParentEl:function(a){var b=n(a);return b.data("arcticmodal")?b:(b=n(a).closest(".arcticmodal-container").data("arcticmodalParentEl"),!!b&&b)},transition:function(a,b,c,d){switch(d=null==d?n.noop:d,c.type){case"fade":"show"==b?a.fadeIn(c.speed,d):a.fadeOut(c.speed,d);break;case"none":"show"==b?a.show():a.hide(),d();}},prepare_body:function(a,b){n(".arcticmodal-close",a.body).unbind("click.arcticmodal").bind("click.arcticmodal",function(){return b.arcticmodal("close"),!1})},init_el:function(d,a){var b=d.data("arcticmodal");if(!b){if(b=a,o++,b.modalID=o,b.overlay.block=n(b.overlay.tpl),b.overlay.block.css(b.overlay.css),b.container.block=n(b.container.tpl),b.body=n(".arcticmodal-container_i2",b.container.block),a.clone?b.body.html(d.clone(!0)):(d.before("
"),b.body.html(d)),q.prepare_body(b,d),b.closeOnOverlayClick&&b.overlay.block.add(b.container.block).click(function(a){h.isEventOut(n(">*",b.body),a)&&d.arcticmodal("close")}),b.container.block.data("arcticmodalParentEl",d),d.data("arcticmodal",b),p=n.merge(p,d),n.proxy(e.show,d)(),"html"==b.type)return d;if(null!=b.ajax.beforeSend){var c=b.ajax.beforeSend;delete b.ajax.beforeSend}if(null!=b.ajax.success){var f=b.ajax.success;delete b.ajax.success}if(null!=b.ajax.error){var g=b.ajax.error;delete b.ajax.error}var j=n.extend(!0,{url:b.url,beforeSend:function(){null==c?b.body.html("
"):c(b,d)},success:function(c){d.trigger("afterLoading"),b.afterLoading(b,d,c),null==f?b.body.html(c):f(b,d,c),q.prepare_body(b,d),d.trigger("afterLoadingOnShow"),b.afterLoadingOnShow(b,d,c)},error:function(){d.trigger("errorLoading"),b.errorLoading(b,d),null==g?(b.body.html(b.errors.tpl),n(".arcticmodal-error",b.body).html(b.errors.ajax_unsuccessful_load),n(".arcticmodal-close",b.body).click(function(){return d.arcticmodal("close"),!1}),b.errors.autoclose_delay&&setTimeout(function(){d.arcticmodal("close")},b.errors.autoclose_delay)):g(b,d)}},b.ajax);b.ajax_request=n.ajax(j),d.data("arcticmodal",b)}},init:function(b){if(b=n.extend(!0,{},a,b),!n.isFunction(this))return this.each(function(){q.init_el(n(this),n.extend(!0,{},b))});if(null==b)return void n.error("jquery.arcticmodal: Uncorrect parameters");if(""==b.type)return void n.error("jquery.arcticmodal: Don't set parameter \"type\"");switch(b.type){case"html":if(""==b.content)return void n.error("jquery.arcticmodal: Don't set parameter \"content\"");var e=b.content;return b.content="",q.init_el(n(e),b);case"ajax":return""==b.url?void n.error("jquery.arcticmodal: Don't set parameter \"url\""):q.init_el(n("
"),b);}}},e={show:function(){var a=q.getParentEl(this);if(!1===a)return void n.error("jquery.arcticmodal: Uncorrect call");var b=a.data("arcticmodal");if(b.overlay.block.hide(),b.container.block.hide(),n("BODY").append(b.overlay.block),n("BODY").append(b.container.block),b.beforeOpen(b,a),a.trigger("beforeOpen"),"hidden"!=b.wrap.css("overflow")){b.wrap.data("arcticmodalOverflow",b.wrap.css("overflow"));var c=b.wrap.outerWidth(!0);b.wrap.css("overflow","hidden");var d=b.wrap.outerWidth(!0);d!=c&&b.wrap.css("marginRight",d-c+"px")}return p.not(a).each(function(){var a=n(this).data("arcticmodal");a.overlay.block.hide()}),q.transition(b.overlay.block,"show",1*")),b.overlay.block.remove(),b.container.block.remove(),a.data("arcticmodal",null),n(".arcticmodal-container").length||(b.wrap.data("arcticmodalOverflow")&&b.wrap.css("overflow",b.wrap.data("arcticmodalOverflow")),b.wrap.css("marginRight",0))}),"ajax"==b.type&&b.ajax_request.abort(),p=p.not(a))})},setDefault:function(b){n.extend(!0,a,b)}};n(function(){a.wrap=n(document.all&&!document.querySelector?"html":"body")}),n(document).bind("keyup.arcticmodal",function(d){var a=p.last();if(a.length){var b=a.data("arcticmodal");b.closeOnEsc&&27===d.keyCode&&a.arcticmodal("close")}}),n.arcticmodal=n.fn.arcticmodal=function(a){return e[a]?e[a].apply(this,Array.prototype.slice.call(arguments,1)):"object"!=typeof a&&a?void n.error("jquery.arcticmodal: Method "+a+" does not exist"):q.init.apply(this,arguments)}}(jQuery)}var debugMode="undefined"!=typeof debugFlatPM&&debugFlatPM,duplicateMode="undefined"!=typeof duplicateFlatPM&&duplicateFlatPM,countMode="undefined"!=typeof countFlatPM&&countFlatPM;document["wri"+"te"]=function(a){let b=document.createElement("div");jQuery(document.currentScript).after(b),flatPM_setHTML(b,a),jQuery(b).contents().unwrap()};function flatPM_sticky(c,d,e=0){function f(){if(null==a){let b=getComputedStyle(g,""),c="";for(let a=0;a=b.top-h?b.top-h{const d=c.split("=");return d[0]===a?decodeURIComponent(d[1]):b},""),c=""==b?void 0:b;return c}function flatPM_testCookie(){let a="test_56445";try{return localStorage.setItem(a,a),localStorage.removeItem(a),!0}catch(a){return!1}}function flatPM_grep(a,b,c){return jQuery.grep(a,(a,d)=>c?d==b:0==(d+1)%b)}function flatPM_random(a,b){return Math.floor(Math.random()*(b-a+1))+a}
");let k=document.querySelector(".flat_pm_modal[data-id-modal=\""+a.ID+"\"]");if(-1===d.indexOf("go"+"oglesyndication")?flatPM_setHTML(k,d):jQuery(k).html(b+d),"px"==a.how.popup.px_s)e.bind(h,()=>{e.scrollTop()>a.how.popup.after&&(e.unbind(h),f.unbind(i),j())}),void 0!==a.how.popup.close_window&&"true"==a.how.popup.close_window&&f.bind(i,()=>{e.unbind(h),f.unbind(i),j()});else{let b=setTimeout(()=>{f.unbind(i),j()},1e3*a.how.popup.after);void 0!==a.how.popup.close_window&&"true"==a.how.popup.close_window&&f.bind(i,()=>{clearTimeout(b),f.unbind(i),j()})}f.on("click",".flat_pm_modal .flat_pm_crs",()=>{jQuery.arcticmodal("close")})}if(void 0!==a.how.outgoing){let b,c="0"==a.how.outgoing.indent?"":" style=\"bottom:"+a.how.outgoing.indent+"px\"",e="true"==a.how.outgoing.cross?"":"",f=jQuery(window),g="scroll.out"+a.ID,h=void 0===flatPM_getCookie("flat_out_"+a.ID+"_mb")||"false"!=flatPM_getCookie("flat_out_"+a.ID+"_mb"),i=document.createElement("div"),j=jQuery("body"),k=()=>{void 0!==a.how.outgoing.cookie&&"false"==a.how.outgoing.cookie&&h&&(jQuery(".flat_pm_out[data-id-out=\""+a.ID+"\"]").addClass("show"),j.on("click",".flat_pm_out[data-id-out=\""+a.ID+"\"] .flat_pm_crs",function(){flatPM_setCookie("flat_out_"+a.ID+"_mb",!1)})),(void 0===a.how.outgoing.cookie||"false"!=a.how.outgoing.cookie)&&jQuery(".flat_pm_out[data-id-out=\""+a.ID+"\"]").addClass("show")};switch(a.how.outgoing.whence){case"1":b="top";break;case"2":b="bottom";break;case"3":b="left";break;case"4":b="right";}jQuery("body > *").eq(0).before("
"+e+"
");let m=document.querySelector(".flat_pm_out[data-id-out=\""+a.ID+"\"]");-1===d.indexOf("go"+"oglesyndication")?flatPM_setHTML(m,d):jQuery(m).html(e+d),"px"==a.how.outgoing.px_s?f.bind(g,()=>{f.scrollTop()>a.how.outgoing.after&&(f.unbind(g),k())}):setTimeout(()=>{k()},1e3*a.how.outgoing.after),j.on("click",".flat_pm_out .flat_pm_crs",function(){jQuery(this).parent().removeClass("show").addClass("closed")})}countMode&&(flat_count["block_"+a.ID]={},flat_count["block_"+a.ID].count=1,flat_count["block_"+a.ID].click=0,flat_count["block_"+a.ID].id=a.ID)}catch(a){console.warn(a)}}function flatPM_start(){let a=flat_pm_arr.length;if(0==a)return flat_pm_arr=[],void jQuery(".flat_pm_start, .flat_pm_end").remove();flat_body=flat_body||jQuery("body"),!flat_counter&&countMode&&(flat_counter=!0,flat_body.on("click","[data-flat-id]",function(){let a=jQuery(this),b=a.attr("data-flat-id");flat_count["block_"+b].click++}),flat_body.on("mouseenter","[data-flat-id] iframe",function(){let a=jQuery(this),b=a.closest("[data-flat-id]").attr("data-flat-id");flat_iframe=b}).on("mouseleave","[data-flat-id] iframe",function(){flat_iframe=-1}),jQuery(window).on("beforeunload",()=>{jQuery.isEmptyObject(flat_count)||jQuery.ajax({async:!1,type:"POST",url:ajaxUrlFlatPM,dataType:"json",data:{action:"flat_pm_ajax",data_me:{method:"flat_pm_block_counter",arr:flat_count}}})}).on("blur",()=>{-1!=flat_iframe&&flat_count["block_"+flat_iframe].click++})),flat_userVars.init();for(let b=0;bflat_userVars.textlen||void 0!==a.chapter_sub&&a.chapter_subflat_userVars.titlelen||void 0!==a.title_sub&&a.title_subc&&cc&&c>d&&(b=flatPM_addDays(b,-1)),b>e||cd||c-1!=flat_userVars.referer.indexOf(a))||void 0!==a.referer.referer_disabled&&-1!=a.referer.referer_disabled.findIndex(a=>-1!=flat_userVars.referer.indexOf(a)))&&(c=!0),c||void 0===a.browser||(void 0===a.browser.browser_enabled||-1!=a.browser.browser_enabled.indexOf(flat_userVars.browser))&&(void 0===a.browser.browser_disabled||-1==a.browser.browser_disabled.indexOf(flat_userVars.browser)))){if(c&&void 0!==a.browser&&void 0!==a.browser.browser_enabled&&-1!=a.browser.browser_enabled.indexOf(flat_userVars.browser)&&(c=!1),!c&&(void 0!==a.geo||void 0!==a.role)&&(""==flat_userVars.ccode||""==flat_userVars.country||""==flat_userVars.city||""==flat_userVars.role)){flat_pm_then.push(a),flatPM_setWrap(a),flat_body.hasClass("flat_pm_block_geo_role")||(flat_body.addClass("flat_pm_block_geo_role"),flatPM_ajax("flat_pm_block_geo_role")),c=!0}c||(flatPM_setWrap(a),flatPM_next(a))}}}let b=jQuery(".flatPM_sticky");b.each(function(){let a=jQuery(this),b=a.data("height")||350,c=a.data("top");a.wrap("
");let d=a.parent()[0];flatPM_sticky(this,d,c)}),debugMode||countMode||jQuery("[data-flat-id]:not([data-id-out]):not([data-id-modal])").contents().unwrap(),flat_pm_arr=[],jQuery(".flat_pm_start, .flat_pm_end").remove()}

Направленные свойства и основные характеристики большинства антенн изменяются при изменении частоты и длины волны принимаемого сигнала.

Если антенной принимается сигнал не того канала, на который рассчитаны размеры антенны, у узкополосных антенн резко падает коэффициент усиления, ухудшаются КБВ и КЗД, искажается форма диаграммы направленности, порой направление ее главного лепестка отклоняется от геометрической оси антенны.

Широкополосные антенны отличаются от узкополосных тем, что изменения их характеристик оказываются значительно меньше и носят монотонный характер в широком диапазоне частот.

Одним из типов антенн, обладающих практически неизменной формой диаграммы направленности и постоянными характеристиками в широком диапазоне частот, являются антенны с логарифмической периодичностью структуры, которые сокращенно называются логопериодическими — ЛПА.

Эти антенны отличаются очень широким рабочим диапазоном частот: отношение максимальной длины волны принимаемого сигнала к минимальной оказывается больше десяти.

Во всем диапазоне обеспечивается хорошее согласование антенны с фидером, а коэффициент усиления практически остается неизменным.

Внешний вид антенны с логарифмической периодичностью параметров показан на рис. 4.21, а.

Полотно антенны образовано собирательной линией в виде двух труб, расположенных одна над другой, к которым поочередно крепятся плечи вибраторов так, что левое плечо одного вибратора крепится к верхней трубе собирательной линии, а правое плечо того же вибратора — к нижней.

V следующего вибратора, наоборот, левое плечо крепится к нижней трубе, а правое — к верхней. Схематически такая антенна показана на рис. 4.21, б, где сплошными линиями изображены плечи вибраторов, соединенные с верхней трубой собирательной линии, а штрихо­вой линией — соединенные с нижней трубой.

Рабочая полоса частот антенны со стороны наибольших длин волн зависит от размеров наиболее длинного вибратора, а со стороны наименьших длин волн — от размеров наиболее короткого вибратора. Вибраторы вписаны в равнобедренный треугольник с углом при вершине а и основанием, равным наибольшему вибратору.

Антенна ориентируется в пространстве так, чтобы вершина треугольника была направлена на передатчик. Для логарифмической структуры полотна антенны должно соблюдаться одинаковое соотношение между длинами соседних вибраторов и между расстояниями от них до вершины структуры. Это соотношение носит название периода структуры t:

В2/В1=ВЗ/В2=…=А2/А1=АЗ/А2=…=t

а)

б)

Рис. 4.21. Логопериодическая антенна

Таким образом, размеры вибраторов и их расстояния от вершины треугольника уменьшаются по закону убывающей геометрической прогрессии со знаменателем, равным t. Характеристики антенны определяются периодом структуры и углом при вершине описанного треугольника.

Чем меньше угол (и чем больше период структуры t (который всегда остается меньше единицы), тем больше коэффициент усиления антенны и меньше уровень заднего и боковых лепестков диаграммы направленности. Однако при этом увеличивается количество вибраторов структуры и длина антенны, растут габариты и масса антенны.

Поэтому при выборе угла и периода структуры приходится принимать компромиссное решение. Наиболее часто угол а выбирается в пределах от 30 до 60°, а период структуры t— от 0,7 до 0,9.

Подключение фидера к ЛПА, показанной на рис. 4.21, а, производится без специального симметрирующего и согласующего устройства следующим образом. Кабель с волновым сопротивлением 75 Ом вводится внутрь нижней трубы со стороны заднего конца А и выходит у переднего конца Б.

Здесь оплетка кабеля припаивается к концу нижней трубы, а центральная жила кабеля — к концу верхней трубы. В зависимости от длины волны принимаемого сигнала в структуре антенны возбуждаются несколько вибраторов, размеры которых наиболее близки к половине длины волны сигнала.

Поэтому ЛПА по принципу действия напоминает несколько соединенных вместе антенн “Волновой канал”, каждая из которых содержит вибратор, рефлектор и директор. На каждой длине волны сигнала возбуждается только одна тройка вибраторов, а остальные настолько расстроены, что не оказывают влияния на работу антенны.

Это приводит к тому, что коэффициент усиления ЛПА оказывается меньше, чем коэффициент усиления антенны “Волновой канал” с таким же количеством элементов, но зато полоса пропускания получается значительно шире.

В связи с тем что в последние годы получило очень широкое развитие многопрограммное телевизионное вещание, возрастает необходимость использования широкодиапазонных антенн, способных перекрывать диапазоны метровых и дециметровых волн.

Как видно из приведенных конструкций антенн бегущей волны и логопериодических антенн, для достижения широкодиапазонности используется принцип взаимной расстройки элементов антенны — подобно тому как в широкополосных усилителях высокой частоты расширение полосы пропускания достигается взаимной расстрой­кой контуров. Как для широкополосных усилителей, так и для широкодиапазонных антенн можно считать общим принципом следующий: для данной конструкции антенны является постоянным произведение коэффициента усиления антенны на полосу ее пропускания. Чем шире полоса пропускания, тем меньше коэффициент усиления при данных габаритах антенны.

В радиолюбительской литературе приводилось много различных вариантов ЛПА. Здесь можно предложить конструкцию логопе-риодической антенны, содержащей 10 вибраторов и рассчитанной на работу в диапазоне 12-метровых каналов, размеры которой сведены в таблицу 4.14.

Таблица 4.14. Размеры 12-канальной логопериодической антенны

В таблице приводится длина каждого вибратора В согласно рис. 4.21, б. Так как при изготовлении антенны вершина треугольника, от которой отсчитываются расстояния до вибраторов, недоступна, в таблице приводятся расстояния от данного вибратора до следующего — а.

Собирательная линия образована двумя трубами диаметром 30 мм при расстоянии между осевыми линиями труб 45 мм. Антенна содержит 10 вибраторов (20 плеч), которые выпол­нены из трубок диаметром 8…15 мм.

Расчет антенны выполнен исходя из значений угла при вершине описанного треугольника ос=45° и периода структуры t=0,84.

Расчетный коэффициент усиления антенны составляет 6 дБ, что соответствует увеличению напряжения сигнала на выходе этой антенны в 2 раза по сравнению с полуволновым вибратором. Коэффициент усиления практически не изменя­ется по диапазону.

Длина труб собирательной линии составляет 2900 мм. Трубы выступают за точки установки самых коротких полувибраторов примерно на 30 мм.

Для обеспечения параллельности труб собирательной линии и их стяжки используются три пары брусков из оргстекла высотой 120 мм, шириной 50 мм и толщиной 25 мм, в которых делаются полуцилиндрические проточки глубиной 14 мм на расстоя­нии, соответствующем расстоянию между трубами.

Каждая пара брусков стягивается винтами с гайками. Средняя пара этих брусков устанавливается в центре тяжести антенны и крепится к мачте.

Еще одна, самая простая логопериодическая антенна, которую можно изготовить из подручных материалов буквально за полчаса, показана на рис. 4.22. Несущей конструкцией антенны является треугольник, собранный из деревянных брусков с поперечным сечением 15×15 мм.

Бруски скрепляются между собой при помощи треугольных фанерных косынок, прибитых к брускам с одной стороны треугольника гвоздиками. С другой стороны в бруски 1 и 2 нужно вбить гвоздики на расстояниях от точки А, показанных на рисунке.

Полотно антенны образовано двумя кусками медного провода 6 диаметром 1,0… 1,5 мм. Один кусок провода прокладывается прямо вдоль бруска 4 до точки А, а второй огибает гвоздики, приобретая зигзагообразную форму, и припаивается к прямому проводу в точке А и на всех пересечениях с ним.

К вершине треугольника двумя гвоздиками прибивается диск 5 диаметром 50 мм, вырезанный из белой жести от консервной банки. В центре этого диска делается маленкое отвер­стие. Антенна крепится к мачте из дерева или металла в центре тя­жести.

Полотно антенны располагается на верхней поверхности треугольника, должно лежать в горизонтальной плоскости и быть на­правлено вершиной треугольника на телевизионный передатчик.

Рис. 4.22. Проволочная логопериодическая антенна

Фидер из 75-омного коаксиального кабеля поднимается по мачте и должен подходить к середине бруска 3. Далее он прокладывается вдоль бруска 4 по его нижней поверхности и подвязывается к нему в нескольких местах капроновой леской. В вершине треугольника оплетка кабеля припаивается к точке А, а центральная жила вставляется в центральное отверстие диска и припаивается к нему.

Антенна может использоваться в качестве комнатной или наружной. В квартире вместо мачты применяется вертикальная стойка из металлической или пластмассовой трубки либо деревянная рейка на тяжелой подставке. Для наружной антенны деревянный треуголь­ник нужно проолифить и прокрасить масляной краской, а узел в вершине треугольника после припайки кабеля герметизировать.

Антенна рассчитана на прием телевизионных передач в дециметровом диапазоне с 24-го по 51-й канал. На равнинной местности такая наружная антенна обеспечивает уверенный прием на расстоянии до 30 км от телецентра, хотя имеются сообщения телезрителей, принимающих передачи Останкинского телецентра на расстоянии 80 км при хорошем качестве изображения.

Антенна приведенной выше конструкции является плоской. Существуют также объемные конструкции логопериодических антенн, которые характеризуются тем, что трубы собирательной линии не параллельны, а разведены под некоторым углом в вертикальной плоскости.

Если рассмотренная выше логопериодическая антенна окажется недостаточно эффективной, ее можно усложнить, добавив к ней еще одну такую же антенну, как показано на рис. 4.23. Оба треугольные каркаса — верхний 1 и нижний 2 — крепятся к мачте под углом 60° при сходящихся вершинах треугольников.

Проволочное полотно верхней антенны должно располагаться сверху, а нижней антенны — снизу. Телевизионный кабель 4 поднимается по мачте к концу прямого провода полотна нижней антенны 3, прокладывается по среднему бруску каркаса рядом с прямым проводом и в нескольких точках подвязывается к бруску капроновой леской.

В вершине треугольника оплетка кабеля припаивается к точке А нижней антенны, а центральная жила — к точке А верхней антенны. В этой конструкции жестяные диски в вершинах треугольных каркасов не устанавливаются.

Рис. 4.23. Сдвоенная логопериодическая антенна

На равнинной местности такая антенна может обеспечить уверенный прием телевизионных передач на расстоянии до 50 км от телецентра.

Поскольку в условиях слабого сигнала желательно располагать антенну повыше над поверхностью Земли, это приводит к увеличению длины фидера и к соответствующему ослаблению сигнала.

Поэтому желательно использовать телевизионный кабель, обладающий небольшим погонным затуханием, например марки РК75-9-13. Если марка телевизионного 75-омного кабеля не известна, следует выбрать наиболее толстый кабель из имеющихся.

Выпускаются и промышленные логопериодические антенны. Белорусским заводом “Изотрон”, входящим в НПО “Интеграл”, выпускается 37-злементная наружная логопериодическая антенна АТЛПД-37/21-60.

Антенна предназначена для приема телевизионных сигналов в дециметровом диапазоне в пределах 21…60-го каналов.

Средний по диапазону коэффициент усиления антенны составляет не менее 10 дБ, габариты — 820x352x90 мм, масса не более 1,5 кг.

Логопериодическая антенна – широкополосная направленная антенна, работающая в десятикратном и более широком диапазоне волн. По коэффициенту усилении антенна эквивалентна трех-четырехэлементной антенне «волновой канал».

Может быть использована для приема сигналов многопрограммных телецентров при любых сочетаниях каналов метровых и дециметровых волн (каналы 1—41).

Один из простых вариантов антенны показан на рис.1.

Антенна состоит из ряда параллельных вибраторов, подключенных к двухпроводной линии с последовательной переполюсовкой точек питания вибраторов. Длины вибраторов и расстояния между ними убывают в геометрической прогрессии в направлении к точкам подключения фидера.

Позади самого длинного вибратора устанавливают короткозамыкающую перемычку, улучшающую согласование антенны с фидером и обеспечивающую симметрирование.

Кабель пропускают внутри одной из трубок двухпроводной линии и припаивают со стороны самого короткого вибратора, как показано на рис.1.

Характеристики антенны зависят от знаменателя геометрической прогрессии т, характеризующего скорость убывания длин вибраторов и расстояний между ними, и угла ф при вершине треугольника, в который вписаны вибраторы.

Чем ближе т к единице и чем меньше ф, тем больше коэффициент усиления антенны, однако при этом возрастают ее габариты и масса.

На практике принимают обычно т =0,8—0,9 и ф=30—40°, что позволяет получить достаточно высокий коэффициент усиления при относительно небольших габаритах и массе.

При выбранных т и ф размеры антенны можно определить графически исходя из Lmax и Lmin — максимальной и минимальной длин волн рабочей полосы частот.

Сначала следует определить длину l1 первого (наибольшего) вибратора, которая должна составлять 0,55 Lmax, после чего начертить равнобедренный треугольник с основанием, равным длине первого вибратора в уменьшенном масштабе (например, 1 : 20 или 1 : 50), и выбранным углом ф при вершине.

В дальнейшем все построения и расчеты следует выполнять с учетом этого же масштаба. Второй вибратор располагают на расстоянии d1 = (0,15—0,18) Lmax. Длина его l2 равна длине отрезка прямой, проведенной параллельно основанию на расстоянии ri,.

Третий вибратор располагают на расстоянии d2=d1т от второго, а длина его l3 равна длине отрезка прямой, проведенной на этом расстоянии от второго вибратора. Аналогично определяется длина четвертого вибратора, расположенного на расстоянии d3=d2т от третьего, и т. д. Последним является вибратор, длина которого будет меньше 0,45 Lmin.

На рис.2,а показаны размеры антенны на каналы 1—12, на рис.2,б — на каналы 1—5, на рис.2,в — на каналы 6—12. Пользуясь описанной методикой, можно рассчитать антенну на каналы 1—41, а также для другой требуемой полосы частот.

Коэффициент усиления антенны 6—7 дБ, уровень побочных лепестков—от —12 до —14 дБ, КБВ — более 0,5. Диаметр трубок двухпроводной линии 22 мм, расстояние между центрами 32 мм, диаметр вибраторов 12— 14 мм. Кабель снижения — с волновым сопротивлением 75 Ом.

Размеры антенны для диапазона 850-950 МГЦ (радиотелефоны)

 

Номерэлемента Общая длинавибраторов, мм Расстояние от предыдущегоэлемента, мм Расстояние отконца бума, мм
5 176 44
4 141 51 95
3 113 40 135
2 90 32 168
1 72 26 194

Теоретически параметры: Коэффициент усиления – 8,3 Дб,

Волновое сопротивление – 60 Ом.