Электроизмерительная лаборатория радиолюбителя

Несколько Полезных Схем Для Лаборатории Радиолюбителя

1. ПРИБОР ДЛЯ ПРОВЕРКИ КВАРЦЕВЫХ РЕЗОНАТОРОВ.

Очень часто в руках радиолюбителя оказываются детали с демонтажа неисправной аппаратуры, работоспособность и параметры которых зачастую не известны. Например, выдирая из под лака кварцевый резонатор в металлическом корпусе можно оставить его без маркировки. Кроме того бывают миниатюрные кварцевые резонаторы и без маркировки, либо с маркировкой сокращенной или плохо читаемой.

В этом случае необходим прибор, который не только покажет работоспособность резонатора, но и его частоту. На рисунке 1 показана схема очень простой приставки к частотомеру. Практически это каскад генератора с кварцевой стабилизацией частоты. На транзисторе VT1 выполнена схема генератора.

Обратная связь необходимая для генерации осуществляется посредством емкостей С1 и С2 (практически, это емкостный трансформатор сигнала между эмиттером и базой). Чтобы генератор заработал нужно между базой и общим минусом подключить кварцевый (или керамический) резонатор.

Генератор возбудится на частоте основного резонанса кварцевого резонатора (это нужно учесть при проверке гармониковых резонаторов, так как частота на частотомере может оказаться в разы ниже указанной номинальной для данного резонатора).

Сигнал с коллектора транзистора подается на вход любого цифрового частотомера, способного измерять частоту не ниже предполагаемой. Вместо частотомера можно подключить осциллограф и определить частоту приблизительно по эпюре рассчитав
её из периода.

Налаживания для данной схемы обычно не требуется. В некоторых случаях может потребоваться подбор сопротивления R1 для установления режима работы транзистора по постоянному току, при котором происходит уверенный запуск генератора.

Эту же схему, с небольшой доработкой, можно использовать для предварительной настройки контуров.

Небольшая доработка заключается в том, что колебательный контур к базе транзистора нужно подключать через разделительный конденсатор, так как катушка контура в отличие от кварцевого резонатора имеет малое сопротивление и при её непосредственном подключении напряжение на базе транзистора упадет так что ни о какой генерации можно будет даже не мечтать.

На рисунке 2 приведена схема портативного варианта данного прибора. С его помощью уже нельзя будет определить частоту резонанса резонатора, но зато в полевых условиях радиорынка вполне можно определить работоспособность резонатора.

Здесь переменное напряжение с выхода генератора поступает на диодный детектор, а с него на транзисторный ключ, в коллекторной цепи которого есть светодиод. Зажигание свето-диода говорит о работоспособности кварцевого резонатора.

С помощью этих приборов (рис.1, рис.2) можно проверить резонаторы частотой не выше 30 МГц (да и 30 МГц не всегда, — оптимально не выше 15 МГц). Впрочем можно проверять и высокочастотные резонаторы, так как они обычно гармониковые, просто здесь заработают на какой-то низшей гармонике. А вот для резонаторов на ПАВ данная схема не пригодна.

2. ПРОБНИК ДЛЯ РЕМОНТА УНЧ.

Для регулировки и налаживания трактов УНЧ применяются достаточно качественные генераторы, осциллографы и другие приборы. Но при ремонте зачастую нужно знать не параметры проходящего через тракт сигнала, а сам факт его прохождения.

Многие ремонтники просто прикасаются отверткой или пинцетом к сигнальным точкам и слушают фон переменного тока, который из их тела по отвертке поступает в тракт. Однако, этот весьма популярный способ не всегда эффективен, особенно при ремонте современной аппаратуры, имеющей качественное подавление сигнала фона с частотой сети.

Да и сам процесс не очень удобен, так как снимать сигнал можно только с самого выхода аппарата, — с динамиков, прослушивая их.

Схема пробника, показанная на рисунке 3 как будто два в одном, — она может работать и как генератор, пропускающий сигнал на вход или сигнальные точки УНЧ. При этом прослушивать сигнал можно через динамики ремонтируемого аппарата. И как контрольный УНЧ, который позволяет прослушать сигнал на каком-то этапе схемы, например, при неисправности УНЧ, отсутствии динамиков и в других случаях.

Схема предельно проста и представляет собой УНЧ двухкаскадный на двух транзисторах с общим эмиттером и емкостными межкаскадными связями. Режим «генератор/ УНЧ» переключается переключателем S1. На схеме он показан в положении «УНЧ».

В этом положении сигнал от источника сигнала поступает через конденсатор С1 на первый каскад, усиливается, и затем — на второй каскад на транзисторе VT2. С его коллектора сигнал поступает на звукоизлучатель В1 в качестве которого используется электромагнитный капсюль от высокоомных наушников «ТОН-1».

Таким вот образом, перемещаясь щупом (щуп подключен к С1), например, по коллекторам транзисторов каскадов УНЧ можно проследить прохождение сигнала, предварительно поданного на вход от другого генератора (или «от пинцета»).

В режиме генерации переключатель S1 в противоположном показанному на схеме положении. При этом меняется нагрузка второго каскада, — вместо звукоизлучателя сюда подключается нагрузочный резистор R4, и обратная связь с него через конденсатор С4 на вход первого каскада. Пробник превращается в генератор и импульсы 34 через конденсатор С1 поступают на схему.

Недостаток пробника в том что он не может одновременно как генератор подавать на вход УНЧ сигнал и в то же время как контрольный УНЧ прошедший через проверяемый тракт сигнал озвучивать. Но это решается просто, — сделайте два таких пробника, без переключателя S1, один соберите так чтобы всегда работал как генератор, а второй — как контрольный УНЧ.

Вместо звукоизлучателя от наушников «ТОН» можно попробовать что-то более современное и низкоомное. Но это может потребовать подбора сопротивления R3. Хотя, можно использовать и наоборот «более высокоомное» средство, такое как пьезоэлектрический звукоизлучатель, включив параллельно ему резистор сопротивлением 1-3 кОм. Правда звучание будет отвратительное.

3. ЛОГИЧЕСКИЙ ПРОБНИК.

Занимаясь схемами на цифровых микросхемах многие радиолюбители пользуются импульсными осциллографами. Конечно, когда нужно увидеть импульсы, определить их форму, период, это необходимо.

Но в большинстве случаев импульсный осциллограф работает как индикатор логического нуля (линия внизу или посредине) и единицы (линия в верхней части экрана), а так же высокоомное состояние, которое тестируется как шум переменного тока электросети на экране при прикосновении пальцем к металлической части щупа.

Даже современный и миниатюрный осциллограф слишком громоздок (или дорог) для того чтобы им определять логические уровни. С этой задачей весьма успешно справится простейший логический пробник, схема которого показана на рис. 4. Пробник собран на логической микросхеме типа К561ЛЕ5.

Такой выбор обусловлен широким диапазоном питания данной микросхемы (практически от 3 до 25V, хотя «по паспорту» от 5 до 15), большим входным сопротивлением (то есть ничего нигде не шунтирует). К тому же пробник питается от источника питания проверяемой схемы, поэтому на логические уровни настраивается, можно так выразиться, автоматически.

Первым идет элемент D1.1. Резистор R1 включен между его входом и выходом, поэтому он находится в пограничном состоянии, то есть на его выходе примерно половина напряжения питания, аналогично и на его входе, но очень «высокоомно».

Поэтому если щуп никуда не подключен или подключен, но к точке, изолированной вследствие обрыва, повреждения микросхемы, или находящейся в высокоомном состоянии, напряжение на выходе данного элемента будет около половины напряжения питания.

То есть не будет сильно отличаться от напряжения в точке соединения резисторов R2 и R3. А поэтому оба светодиода HL1 и HL2 окажутся в таком положении, когда ток через них либо не протекает вообще, либо он слишком слаб чтобы вызвать сколь-нибудь заметного свечения.

Таким образом, когда не нуль и не единица оба светодиода не горят.

Если на входе логический ноль, то на выходе элемента D1.1 будет, соответственно, логическая единица. Значит ток будет протекать через R3 и светодиод HL2, который будет гореть индицируя логический ноль.

При этом светодиод HL2 будет под обратным напряжением и гореть не будет. При логической единице на входе, на выходе D1.

1 — ноль, теперь светодиоды поменялись ролями, — HL1 горит так как через него протекает ток через резистор R2, а светодиод HL2 гореть не будет, так как он под обратным напряжением.

В принципе, для логического пробника можно бы и этой схемой ограничиться, — так
одним элементом D1.1 и светодиодами. Нуль и единицу показывают, высокоомное состояние тоже, и даже импульсы, если они не очень уж несимметричные, — горят оба или мигают поочередно, в зависимости от частоты. Но, в цифровых схемах не всегда бывают строго симметричные импульсы.

Очень часто импульсы короткие и с большим периодом. А самую большую пакость создают паразитные исключительно короткие импульсы, — «волосы», которые вдруг возникают неоткуда и портят работу схемы и нервы ремонтника.

Здесь нужна схема, которая реагировала бы на любые импульсы, даже самые короткие и отображала их наличие способом, нормально согласуемым с человеческим зрением.

Любой импульс, любой длительности, поступая на вход схемы попадает на одно-вибратор на элементах D1.2-D1.3, который формирует импульс фиксированной длительности, достаточной для заметного на глаз загорания светодиода HL3.

Таким образом, для данного щупа не остаются незамеченными никакие импульсы, пусть даже очень короткие, никакие паразитные «волосы», и в этом смысле он даже эффективнее простого (не запоминающего) импульсного осциллографа.

Можно светодиоды использовать любые индикаторные, например, АЛ307. Получится интересно если вместо HL1 и HL2 поставить один двухцветный двунаправленный. Тогда, например, в зависимости от подключения, при логическом нуле его цвет будет зеленый, а при единице — красный. А вот при симметричных импульсах — желтый или будет переливаться от зеленого до красного.

Диод VD1 нужен только для того чтобы не перепутать полярность подключения к источнику питания исследуемой схемы и этим не вывести пробник из строя. Продолжительность вспышки HL3 можно установить как угодно — подбором сопротивления резистора R4.

Недостаток схемы в относительно большом токе потребления по цепи питания (один-два десятка миллиампер), так как нужно питать светодиоды, поэтому для исследования схем с очень экономичным питанием (например, от компактной солнечной батареи, дисковых миниатюрных элементов или ионистора) этот пробник вряд ли пригоден.

4. СИНУСОИДАЛЬНЫЙ ГНЧ.

В любой радиолюбительской лаборатории должен быть синусоидальный генератор низкой частоты. Он необходим для проверки, ремонта и налаживания УНЧ и различных НЧ-тратов.

Сейчас наиболее простой способ — собрать схему на операционном усилителе с мостом Томсона (рис.5) в цепи задания частоты. Операционный усилитель включен с двупо-лярным питанием.

При использовании ОУ КР140УД708 напряжение питания может быть от ±10 до ±15V, причем величины положительного и отрицательного напряжений должны быть одинаковыми по модулю.

Схема, показанная на рисунке 5 не имеет никаких особенностей, и даже можно сказать, является типовой.

Для получения неискаженной (не ограниченной синусоиды) коэффициент передачи ОУ должен стабильно поддерживаться. Его устанавливают при налаживании подстройкой подстроечного резистора R4, включенного между инверсным входом и выходом ОУ (в цепи ООС). Другая составляющая цепи ООС — маломощная лампа накаливания Н1.

Она при работе схемы не горит, не служит для индикации, — её задача работать как терморезистор с положительным ТКС. Как известно, лампа содержит спираль из металла с высоким удельным сопротивлением. Чем больше ток через спираль, тем больше её нагрев, и соответственно, больше сопротивление, так как нагрев металла приводит к увеличению его сопротивления.

Вот это и используется для автоматического снижения коэффициента усиления при увеличении амплитуды выходного сигнала, и автоматического повышения коэффициента усиления при снижении амплитуды выходного сигнала.

Конечно можно использовать и терморезистор с положительным ТКС, но лампу приобрести легче (такие лампочки используются в схемах подсветки полей приборных панелей относительно современных автомобилей).

Переменные резисторы R1.1 и R1.2 -сдвоенный переменный резистор. Их нужно распаять так, чтобы сопротивления обоих частей одновременно увеличивались или уменьшались при соответствующем направлении вращения ротора.

Сдвоенным переменным резистором, -плавная настройка частоты в пределах выбранного поддиапазона. Поддиапазоны выбираются переключателем S1, он так же сдвоенный, переключает конденсаторы.

Читайте также:  Обзор дисплея 128х160 точек с контроллером st7735

Если не заниматься подгонкой диапазонов и частот перестройки (пользоваться частотомером в качестве шкалы), то налаживание заключается только в установки такого коэффициента передачи ОУ при котором синусоидальный сигнал не искажен. Делают это подстройкой резистора R4.

Лучше всего пользоваться осциллографом и по нему следить за формой сигнала. Однако, при отсутствии осциллографа можно сделать настройку приблизительно. Подключить на выходе ОУ милливольтметр переменного тока и подстроить R4 так чтобы он показывал напряжение 1V.

Обычно при таком выходном напряжении сигнал не искажен.

Лыжин Р.

Источник: http://cxema.my1.ru/publ/instrumenty/izmeritelnaja_tekhnika/neskolko_poleznykh_skhem_dlja_laboratorii_radioljubitelja/47-1-0-6009

Главная — В помощь радиолюбителю

 Измеритель-сигнализатор уровня CO2MVS |

Этот измеритель уровня углекислого газа в помещении, когда я принёс его в свой рабочий коллектив, был принят «на ура», так как появилась объективная оценка качества воздуха в помещении.
Сигнал от устройства сообщает, что вентиляция не справляется с обновлением воздуха в помещении, в котором работают сотрудники, и необходимо открыть окно и проветрить помещение.

Когда проветривали помещение по субъективной оценке, то часто возникали споры «а надо ли открывать окно?», особенно зимой. Теперь споров в коллективе на эту тему не возникает, так как есть независимый электронный «арбитр».

Микроконтроллеры |
 Цифровая комнатная метеостанцияMVS |

(хроно-термо-гигро-барометр)

Как поется в известной песне «Главней всего погода в доме…». Конечно автор под погодой имел ввиду душевное состояние супругов живущих под одной крышей. Но если подходить к этой фразе буквально, то она о том, что под крышей кроме душевного должен быть и климатический комфорт.

Предлагаемое устройство обеспечивает измерение и отображение на светодиодном индикаторе температуры и относительной влажности воздуха в помещении, значения атмосферного давления и текущего времени.

Автоматика для дома |
 Мощный блок питания.

Seriy1234 |

При обслуживании и ремонте различного электрооборудования, мне для работы понадобился довольно мощный блок питания, с возможностью держать большой нагрузочный ток, и регулировкой напряжения в широких пределах, в районе не менее 5-24 вольт.
Пригодилась для этой цели и списанная оргтехника, покопавшись в которой родилось вот такое устройство…

Блоки питания |
 Сигнализация для гаражаSeriy1234 |

У каждого дома могут находиться устаревшие модели сотовых телефонов, если их не выкинули, и на базе такого телефона можно сделать беспроводную сигнализацию для дачи или гаража. Вот и я попробовал вдохнуть в такой телефон вторую жизнь и использовать его для благого дела.

Подобных сигнализаций в интернете достаточное количество, но я решил использовать свою схему.

В домашнюю мастерскую |
 Барометр-сигнализатор для метеозависимых людей БС-1MVS |

У здоровых людей смена погоды не оказывает особого влияния на их самочувствие, а метеозависимые люди на любую смену погоды или атмосферного давления, реагируют очень болезненно.
Предлагаемый в статье барометр-сигнализатор — предназначен для информирования метеозависимых людей  о текущем значении атмосферного давления и выходе его за установленные границы и его резких скачках.

Микроконтроллеры |
 Перекос фаз в загородном доме.Seriy1234 |

Существует очень много проблем с электрической сетью в частных домах, частые скачки напряжения в верх, перекосы фаз, заниженное напряжение и прочее.

В данной статье пойдёт речь как просто и относительно дёшево устранить эту проблему.
Сразу оговорюсь, этим способом можно решить проблему при наличии трёхфазной сети или возможностью подключения к фазному напряжению 380 Вольт.

Технологии |
 Контроллер автоматической системы поливаMVS |

Весна, это долгожданный период времени для огородников. Полным ходом идет покупка и посадка семян в торфяные горшочки, вот уже появляются первые листочки томатов и огурцов. Природа начинает свое воспроизводство.

Самое время подумать о системе полива растений после их пересадки в теплицу или открытый грунт.

Автоматика для дома |

Источник: http://vprl.ru/?page2

Простые приборы для радиолюбителей | Мастер Винтик. Всё своими руками!

Радиолюбительские приборы-помощники

В процессе изготовления радиолюбительских схем, при её настройке, а также при регулировке аппаратуры радиолюбителю необходим целый набор измеритель­ных приборов. В первую очередь понадобятся: мультиметр, ос­циллограф, генераторы высокой и низкой (звуковой) частот, цифровой часто­томер, универсальный высокочастотный вольтметр с высокоомным входом…

Сейчас многие приборы можно купить, а некоторых и можно не найти в продаже. Их самостоя­тельное изготовление не отличается большой трудностью и вполне доступно радиолюбителям.

В число таких приборов-помощников входят:

  • индика­тор высокочастотного поля,
  • индикатор излучения,
  • прибор для проверки транзисторов,
  • ВЧ и универсальный вольтметр.

Схемы приборов построены на старой советской элементной базе, поэтому многие компоненты можно заменить на современные аналоги.

Принципиальная схема индикатора поля

На рисунке показана схема простого индикатора напряженно­сти поля.

 Индикатор высокочастотного поля используют для обнаружения излучения-передатчика и грубого измерения частоты колебаний, а также как индикатор на­пряженности поля при согласовании выхода передатчика с сопротивлением из­лучения антенны. Индикатор представляет собой детекторный приемник, нагрузкой ко­торого служит микроамперметр на ток полного отклонения стрелки 100 мкА.

Главная особенность этого индикатора — отсутствие питания. Стрелка индикаторной головки отклоняется от наводящего в антенне ВЧ поля.

Прибор собирают на изоляционной плате. Антенна — тонкий металлический штырь длиной 20 — 30 см. Для диапазона 25 — 31 МГц контурную катушку L1 заматывают на каркасе диаметром 12 мм. Она содержит 12 — 14 витков прово­да ПЭВ-1, Конденсатор С1 — подстроечнный с воздушным диэлектриком. Ось ротора выводят на переднюю панель и снабжают лимбом с нанесенной шкалой, проградуированной в Мегагерцах.

Принципиальная схема индикатора излучения

На рисунке, выше представлена схема индикатора излучения передатчи­ка с визуальным контролем. Для контроля использована небольшая лампочка, рассчитанная на напряжение 1 В или светодиод. В случае использования светодиода, нужно последовательно подключить сопротивление 30-100Ом.

Индикатор представля­ет собой детекторный приемник с двухкаскадным усилителем постоянного тока на транзисторах МП16Б (или им аналогичных отечественных или зарубежных). В цепь коллектора выходно­го транзистора VT3 включена индикаторная лампа.

Индикатор смонтирован на изоляционной плате и вместе с батареями питания размещен в пластмассовом футляре подходящих размеров. Каждую батарею питания можно составить из 3-x аккумуляторов по 1,2в.

Приближенно проградуировать шка­лу индикатора поля можно по сиг­налу от измерительного генератора высокой частоты. К его выходу подклю­чают отрезок провода длиной 30 см. Вблизи этого провода располагают шты­ревую антенну градуируемого индикато­ра поля.

Схема вольтметра постоянного напряжения

Вольтметр измеряет постоянные напряжения величиной до 100 В. Он выполнен по мостовой схеме на транзисторах — Т1 и Т2. В одну диагональ моста включен измерительный прибор, в другую — источник питания.

Регулировка вольтметра состоит из двух этапов. Сначала, изменяя значения резисторов R4 и R5, добиваются равенства напряжений на коллекторах транзисторов Т1 и Т2. Затем с помощью переменного резистора R6 устанавливают стрелку измерительного прибора на ноль.

Измеряемое напряжение через резисторы R1, R2 и R3 подается на базу транзистора Т1. При этом нарушается равновесие моста, и через миллиамперметр начинает протекать ток, пропорциональный напряжению.

Резисторы R1 — R3 подбирают с точностью ±5%.

Эту схему можно использовать как приставку к авометру с малым входным сопротивлением.

Схема универсального вольтметра

Универсальный вольтметр, схема которого изображена на рисунке прост изготовлении и налаживании.

Входное сопротивление его около 2 МОм на пределе измерения постоянного напряжения 1 В и 4,5 МОм на остальных пределах (10, 100, 1000 В). Напря­жение высокой и звуковой частот можно измерять в пределах от 0,1 до 25 В. Транзисторы VT1 и VT2 образуют парафазный истоковый повторитель.

Измеря­емое напряжение приложено к затворам транзисторов и одновременно к цепи R5, R14. В результате между затвором и истоком каждого транзистора действу­ет половина измеряемого напряжения, но с разной полярностью.

Это приводят к тому, что в одном плече ток стока уменьшается, в другом — увеличивается я между точками а и б появляется разность потенциалов, отклоняющая стрелку микроамперметра РА1 пропорционально приложенному напряжению.

Детекторная цепь C1,VD1,R7, C2 предназначена для измерения напряжения ЗЧ. А напря­жение ВЧ измеряют с помощью выносной головки, схема которой показана на рисунке слева. Питают прибор от батареи с напряжением 9 В.

Транзисторы для вольт­метра должны быть подобраны близкими по параметрам. Для подборки тран­зисторов можно воспользоваться устройством, схема которого изображена на рисунках, ниже.

Схема проверки маломощных биполярных транзисторов

Одно из условий безотказной работы аппаратуры радиоуправления — применение в ней проверенных радиоэлементов и особенно транзисторов. Известно, что разброс параметров транзисторов одного типа может быть трехкратным и более.

Например, у транзистора значение коэффициента передачи по постоянному току h21Э может находиться в пределах 40—160. В ряде случаев при изготовлении аппаратуры устанавливают ограничения на параметры применяемых транзисторов.

Обычно это относится к значениям h21Э.

Часто при построении схем необходимо подобрать пары одинаковых по параметрам транзисторов.
У маломощных транзисторов обычно проверяют обратный или так называемый неуправляемый ток коллектора Iкбо при отключенном эмиттерном выводе, а также h21э в схеме с заземленным эмиттером.

На рисунке, ниже приведена схема стенда для проверки маломощных транзисторов как с р-n-р, так и с n-р-n переходами. I кбо измеряется непосредственно микроамперметром ИП-1 с пределом до 100 мкА. У микроамперметра ИП-1 должна быть шкала с нулем посередине.

h21э определяется как отношение измеренного тока коллектора Iк к установленному по прибору ИП-1 значению тока Iо в цепи базы транзистора. Ток в цепи базы устанавливается с помощью переменных резисторов R3, («грубо») и R2 («точно»).

При точном измерении шунт прибора отключают кнопкой Kн1.

Схема проверки биполярных транзисторов средней мощности

Транзисторы средней мощности необходимо проверять при рабочем коллекторном токе (0,5 — 1,0 А и более). При подборе пар одинаковых транзисторов, необходимых для качественной работы оконечных каскадов усилителей и других схем. Эти измерения можно сделать с помощью простого стенда (см. схему ниже).

Чтобы не усложнять коммутацию, подключение измерительных приборов осуществляют гибкими проводами с одиночными штыревыми разъемами. На схеме (в скобках) показана полярность подключения батареи и приборов при проверке транзисторов со структурой типа p-n-р.

Подключение к выводам транзистора следует осуществлять с помощью зажимов «крокодил», подпаянных к гибким проводам. Транзисторы проверяют в течение короткого промежутка времени в связи с тем, что при больших токах коллектора происходит нагрев транзистора, а это ведет к изменению его параметров и увеличению погрешности измерений.

Проверяемый транзистор можно крепить на теплоотводящий радиатор, но это усложнит процесс проверки. В качестве источника питания следует применить мощный стабилизированный источник низковольтного напряжения или составить батарею из аккумуляторов.

Схема проверки полевых транзисторов

Проверку полевых транзисторов можно проводить на стенде, схема которого приведена на рисунке ниже. С помощью этого стенда осуществляют подбор пар одинаковых транзисторов.

Полярность подключения батарей Б1, Б2 и измерительных приборов показана для случая проверки полевых транзисторов с р-каналом и п-р переходом (например, КП103). При проверке полевых транзисторов с n-каналом и р-п переходом (например КП303) необходимо указанную полярность изменить на обратную.

С помощью такого стенда можно снять выходные и проходные характеристики полевых транзисторов.

На рисунках приведена выходная характеристика полевого транзистора КП303Д и проходные характеристики этого же транзистора.

Пунктирной линией изображена динамическая проходная характеристика при включенном в цепь истока резисторе с сопротивлением 560 Ом. Рабочая точка находится в средней части линейного участка этой характеристики.

ВНИМАНИЕ! При проверке полевых транзисторов с МОП-структурой необходимо соблюдать осторожность, поскольку они подвержены влиянию статического электричества! Их следует подключать с предварительно закороченными (гибким неизолированным проводником) выводами, которые подсоединяют к стенду при выключенном питании. Затем с вывода транзистора снимают закорачивающие проводники и включают питание.

После этого проверяют транзистор. Отключение такого транзистора ведут в обратном порядке, а именно, выключают питание, закорачивают выводы и после этого отсоединяют его от стенда.

Конструкции стендов для проверки транзисторов могут быть произвольными. Рекомендуется монтировать их на панелях из стеклотекстолита или другого изоляционного листового материала. На стенде следует поместить его принципиальную схему. Для удобства пользования производят гравировку у выводов гнезд и других элементов стенда или вместо гравировки можно приклеить бумажные полоски с надписями.

Читайте также:  Упражнения 1.18, 1.19, 1.20, 1.21, "искусство схемотехники", 3-е издание

Используемая литература: М.Е.Васильченко, А.В.Дьяков «Радиолюбительская телемеханика» и журнал «Моделист конструктор»

  • Подробнее про светодиодные лампы и светильники
  • Широко внедрились в нашу жизнь светодиодные светильники, заменив обычные лампы. И это понятно: у них есть неоспоримое преимущество — низкое потребление тока и долговечность. Для покупателей светодиодных светильников, которые хотят понять, как использовать светодиодный свет максимально эффективно и предназначена статья ниже.Подробнее…

  • Ремонт флешки своими руками
  • Перевод контроллера флэш в тестовый режим (замыканием выводов памяти)

    После некотрорых программных сбоев контроллера или микросхемы памяти, Windows не может определить подключённое устройство и при этом, операционная система не может установить соответствующий драйвер. Подробнее…

  • Доработка ночника «Луна».
  • В место батареек используем зарядку от сотового. 

    Сейчас в продаже существует множество различных устройств, работающих на батарейках. Есть и такие, которые в процессе эксплуатации ни куда не переносятся, например, настольные лампы, ночники, светильники и т.д.  Подробнее…

Источник: http://www.MasterVintik.ru/prostye-pribory-dlya-radiolyubitelej/

Универсальный измерительный комплекс

   Как извесно, ни одна радиолюбительская лаборатория не может обойтись без средств измерения и наблюдения за процессами протекающими в электронном устройстве.

Современный рынок предлагает нам целые линейки измерительных приборов от самых простых до профессиональных, но не каждый, даже самый опытный самодельщик, позволит иметь в составе своей лаборатории полный набор доступного оборудования. Все это — следствие высоких цен на приборы, обусловленное реалиями современного рынка.

Но радиолюбители как всегда находят выход из положения — самостоятельно конструируют и изготовливают измерительное оборудование для своих потребностей. С опытом повторения одного из таких приборов, конструкции Андрея Владимировича Остапчука (Andrew) и предлагаю вам ознакомиться. 

   Универсальный измерительный комплекс АВО-2006 содержит минимальное количество недифицитных и недорогих деталей, а учитывая функциональные возможности прибора,рискну назвать его самым простым, что мне доводилось встречать в своей практике! Итак, какими же функциями обладает прибор?

— Наличие функции измерения сопротивления в интервале от 0 до 200000000 ОМ;

— Наличие функции измерения емкости конденсаторов в интервале от 0,00001 до 2000 мкф;

— Наличие функции однолучевого осциллографа, позволяющей визуализировать форму сигнала, измерять его амплитудное значение и напряжение;

— Наличие функции генератора частотного сигнала в интервале от 0 до 100000 Гц с возможностью пошагового изменения частоты с шагом 0-100Гц и выводом значения частоты и длительности на дисплей;

— Наличие функции измерения частоты в интервале от 0,1 до 15000000 Гц с возможностью изменения времени измерения и выводом значения частоты и длительности на дисплей.

   Если вас впечатлил список функций, поддерживаемых прибором, предлагаю перейти к рекомендациям по его изготовлению. Прежде всего несколько замечаний по комплектующим прибора.

Самая дорогая и ответственная деталь — ЖК индикатор на 2 строки по 16 символов, со встроенным контроллером HD44780 или его аналогом. Самые распространенные — индикаторы фирм Winstar и МЭЛТ (хотя мое личное предпочтение — Winstar с русским и латинским шрифтом).

Конденсатор С5 следует выбрать как можно более термостабильный, пленочный — от неизменности его параметров будет зависеть точность измерений параметров сопротивлений.

   Другая ответственная деталь — защитный стабилитрон VD1. Сразу оговорюсь — применение отечественных стабилитронов КС156 невозможно, поскольку они имеют малое обратное сопротивление, а ведь именно от него зависит работоспособность прибора — чем выше обратное сопротивление стабилитрона, тем лучше.

Идеально для этих целей подходят импортные стабилитроны с маркировкой на корпусе 5V6 или 5V1.

Для изготовления прибора идеально подходят микроконтроллеры Atmega8A-PU (аналог старых Atmega8-16PI и Atmega8-16PU), но так как на сегодняшний момент появилось много китайских аналогов этих контроллеров, причем со старыми маркировками, не исключены и отказы в работе устройства — здесь мы вам помочь, увы, не можем. 

   Прежде чем приступать к изготовлению прибора, советую поближе познакомиться с ЖК индикатором. Лучше скачать даташит с сайта производителя (Winstar-www.winstar.com.tw или МЭЛТ-www.melt.com.ru). Далее, строго следуя даташиту подключаем экран к блоку питания устройства (это может быть простейший трансформаторный блок питания со стабилизатором LM317 (К142ЕН5А) 

   или 6-ти вольтовый гелевый (или любой другой малогабаритный и легкий) аккумулятор с тем же стабилизатором (если кому то понадобится изготовить измеритель для полевых работ). Напряжение +5 вольт подаем на вывод 2 индикатора (смотри даташит — выводы питания могут менятся!), минус подаем на выводы 1 и 5.

Вывод 3 индикатора подключаем через подстроечный резистор 10кОм к минусу питания. Вращая резистор, добиваемся четкого и контрастного отображения всей верхней строки индикатора. Снимаем резистор, замеряем его сопротивление и подбираем такой же постоянный — вот мы и подобрали резистор R4 для нашей схемы.

Подобную процедуру проводим и при подключении подсветки дисплея — добившись оптимальной яркости свечения, подбираем постоянный резистор — это будет резистор R5 нашей схемы. Другая важная процедура-прошивка микроконтроллера.

Качаем HEX файл с сайта автора и зашиваем в наш контроллер при помощи программатора, не забывая при этом про фьюз-биты контроллера.

   Собрать прибор можно на макетной плате, настолько проста его обвязка. После первого запуска прибора приступаем к его калибровке. Для этого, в режиме измерения сопротивления, при калибровке на ноль, замыкаем измерительные щупы (крокодилы) между собой, нажимаем и удерживаем кнопку 1 и одновременно нажимаем кнопку 2 (заносим в память — на экране надпись ОК).

   Далее производим калибровку по номиналу 1000Ом — навешиваем прецизионный резистор, нажимаем и удерживаем кнопку 2 и одновременно нажимаем кнопку 1 (заносим в память). Переключение режимов прибора осуществляется по кольцу при помощи кнопки 3. Для калибровки прибора в режиме измерения емкостейвыполняем следующие действия.

При калибровке на 0 — размыкаем щупы измерителя и нажимаем и удерживаем кнопку 1 и выполняем запись в память кнопкой 2. При калибровке на 1000пФ — навешиваем прецизионный конденсатор, нажимаем и удерживаем кнопку 2 и выполняем запись в память кнопкой 1. Все, прибор готов к работе.

В остальных режимах никаких калибровок не производится.

   Проверить работу осциллографа и частотомера, можно подключив прибор в какую нибудь рабочую схему, результаты измерений с которой были сняты заранее при посредстве других осциллографа и частотомера.

Проверить работу генератора частоты можно просто подключив к выходу прибора обычный динамик и плавно изменяя частоту клавишами регулировок (1 и 2). Этими же клавишами производится и изменение времени развертки в режиме осциллограф.

Изменение времени измерения частоты (в режиме частотомер) осуществляется кнопкой 1, позволяющей измерять частоту с точностью до 0,1Гц.

   Одно небольшое замечание — измерения, калибровки и настройки производить только с уже готовыми экранированными щупами (а не с кусочками монтажного провода) — практика показывает что разные типы кабеля могут внести значительные искажения в результаты измерений. 

   В качестве калибровочных конденсаторов отлично подходят прецизионные К71-7, а в качестве калибровочных резисторов — С2-33Н.

   Все детали с отклонением от номинала не более 1 процента.

Если в результате первичных контрольных замеров выяснится что линейность измерений емкости слишком мала, изменяем сопротивление резистора R3 в пределах 50-220кОм (чем больше номинал этого резистора, тем выше будет точность измерений малых емкостей, но соответственно вырастет в разы время измерения больших емкостей); если линейность измерения сопротивлений мала, то придется подобрать емкость конденсатора С5 (разумеется менять его можно только на тако же термостабильный).

Источник: http://el-shema.ru/publ/izmerenija/universalnyj_izmeritelnyj_kompleks/8-1-0-43

RLC и ESR метр, или прибор для измерения конденсаторов, индуктивностей и низкоомных резисторов

Подписка

  • Магазины Китая
  • GEARBEST.COM
  • Хобби
  • Радиотовары
  • Пункт №18

В последнее время выход из стоя электролитических конденсаторов стал одной из основных причин поломок радиоаппаратуры.

Но для правильной диагностики не всегда достаточно иметь только измеритель емкости, поэтому сегодня мы поговорим об еще одном параметре — ESR. Что это, на что влияет и чем измеряют, я попробую рассказать в этом обзоре. Для начала скажу, что этот обзор будет кардинально отличаться от предыдущего, хотя оба этих обзора об измерительных приборах радиолюбителя. 1.

В этот раз не конструктор, а скорее «полуфабрикат» 2. Паять в этом обзоре я ничего не буду. 3. Схемы в этом обзоре также не будет, думаю что к концу обзора будет понятно, почему. 4. Данный прибор очень узконаправленный, в отличии от предыдущего «многостаночника». 5. Если о предыдущем приборе знало очень много людей, то этот почти никому неизвестен. 6.

Обзор будет маленьким Для начала, как всегда, упаковка.К упаковке прибора претензий не возникло, простенько и компактно.Комплектация совсем спартанская, в комплекте только сам прибор и инструкция, щупы и батарейка в комплект не входят.Инструкция также не блещет информативностью, общие фразы и картинки.Технические характеристики прибора, указанные в инструкции.

Ну и более понятным языком. Сопротивление Диапазон — 0,01 — 20 Ом Точность — 1% + 2 знака. Эквивалентное последовательное сопротивление (ESR) Диапазон — 0,01 — 20 Ом, работает в диапазоне конденсаторов от 0.1мкФ Точность — 2% + 2 знака Емкость Диапазон — 0,1мкФ — 1000мкФ (3-1000 мкФ измеряются на частоте 3КГц, 0.

1-3мкФ — 72КГц) Точность — зависит от частоты измерения, но составляет около 2% ± 10 знаков Индуктивность Диапазон — 0-60 мкГн на частоте 72КГц и 0-1200 мкГн на частоте 3КГц. Точность — 2% + 2 знака. Для начала я расскажу что же это такое — ESR.

Многие довольно часто слышали слово — конденсатор, а некоторые даже их видели 🙂 Если не видели, то на фото ниже наиболее часто встречающиеся в технике представители.Внешне конденсатор это обычно деталька с двумя выводами, но на самом деле все компоненты выглядят сложнее, чем кажутся на первый взгляд.

Начнем с того, что все детали неидеальны и кроме своего основного параметра еще имеют кучу «паразитных». Так как мы говорим о конденсаторах, то для примера его и рассмотрим внимательнее. В реальной жизни эквивалентная схема конденсатора выглядит примерно так, как показано на рисунке ниже. На картинке показаны —

C — эквивалентная емкость, r — сопротивление утечки, R — эквивалентное последовательное сопротивление, L — эквивалентная индуктивность.

А если упрощенно, то

Эквивалентная емкость — это конденсатор в «чистом» виде, т.е. без недостатков.

Сопротивление утечки — это то сопротивление, которое разряжает конденсатор помимо внешних цепей. Если провести аналогию с бочкой воды, то это естественное испарение. Оно может быть больше, может быть меньше, но оно будет всегда.
Эквивалентная индуктивность — Можно сказать что это дроссель, включенный последовательно с конденсатором. Например это обкладки конденсатора свернутые в рулон. Этот параметр мешает конденсатору при работе на высоких частотах и чем выше частота, тем больше влияние.
Эквивалентное последовательное сопротивление, ESR — Вот и тот параметр, который мы и рассматриваем. Его можно представить как резистор, включенный последовательно с идеальным конденсатором. Это сопротивление выводов, обкладок, физические ограничения и т.д. В самых дешевых конденсаторах это сопротивление обычно выше, в более дорогих LowESR ниже, а ведь есть еще Ultra LowESR. А если просто (но очень утрированно), то это все равно, что набирать воду в бочку через короткий и толстый шланг или через тонкий и длинный. Заправится бочка в любом случае, но чем тоньше шланг, тем это будет происходить дольше и с большими потерями во времени.Из-за этого сопротивления невозможно конденсатор мгновенно разрядить или зарядить, кроме того при работе на высоких частотах именно это сопротивление греет конденсатор. Но самое плохое то, что обычный измеритель емкости его не измеряет. У меня часто были случаи, когда при измерении плохого конденсатора прибор показывал нормальную емкость (и даже выше), но устройство не работало. При измерении ESR-метром сразу становилось понятно, что внутреннее сопротивление у него очень высокое и работать нормально он не может (по крайней мере там, где стоял до этого). Некоторые наверняка видели вспухшие конденсаторы. Если отсечь случаи, когда конденсаторы пухли просто лежа на полке, то остальное будет являться следствием повышения внутреннего сопротивления. При работе конденсатора постепенно увеличивается внутреннее сопротивление, происходит это от неправильного режима работы или от перегрева. Чем больше внутреннее сопротивление, тем больше начинает греться конденсатор изнутри, чем больше нагрев изнутри, тем больше растет сопротивление. В итоге электролит начинает «кипеть» и из-за повышения внутреннего давления конденсатор вспухает. Но вспухает конденсатор не всегда, иногда на вид он абсолютно нормальный, емкость в порядке, а нормально не работает. Подключаешь его к ESR метру, а у него вместо привычных 20-30мОм уже 1-2 Ома. Я пользуюсь в работе самодельным ESR метром, собранным много лет назад по схеме с форума ProRadio, автор конструкции — Go. Этот ESR метр попадается в моих обзора довольно часто и меня часто спрашивают о нем, но когда я увидел в новых поступлениях магазина уже готовый прибор, то решил заказать его для пробы. Еще подогревало интерес то, что информации по этому прибору я нигде не нашел, ну тем интереснее 🙂 Внешне прибор выглядит как «полуфабрикат», т.е. собранная конструкция, но без корпуса. Правда для удобства производитель установил всю эту конструкцию на такие вот пластиковые «ножки», даже гаечки пластиковые :)С правого торца прибора расположены клеммы для подключения измеряемого элемента. К сожалению схема подключения двухпроводная, а значит что чем длиннее будут провода щупов (если их использовать) тем больше будет погрешность показаний. В более правильных конструкциях используется четырехпроводное подключение, по одной паре конденсатор заряжается/разряжается, по другой происходит измерение напряжения на конденсаторе. в таком варианте провода можно сделать хоть метр длиной, глобальной разницы в показаниях не будет. Также рядом с клеммами находятся два контакта печатной платы, они используются при калибровке прибора (это я понял уже потом).Снизу предусмотрено место для установки батареи питания типа 6F22 9 Вольт (Крона).Прибор также может питаться и от внешнего источника питания, подключаемого посредством разъема MicroUSB. при подключении питания к этому разъему батарея отключается автоматически. при частом использовании я бы советовал питать прибор от USB разъема, так как батареи разражаются довольно ощутимо. На фото также видно, что стяжка, при помощи которой крепится батарея, многоразовая. Замок стяжки имеет язычок, при нажатии на который ее можно открыть.В собранном виде конструкция выглядит как то так.Включается и управляется прибор всего одной кнопкой. Включение — нажатие дольше 1 сек. Нажатие в рабочем режиме переключает прибор между измерениями L и С-ESR. Выключение — нажатие кнопки более чем 2 секунды.При включении прибора высвечивается сначала название и версия прошивки, затем идет надпись, предупреждающая о том, что конденсаторы надо обязательно разрядить перед проверкой. При удержании кнопки более двух секунд высвечивается надпись — Выключение питания и при отпускании кнопки прибор отключается.Как я выше писал, прибор имеет два рабочих режима. 1. измерение индуктивности 2. измерение емкости, сопротивления (или ESR). В обоих режима на экране отображается напряжение питания прибора.Естественно посмотрим что из себя представляет начинка этого прибора. На вид она заметно сложнее чем у предыдущего тестера транзисторов, что косвенно говорит либо о непродуманности схемы либо о лучших характеристиках, мне кажется что в данном случае скорее второй вариант.Ну дисплей особо описывать смысла нет, классический 1602 вариант. Единственно что удивило — черный цвет текстолита.Общее фото печатной платы я сделал в двух вариантах, со вспышкой и без, вообще прибор очень не хотел фотографироваться, мешая мне всеми возможными способами, потому заранее приношу извинение за качество. На всякий случай напоминаю, что все фото в моих обзорах кликабельны.
«сердцем» прибора является микроконтроллер 12le5a08s2, информации по конкретно этому контроллеру я не нашел, но в даташите другой его версии проскакивала информация что он собран на ядре 8051.Измерительная часть содержит довольно много элементов, кстати заявлено что процессор имеет 12 бит АЦП, который используется для измерения. Вообще такая разрядность весьма неплохая, скорее интересно насколько это реально. Изначально думал начертить схему всего этого «безобразия», но потом понял, что особого смысла это не имеет, так как характеристики прибора в плане диапазона измерения не очень большие. Но если кому интересно, то можно попробовать перечертить.Также в измерительной схеме задействован операционный усилитель, как по мне довольно неплохой, я такой использовал в усилителе сигнала с токового шунта электронной нагрузки.Судя по всему это узел переключения питания между батареей и USB разъемом.Снизу платы почти ничего интересного, кроме кнопки компонентов никаких нет :(Но я нашел интересное даже на пустой печатной плате :))) Дело в том, что когда я получил прибор и игрался с ним, то категорически не мог заставить его отображать емкость конденсатора выше 680мкФ, он упорно показывал OL и все. Осматривая плату я не мог не заметить три пары контактов для подключения кнопок (судя по маркировке). Сначала я ткнул key2, на что получил на экране — калибровка нуля (вольный перевод) — ОК. Ха, думаю, ну щаззз мы тебя.

А вот и нет, калибровка заняла у меня уйму времени, так как из-за редкости прибора информации по нему нет, вообще. Единственное упоминание со словом калибровка было здесь.

Замыкание других пар контактов выводит на экран значения констант (судя по всему). причем были еще варианты, с другими буквами, а также иногда при замыкании key3 проскакивала надпись — Сохранено ОК (на англ ессно).Но вернемся к калибровке. Прибор сопротивлялся всем своими силами. Для начала я попробовал коротнуть клеммы пинцетом и калибровать так, но прибор в итоге показывал правильную емкость и отрицательное сопротивление у конденсаторов. После этого я коротнул два тестовых пятачка на плате, прибор стал показывать корректное сопротивление, но диапазон измерения емкости сузился до 220-330 мкФ. И уже после долгих поисков в инете я наткнулся на фразу (ссылка есть чуть выше) — Use 3cm thick copper wire for short circuit to clear В переводе это означало — используйте медный провод толщиной 3см. я подумал что толщина в 3см это как то круто и скорее всего имелось в виду 3см длины. Отрезал кусочек провода длиной около 3см и коротнул патчки на плате, стало работать гораздо лучше, но все равно не так. Взял провод подлиннее раза в два и повторил операцию. После этого прибор стал работать уже вполне нормально и дальнейшие тесты я проводил уже после этой калибровки. Для начала я подобрал разных компонентов, при помощи которых буду проверять как работает прибор. На фото они уложены в соответствии с порядком тестирования, только дроссели лежат наоборот. Все компоненты проверялись от меньшего номинала к большему.Перед тестами я посмотрел осциллографом что выдает прибор на свои измерительные клеммы. Судя по показаниям осциллографа частота установлена примерно на 72КГц.В плане измерения индуктивности показания вполне сошлись с указанными на компонентах. 1. индуктивность 22мкГн 2. индуктивность 150мкГн Кстати, в процессе калибровки я заметил, что никакие манипуляции не влияли на точность измерения емкости и индуктивности, а отражались только на точности измерения сопротивления.С индуктивностью 150мкГн форма сигнала на клеммах выглядела такС конденсаторами небольшой емкости также не возникло проблем. 1. 100нФ 1% 2. 0.39025 мкФ 1%Форма сигнала при измерении конденсатора 0.39025 мкФДальше пошли электролиты. 1. 4.7мкФ 63В 2. 10мкФ 450В 3. 470мкФ 100 Вольт 4. 470мкФ 25 В lowESR Отдельно скажу насчет конденсатора 10мкФ 450 Вольт. Меня очень удивили показания и это не дефект конкретного элемента, так как конденсаторы новые и у меня их два одинаковых. показания также были одинаковые у обоих и другие приборы показывали именно емкость около 10мкФ. мало того, даже на этом приборе пару раз проскочили показания со значением около 10мкФ. почему так, мне непонятно.1. 680мкФ 25 Вольт низкоимпедансный 2. 680мкФ 25 Вольт lowESR. 3. 1000мкФ 35 Вольт обычный Samwha. 4. 1000мкФ 35 Вольт Samwha RD серия.Форма сигнала на контактах при тестировании обычного 1000мкФ 35 Вольт Samwha. По идее, при измерении емких электролитов, частота должна была упасть до 3КГц, но на осциллограмме явно видно, что частота не менялась в процессе всех тестов и составляла около 72КГц.1000мкФ 35 Вольт Samwha RD серии иногда выдавал и такой результат, проявлялось это при плохом контакте выводов с измерительными клеммами.Уже после того как сделал групповое фото, измерил и сложил детали по своим местам я вспомнил, что забыл измерить сопротивление резисторов. Для измерения я взял пару резисторов 1. 0.1 Ома 1% 2. 0.47 Ома 1% Сопротивление второго резистора несколько завышено и явно вылазит за предел 1%, скорее даже ближе к 10%. но я думаю что это скорее сказывается то, что измерение проходит на переменном токе и влияет индуктивность проволочного резистора, так как мелкий резистор на 2.4 Ома показал сопротивление 2.38 Ома.Когда искал информацию по прибору, то пару раз натыкался на фото этого прибора, где показано одновременное измерение с разными частотами, но мой прибор такое не выводит, опять же непонятно почему 🙁 То ли другая версия, то ли еще что, но разница есть. У меня вообще сложилось впечатление, что измеряет он только на частоте 72КГц. Высокая частота измерения это хорошо, но всегда удобно иметь альтернативу.Резюме

Плюсы

В работе прибор показал довольно неплохую точность (правда после калибровки) Если не учитывать то, что мне пришлось его калибровать, то можно сказать что конструкция готова к работе «из коробки», но допускаю что это мне так «повезло». Двойное питание.

Минусы

Полное отсутствие информации по калибровке прибора Узкий диапазон измерения У меня прибор нормально начал работать только после калибровки. Мое мнение. Если честно, то у меня создалось стойкое двоякое впечатление о приборе. С одной стороны я получил вполне неплохие результаты, а с другой я получил больше вопросов чем ответов.

Например я так на 100% и не понял как его правильно калибровать, также не понял почему мой конденсатор на 10мкФ отображается как 2.3, ну и кроме того непонятно, почему измерение проходит только на 72КГц. Я даже не знаю, рекомендовать его или нет.

Если паять совсем не хочется, то можно использовать этот или транзистор тестер из прошлого обзора, а если хочется лучших характеристик (в основном в сторону расширения диапазона) и не нужно измерять индуктивности, то можно собрать C-ESR метр от Go.

Очень расстроил верхний диапазон измерения емкости в 1000мкФ, хотя я спокойно измерял и 2200 мкФ, но точность прибора падала, он начинал явно завышать показания емкости. В общем на этом пока все, очень буду рад любой информации по прибору и с удовольствием добавлю ее в обзор.

Допускаю что у кого нибудь он тоже есть, хотя и очень маловероятно, так как я не нашел по нему ничего, хотя часто все приборы являются повторением каких то уже известных конструкций.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +44 Добавить в избранное Обзор понравился +48 +115

Источник: https://mysku.ru/blog/china-stores/34621.html

Ссылка на основную публикацию