Linear выпустила регулятор, конфигурируемый как понижающий или инвертирующий преобразователь
Корпорация Linear Technology Corporation представила интегральную схему LTM8050, микромодульный регулятор μModule® regulator с максимальным током на выходе 2 А, который защищает от входных выбросов напряжением до 60 В и может быть сконфигурирован как понижающий или инвертирующий (т.е., с отрицательным выходом) преобразователь.
Благодаря защите входного напряжения LTM8050 может безопасно использоваться в устройствах, где шина питания может подвергаться всплескам напряжения или отклонениям.
Примерами таких применений являются автомобильное оборудование, авиационное электронное оборудование, промышленная автоматика, тяжелое оборудование, транспортные средства, робототехнические и промышленные системы.
Рабочее входное напряжение LTM8050 варьируется от 3.6 В до 58 В (60 В макс). Выходное напряжение регулируется с помощью одного резистора в диапазоне от 0.8 В до 24 В.
Если регулятор сконфигурирован как инвертирующий преобразователь, тогда выходное напряжение регулируется в диапазоне от -0.8 В до -24 В.
LTM8050 включает дроссель, DC/DC преобразователь, мощные FET-транзисторы и схему компенсации, которые размещаются в BGA корпусе размером 9 x 15 x 4.92 мм.
Для увеличения тока нагрузки свыше 2 А, возможно установить до четырех LTM8050, которые разделят ток нагрузки величиной 8 A.
В системах чувствительных к шуму импульсного стабилизатора и требующих внеполосные операции, частота переключения LTM8050 может регулироваться в широком диапазоне от 100 кГц до 2.4 МГц с помощью внешнего резистора.
Преобразователь LTM8050 доступен для работы в двух температурных диапазонах от-40°C до 125°C и от -55°C до 125°C. Цена за единицу составляет $14.00 в партии из 1000 штук. Для получения дополнительной информации перейдите по адресу www.linear.com/product/LTM8050.
Основные характеристики LTM8050:
- Широкий входной диапазон напряжения: от 3.6 В до 58 В (60 В абсолютный максимум)
- Выходной ток до 2 A
- Возможность параллельной работы для увеличения выходного тока
- Выходное напряжение от ±0.8 В до ±24 В (режимы понижающего и инвертирующего преобразователя)
- Регулируемая частота переключений: от 100 кГц до 2.4 МГц
- Возможность работы в режиме инвертора
- Токовое управление
- Программируемое плавное включение
- 9 мм × 15 мм × 4.92 мм BGA корпус
Даташит
Источник новости
Источник: http://cxem.net/electronic_news/electronic_news145.php
Понижающие преобразователи
Источник: http://radioskot.ru/publ/nachinajushhim/ponizhajushhie_preobrazovateli/5-1-0-1166
Повышающий DC-DC преобразователь. Принцип работы
Иногда надо получить высокое напряжение из низкого. Например, для высоковольтного программатора, питающегося от 5ти вольтового USB, надыбать где то 12 вольт.
Как быть? Для этого существуют схемы DC-DC преобразования. А также специализированные микросхемы, позволяющие решить эту задачу за десяток деталек.
Принцип работы
Итак, как сделать из, например, пяти вольт нечто большее чем пять? Способов можно придумать много — например заряжать конденсаторы параллельно, а потом переключать последовательно. И так много много раз в секунду. Но есть способ проще, с использованием свойств индуктивности сохранять силу тока.
Чтобы было предельно понятно покажу вначале пример для сантехников.
Фаза 1
Заслонка открывается и мощный поток жидкости начинает сливаться в никуда. Смысл лишь в том, чтобы этим потоком как следует разогнать турбину. Накачать ее энергией, передав энергию источника в кинетическую энергию турбины.
Фаза 2
Заслонка резко закрывается. Потоку больше деваться некуда, а турбина, будучи разогнанной продолжает давить жидкость вперед, т.к. не может мгновенно встать. Причем давит то она ее с силой большей чем может развить источник. Гонит жижу через клапан в аккумулятор давления. Откуда же часть (уже с повышеным давлением) уходит в потребитель. Откуда, благодаря клапану, уже не возвращается.
Фаза 3
Скорость турбины на излете, энергия перешла в давление в аккумуляторе. Сил продавить клапан, подпертный с той стороны набитым давлением уже не хватает. Вот вот и все встанет.
Но в этот момент вновь открывается заслонка и турбина вновь разгоняется, набирает энергию из источника, превращая энергию потока в энергию вращающихся масса металла.
Потребитель, тем временем, потихоньку жрет из аккумулятора.
Фаза 4
И вновь заслонка закрывается, а турбина начинает яростно продавливать жидкость в аккумулятор. Восполняя потери которые там образовались на фазе 3.
Назад к схемам
Вылезаем из подвала, скидываем фуфайку сантехника, забрасываем газовый ключ в угол и с новыми знаниями начинаем городить схему.
Вместо турбины у нас вполне подойдет индуктивность в виде дросселя. В качестве заслонки обычный ключ (на практике — транзистор), в качестве клапана естественно диод, а роль аккумулятора давления возьмет на себя конденсатор. Кто как не он способен накапливать потенциал. Усе, преобразователь готов!
Фаза 1
Ключ замкнут. Ток от источника начинает, фактически, работать на катушку. Накачивая ее энергией.
Фаза 2
Ключ размыкается, но катушку уже не остановить. Запасенная в магнитном поле энергия рвется наружу, ток стремится поддерживаться на том же уровне, что и был в момент размыкания ключа. В результате, напряжение на выходе с катушки резко подскакивает (чтобы пробить путь току) и прорвавшись сквозь диод набивается в конденстор. Ну и часть энергии идет в нагрузку.
Фаза 3
Ключ тем временем замыкается и катушка снова начинает нажирать энергию. В то же время нагрузка питается из конденсатора, а диод не дает току уйти из него обратно в источник.
Фаза 4
Ключ размыкается и энергия из катушки вновь ломится через диод в конденсатор, повышая просевшее за время фазы 3 напряжение. Цикл замыкается.
Как видно из процесса, видно, что за счет большего тока с источника, мы набиваем напряжение на потребителе. Так что равенство мощностей тут должно соблюдаться железно. В идеальном случае, при КПД преобразователя в 100%:
Так что если наш потребитель требует 12 вольт и кушает при этом 1А, то с 5 вольтового источника в преобразователь нужно вкормить целых 2.4А При этом я не учел потерь источника, хотя обычно они не очень велики (КПД обычно около 80-90%).
Если источник слаб и отдать 2.4 ампера не в состоянии, то на 12ти вольтах пойдут дикие пульсации и понижение напряжения — потребитель будет сжирать содержимое конденсатора быстрей чем его туда будет забрасывать источник.
Схемотехника
Готовых решений DC-DC существует очень много. Как в виде микроблоков, так и специализированных микросхем. Я же не буду мудрить и для демонстрации опыта приведу пример схемы на MC34063A которую уже использовал в примере понижающего DC-DC преобразователя.
Работа
Питание через токовый шунт Rsc идет в дроссель L1 оттуда через ключ (SWC/SWE) на землю и через диод D1 на накопительный конденсатор C2. C него на нагрузку. Прям как в схеме приведенной выше. Остальные элементы для задания режима работы микросхемы.
- SWC/SWE выводы транзисторного ключа микросхемы SWC — это его коллектор, а SWE — эмиттер. Максимальный ток который он может вытянуть — 1.5А входящего тока, но можно подключить и внешний транзистор на любой желаемый ток (подробней в даташите на микросхему).
- DRC — коллектор составного транзистора
- Ipk — вход токовой защиты. Туда снимается напряжение с шунта Rsc если ток будет превышен и напряжение на шунте (Upk = I*Rsc) станет выше чем 0.3 вольта, то преобразователь заглохнет. Т.е. для ограничения входящего тока в 1А надо поставить резистор на 0.3 Ом. У меня на 0.3 ома резистора не было, поэтому я туда поставил перемычку. Работать будет, но без защиты. Если что, то микросхему у меня убьет.
- TC — вход конденсатора, задающего частоту работы.
- CII — вход компаратора. Когда на этом входе напряжение ниже 1.25 вольт — ключ генерирует импульсы, преобразователь работает. Как только становится больше — выключается. Сюда, через делитель на R1 и R2 заводится напряжение обратной связи с выхода. Причем делитель подбирается таким образом, чтобы когда на выходе возникнет нужное нам напряжение, то на входе компаратора как раз окажется 1.25 вольт. Дальше все просто — напряжение на выходе ниже чем надо? Молотим. Дошло до нужного? Выключаемся.
- Vcc — Питание схемы
- GND — Земля
Все формулы по расчету номиналов приведены в даташите. Я же скопирую из него сюда наиболее важную для нас таблицу:
Конденсатор С1 призван оградить питающую цепь от бросков. Потому и взят побольше. Резистор R1 у меня взят на 1.5кОм, а R2 на 13кОм, что дает нам напряжение выхода в 12 вольт. В качестве диода надо выбирать диод Шоттки. Например 1N5819.
У диодов Шоттки заметно ниже падение напряженияна pn переходе, а еще ниже паразитная емкость этого перехода, что позволяет ему работать с меньшими потерями на больших частотах. Микросхема может работать на входном напряжении от 3 вольт.
Опыт
Для примера по быстрому развел микромодульчик, забирающий 5 вольт и выдающий 12 вольт. Схема уже приведена выше, а печатка получилась такой:
Вытравил, спаял…
Запитал от 5 вольт и нагрузил на 12ти вольтовую светодиодную линейку. КПД у моего преобразователя, кстати, получился так себе — не выше 50% т.к. слишком маленькая индуктивность дросселя и большая емкость конденсатора С3, но иного под рукой не оказалось.
Вот так вот. Простая схемка, а позволяет решить ряд проблем.
Источник: http://easyelectronics.ru/povyshayushhij-dc-dc-preobrazovatel-princip-raboty.html
Analog Devices анонсировала конфигурируемый пятиканальный понижающий преобразователь с входным напряжением 60 В
» Новости » Питание · Силовая электроника
08-08-2018
Analog Devices » LTC3372
Analog Devices анонсировала высокоинтегрированную микросхему управления питанием Power by Linear LTC3372, предназначенную для систем с несколькими низковольтными выходами и входными напряжениями до 60 В.
Помимо 60-вольтового контроллера синхронного понижающего импульсного преобразователя, устройство содержит четыре монолитных конфигурируемых синхронных понижающих регулятора, входы которых могут подключаться к выходу высоковольтного контроллера.
Такая комбинация позволяет с помощью одной микросхемы получить до пяти высокоэффективных преобразователей с низкими токами потребления, идеально подходящих для автомобильных, промышленных и медицинских приложений.
Понижающий контроллер, работающий при входных напряжениях от 60 В до 4.5 В, управляет всеми N-канальными MOSFET силового каскада. Его выходное напряжение может быть установлено равным 3.3 В или 5 В при максимальном выходном токе 20 А. В типичной конфигурации к выходу контроллера подключаются четыре монолитных понижающих регулятора.
Выходное напряжение каждого из четырех каналов понижающих регуляторов программируется начиная от 0.8 В, а выходной ток, в соответствующей конфигурации, достигает 4 А. С помощью выводов C1-C3 из восьми одноамперных силовых каскадов можно создать восемь уникальных конфигураций: от четырех 2-амперных понижающих преобразователей до двух 4-амперных преобразователей.
Это позволяет использовать в каждом канале только один дроссель.
Зачастую в радиолюбительской практике возникает необходимость в получении различных стабилизированных напряжений для питания устройств. Наиболее часто для этих целей служат:
Наиболее удачным решением для радиолюбителей и мастеровых людей представляет исполнение данной микросхемы в регулируемом варианте – LM2596ADJ. Даташит на ИС LM2596 можно посмотреть здесь. На основе микросхемы китайская народная промышленность выпускает широкий спектр готовых модулей dc-dc преобразователей, как понижающих, так и повышающих. Одним из них является вот такой dc-dc step down модуль. Изделие обладает следующими характеристиками:
Единственное, что требуется перед началом эксплуатации – это установить требуемое напряжение на выходе на холостом ходу и проверить его под нагрузкой. Надо отметить, что входное напряжение должно быть хотя бы на 1,5 В больше выходного. При необходимости, установив на микросхему радиатор и применив принудительное охлаждение, можно добиться величины выходного тока в 4,5 Ампера. Однако такой режим работы является экстремальным и в виду дешевизны модуля лучше использовать несколько их штук с параллельным включением. Так же как и в случае с LM78XX, на основе данных модулей можно строить двуполярные источники питания.
Кроме указанных выше характеристик модуль обладает защитами от короткого замыкания и по температуре. При достижении микросхемой температуры в 125 градусов Цельсия работа ИС прекращается и возобновляется только после ее снижения. Таким образом, вывести ИС из строя модуль весьма и весьма сложно. Для сравнения сначала запитал радиоприемник от стабилизатора на основе LM7809 с сетевым выпрямителем на трансформаторе, потом схему на LM7809 заменил данным модулем. В результате низкочастотный фон в динамике пропал. К сожалению, производитель модулей не установил защитный диод на входе, предотвращающий выход схемы из строя в результате переполюсовки питания, но это можно сделать и самому. Специально для сайта Радиосхемы – Кондратьев Николай, г. Донецк Форум |
Типовая схема включения LTC3372. |
Благодаря низкому току потребления, LTC3372 идеально подходит для устройств с батарейным питанием или автомобильных приложений, в которых одна или несколько шин питания должны находиться в постоянно включенном состоянии.
Стабилизируя выходное напряжение 5 В при включенном высоковольтном контроллере, отсутствии нагрузки и входном напряжении 12 В, микросхема потребляет лишь 15 мкА. Каждый включенный монолитный понижающий регулятор добавляет к этому току всего 8 мкА.
Частота переключения понижающих регуляторов в диапазоне от 1 МГц до 3 МГц программируется внешним резистором или задается внешним генератором, в то время как высоковольтный контроллер работает на 1/6 этой частоты.
Перечень дополнительных функций включает прогрессирующее ограничение тока, мягкий запуск, защиту от коротких замыканий и повышенного выходного напряжения.
Зависимость КПД низковольтного понижающегорегулятора от тока нагрузки. |
LTC3372 выпускается в 48-контактном корпусе QFN размером 7 мм × 7 мм со сниженным тепловым сопротивлением. Микросхемы групп E и I рассчитаны на использование в диапазоне температур перехода от –40 °C до 125 °C, а группы H – в расширенном диапазоне от –40 °C до 150 °C.
Сводка основных характеристик LTC3372
- Высоковольтный понижающий контроллер: диапазон входных напряжений от 4.5 В до 60 В, выходное напряжение 5 В или 3.3 В;
- Низковольтные понижающие регуляторы: диапазоны входных напряжений от 2.5 В до 5.5 В, выходные напряжения от 0.8 В;
- Восемь одноамперных низковольтных силовых каскадов, конфигурируемых как 2, 3 или 4 выходных канала;
- 8 уникальных конфигураций выходов (от 1 А до 4 А на канал):
- Низкий собственный ток потребления
- Только высоковольтный контроллер: 15 мкА (при выходном напряжении 5 В),
- Только высоковольтный контроллер: 23 мкА (при выходном напряжении 3.3 В),
- 9 мкА на каждый дополнительный канал низковольтного регулятора;
- Рабочая частота от 1 МГц до 3 МГц (высоковольтный контроллер работает на 1/6 частоты);
- Программируемая или внешняя частота переключения;
- Программируемый сторожевой таймер и программируемая задержка сброса по включению питания;
- Выход монитора температуры кристалла;
- 48-выводной корпус QFN размером 7 мм × 7 мм с улучшенной теплопроводностью.
Цена и доступность
Микросхемы LTC3372 выпускаются серийно и в лотах из 1000 приборов продаются по ценам, начинающимся от $5.75 за штуку.
Источник: https://www.rlocman.ru/news/new.html?di=532531
Преобразователи напряжения импульсные
Для преобразования электроэнергии, а точнее сказать, напряжения, можно использовать различные устройства, такие как трансформаторы, генераторы, зарядные устройства. Все они являются преобразователями электрической энергии.
Так как для питания многих современных устройств нужно не только переменное, но и постоянное напряжение, то для этих целей не всегда есть возможность применять такой источник энергии, как аккумуляторная батарея. Именно она выдаёт идеальное постоянное напряжение путём химической реакции.
Раньше для преобразования и понижения напряжения применялись только низкочастотные трансформаторы, работающие в паре с выпрямителем и сглаживающим фильтром. Однако они обладали очень большими габаритами.
С ростом и развитием инновационных технологий в быту и на производстве стали появляться электронные устройства, требующие миниатюрных преобразовательных устройств. Так и появились импульсные преобразователи постоянного напряжения. Миниатюрность их требуется больше для переносных мобильных устройств, нежели для стационарных.
Все импульсные преобразователи можно разделить на следующие группы:
- Повышающие, понижающие, инвертирующие;
- Со стабилизацией и без неё;
- С гальванической развязкой и без неё;
- Регулируемые и нерегулируемые;
- Обладающие различным диапазоном входного и выходного напряжения.
Однако импульсные преобразователи собраны на более сложных схемах, нежели их предшественники классические понижающие выпрямители.
Принцип действия
Классические преобразователи с регулировкой выходного напряжения, как правило, управляют сопротивлением элемента, выполняющего регулировочную роль (транзистор или тиристор), через него постоянно протекает электрический ток, который и заставляет данный элемент нагреваться, при этом теряется значительная часть мощности. Главное преимущество такого устройства это минимум запчастей, простота, и отсутствие помех. Все остальные характеристики больше относятся к недостаткам.
Импульсный преобразователь напряжения использует регулировочный элемент лишь в виде ключа. То есть он работает в двух режимах:
- Закрыт, и не пропускает электрический ток;
- Открыт, и имеет минимальное проходное сопротивление.
При этом каждый из режимов обладает низким выделением тепла, что даёт возможность показывать высокий коэффициент полезного действия (КПД). Нагрузка же получает непрерывно электроэнергию за счёт накопления и хранения её в таких электрических резервуарах, как:
- Индуктивность (катушках);
- Конденсаторах.
Регулировка происходит за счёт изменения времени замкнутого состояния ключевого элемента. Снижение габаритов, а также массы устройств, возможно только за счёт повышения частоты, от 20 кГц до 1 МГц. Импульсные устройства могут формировать на выходе как пониженное напряжение, так и с изменением полярности. За счёт применения в них трансформаторов, работающих на высоких частотах позволяет:
- Качественно изолировать вход от выхода;
- Получить на выходе устройства несколько выходных напряжений.
Как и любое устройство импульсный преобразователь обладает и недостатками, которыми являются:
- Сложность схемы и наличие большего количества запчастей, а значит потенциально существует больше причин поломки;
- Являются источниками помех.
Однако постоянное развитие технологий в этом направлении снижают эти недостатки к минимальным значениям.
Классификация и виды импульсных преобразователей
Выпускаемые преобразователи можно разделить на три основные группы по роду тока:
- Конверторы. Выполняют преобразование переменного напряжения (АС) в постоянное (DC). Они применяются в основном в промышленности и в быту для изолированного питания устройств потребителей, где используется переменное напряжение 380/220 Вольт с частотой 50 Гц;
- Инверторы. Они постоянное напряжение преобразуют в переменное. Применяются в устройствах бесперебойного питания, а также сварочных аппаратах где за счёт такого преобразования есть возможность уменьшения габаритов, а значит и веса устройств.
- Конверторы постоянного напряжения. Преобразуют DC в DC. Применяются для питания аккумуляторных батарей и их подзарядки в системах где питание происходит от одного конвертора AC/DC, а каждый уже непосредственный аккумулятор получает за счёт конвертора DC/DC нужное конкретно для него напряжение.
Самые распространённые схемы
Существует несколько классических стандартных схем, которые чаще всего применяются в импульсных преобразователях постоянного напряжения. Они обеспечивают разные величины соотношений между входным и выходным напряжением. Эти схемы раскрывают саму суть преобразователей и их принцип работы.
Понижающий преобразователь напряжения и его схема
Она используется для питания потребителей, нагрузка которых выражается большими токами и малым напряжением. Это первоочередная схема способная заменить классический низкочастотный преобразователь, в свою очередь, обеспечит увеличение КПД, уменьшит габариты и вес устройства.
Транзистор VT выполняет роль электронного ключа, его работа лежит между двумя режимами осечки (полного закрытия) и насыщения (полного открытия). Расчет каждой детали производится непосредственно для конкретного потребителя и источника напряжения.
Основным недостатком данной схемы является вероятность пробоя и появление полного большого входного напряжения на потребителе. Это, несомненно, приведёт к неисправности питаемого устройства.
Повышающий преобразователь и схема
Она может быть использована для получения напряжения на потребителе или на нагрузке больше чем на источники энергии.
Применяется для подсветки дисплеев портативных компьютеров и для других электронных устройств где необходимо из небольшого напряжения сделать большее.
Здесь имеет место процесс появления ЭДС самоиндукции, которая появляется после открытия транзистора. Вся накопленная энергия в дросселе попадает в нагрузку. При этом напряжение на выводах дросселя меняет свою полярность.
Инвертирующая схема
Может использоваться для получения напряжения, которое обладает обратной полярностью. При этом по значению U вых может быть меньше или больше U вх. Энергия, которая скапливается в дросселе направляется в нагрузку через сглаживающий конденсатор.
Как видно из этих схем все они не имеют гальванической развязки, то есть непосредственной изоляции вторичного выходного напряжения от входного.
Вот одна из таких схем, содержащих трансформатор. Энергия, которая накапливается в магнитном поле первичной обмотки трансформатора, в нагрузку выводится через вторичную обмотку. Трансформатор в этом случае может быть и повышающим и понижающим. Применяется очень часто в сетевых источниках где есть необходимость снижения входного напряжения от нескольких сотен вольт до единиц или десятков.
В момент когда транзистор закрывается трансформатор своей индуктивностью может вызвать на коллекторе высоковольтный скачок или всплеск, что несомненно, очень плохо и может привести к пробою полупроводникового элемента.
Для этого и устанавливается RC-цепочка из конденсатора и катушки индуктивности, которая может быть подключена параллельно ключу или первичной обмотке.
Такой обратноходовой импульсный преобразователь широко используется во многих сетевых источниках электрического тока с небольшой мощностью порядка 100 Вт.
Еще одна схема с трансформатором и прямым включением диода изображена на схеме ниже.
Используется в источниках питания около 250 Вт. Все эти рассмотренные выше преобразователи называются однотактные, потому что за один период преобразования в нагрузку будет поступать только один импульс.
Основное их преимущество — это простота схемы состоящей всего из одного транзистора, работающего в режиме ключа, а недостаток намагничивание сердечника которое не даёт в полном объёме использовать с максимальным КПД этот магнитный материал.
Передача энергии потребителю и подготовка трансформатора к следующему циклу размагничивания осуществляется с некоторой паузой которая и снижает их выходную мощность.
Вот несколько практических реализованных в жизни схем, основой которого является импульсный преобразователь. Первая из них имеет регулировочный элемент, выполненный на микросхеме, в свою очередь, обе схемы выполнены на полевых транзисторах. Расчет их выполнен под напряжение для нагрузки от 5 до 12 Вольт.
Методы регулировки
Существуют три вида регулирования в системах импульсных преобразователей:
- Широтно-импульсная модуляция (ШИМ) Распространённый метод, который применяется в массовом производстве управляющих микросхем;
- Частотно-импульсное регулирование (ЧИМ). Здесь продолжительность когда ключ находится во включенном режиме должна быть согласована с периодом колебаний в контуре, обеспечивающем малые значения тока и напряжения на ключе в момент переключения. Используется там, где реализованы резонансные схемы.
- Комбинированный вид. Метод свойственен системам, в которых используется автоколебательный процесс, а частота переключения находится в зависимости и от напряжений на входе, и выходе преобразователя, и от величины тока в цепи потребителя;
- Триггерный метод. Используем исключительно в схеме понижающего регулятора, в котором необходимо, чтобы при закрытом состояния ключа, то есть транзистора, величина напряжения в нагрузке увеличивалась.
Критерии выбора
Критерии которым должен отвечать качественный импульсный преобразователь и стабилизатор:
- Продолжительный режим работы в экстремальных моментах когда ток в нагрузке максимален;
- Полная автоматизация регулирования напряжения на выходе. Только тогда можно не бояться ни перегрузок, ни даже короткого замыкания;
- Высокая надёжность устройства, обусловленная высоким показателем КПД и как следствие низким выделением тепла;
- Минимальные габариты и вес;
- Наличие гальванической развязки, которая исключает даже теоретически саму возможность попадания опасного напряжения входа, на выходные контакты, а значит на незащищенный потребитель.
Человек не знакомый с электроникой должен помнить при выборе нужного бытового стабилизатора напряжения что он должен соответствовать главным образом мощности тех приборов, к которым он будет подключен.
А также падения и всплескам напряжения, которые могут возникнуть в сети.
Лучше выбирать стабилизатор или импульсный понижающий преобразователь напряжения немного с запасом по мощности, так как количество используемых потребителей в квартирах и частных домах постоянно растёт.
Источник: https://amperof.ru/elektropribory/preobrazovateli-napryazheniya-impulsnye.html
Универсальный преобразователь напряжения или пару слов от том, что такое SEPIC
В сегодняшнем обзоре я хочу рассказать о довольно полезной вещи, универсальном преобразователе напряжения. Что это такое, как работает и что может, как всегда под катом.
Некоторое время назад, в одном из моих обзоров я уже упоминал о таком типе преобразователей, и даже собрал для примера один из них, сегодня пришла очередь обзора готового преобразователя такого типа.
Для начала буквально пара слов о том, что же это за преобразователь такой хитрый. Обычно преобразователи бывают трех типов. 1. Повышающий 2. Понижающий 3. Инвертирующий Но все они не могут выдавать напряжение выше/ниже чем напряжение источника.
Например понижающий из 10 никогда не сделает 12, а повышающий из 20 не сделает 5. Но иногда бывают ситуации, когда входное напряжение в процессе работы может плавать как выше, так и ниже необходимого выходного.
Например надо 12 Вольт (к примеру питание жесткого диска или монитора), а питается это все от бортовой сети автомобиля, где может быть и 10 и 14.5. Такую задачу чаще всего решают двумя способами. 1. Повышают до 15-20, а потом понижают до необходимого. 2.
Ставят повышающе-понижающий преобразователь, он же Buck-Boost, он же SEPIC.
Первый тип уже обозревал коллега Ksiman.
Я же расскажу о втором. Сначала немного общей информации. Пришел преобразователь вместе с другим товаром и был упакован просто в пакетик с защелкой.На сайте магазина заявлено Входное напряжение — 4V-35V Выходное напряжение — 1.23V-32V Выходной ток — 3A максимум Максимальная мощность — 25 Ватт Размеры 50 x 25 x 12мм Что означают данные характеристики.
Выходной ток не может быть более 3 Ампер при условии что выходная мощность не может быть более 25 Ватт. Т.е. ограничивать надо то, во что раньше «упремся». Можно получить на выходе 10 Вольт 2.5 Ампера (25 Ватт), или 5 Вольт 15 Ватт (3 Ампера). На самом деле характеристики отличаются от заявленных, но об этом немного позже.
Выглядит платка вполне аккуратно, видно подстроечный резистор для регулировки выходного напряжения (ток не регулируется и не ограничивается).Также на плате видно два дросселя, один из признаков SEPIC преобразователя, хотя и необязательный. иногда делают один дроссель с двумя обмотками, но он тоже на вид отличается.
Ну и печатная платка вид сверху :)Снизу пусто. Видны межслойные переходы, позволяющие отводить тепло на нижнюю сторону платы, но как то расположены они нелогично, скорее всего они больше играют роль именно электрического соединения. А жаль, можно было улучшить тепловой режим, но лучше так, чем никак.
Думаю что размеры платы проще понять по такому фото :)Так, с внешним видом закончили, теперь попробуем разобраться подробнее, что же это такое. Мне конечно очень хотелось бы расписать подробно что это и как оно работает.
Но все дело в том, что описать совсем просто такой тип преобразователей тяжело, мало того, я даже когда подготавливал материалы к обзору, то натыкался на противоречивые описания. Для начала блок схема собственно этого типа преобразователя.
Стоит отметить, что существует два варианта топологии данного типа преобразователя, я приведу ту, к которой относится обозреваемая плата.Дальше я попробую «дать слово» специалистам с большим опытом.
В процессе поисков я наткнулся на описание, которое на мой взгляд наиболее точное. Ссылка на оригинал статьи, а ниже я процитирую краткое описание принципа работы.
На схеме силовой ключ в состоянии — замкнут. Когда ключ замкнут, входная индуктивность заряжается от источника, а вторая индуктивность заряжается от конденсатора, выходной конденсатор в это время обеспечивает ток нагрузки.
В это время энергия в нагрузку не поступает, полярности токов в катушках и напряжений на конденсаторах обозначены на схеме. Тот факт, что обе индуктивности, L1 и L2, при замкнутом ключе отключены от нагрузки, усложняет регулировочные характеристики, как мы увидим далее.После размыкания ключа схема приобретает несколько другой «вид».
Когда ключ разомкнут, первая индуктивность заряжает конденсатор С1, а также поддерживает ток в нагрузке, как показано на схеме. Вторая индуктивность в это время также подключена к нагрузке.
Если простыми словами, то схема работает за счет взаимной перекачки энергии между компонентами, позволяет как повышать напряжение, так и понижать его. Для лучшего понимания я покажу где на плате все эти элементы.
Кстати, один из признаков SEPIC преобразователя — один ключевой элемент (не важно, транзистор или силовой ШИМ) и один диод.Я начертил схему данной платы. номиналы пары компонентов могут немного отличаться от реальных, но в основном все соответствует.
Из минусов сразу отмечу то, что подстроечный резистор подключен к выходу, а не к общему проводу. Такое подключение крайне не рекомендуется, так как в случае пропадания контакта при регулировке на выход будет подано максимальное выходное напряжение.Основой данной платы является небольшой ШИМ контроллер, который уже управляет мощным полевым транзистором и контролирует выходное напряжение.
В качестве ШИМ контроллера применен FP5139, ссылка на даташит.
Данный ШИМ контроллер работает на частоте 500КГц, что весьма неплохо. Диапазон входного напряжения 1.8-15 Вольт, что также приятно, особенно нижний порог в 1.8 Вольта. Думаю прикупить себе отдельно этих микрух.
Управляет контроллер полевым транзистором 088N04L, это 40 Вольт, 50 Ампер, 8.8мОм транзистор который может управляться сигналом логического уровня (обычно это 5 Вольт).
Также отличительным признаком SEPIC преобразователя является емкий керамический конденсатор. Вообще, SEPIC отличается от других преобразователей тем, что содержит больше компонентов. У классических повышающих, понижающих, инвертирующих преобразователей три основных элемента, но включенных в разной комбинации — дроссель, транзистор, диод. Здесь к этой связке добавлен еще один дроссель и конденсатор.
Выходной диод на плате — SK86, весьма неплохой диод, заявлен максимальный ток до 8 Ампер.
Дальше я перешел к тестам. Когда собрал такой «стенд», то мне даже жалко стало преобразователь. Порвут ведь как Тузик грелку, подумал я, и как показала практика, не сильно был далек от истины.Первое включение. Сразу расскажу что вообще означает куча цифр на экранах. Слева блок питания. Верхний ряд — Выходное напряжение, выходной ток. Нижний ряд — Выходная мощность, отданное количество мАч в нагрузку (но нам это неважно в данном случае) Справа электронная нагрузка. 1. Установленный ток, Напряжение отключения (в данном случае неважно) 2. Измеренный ток нагрузки, измеренное входное напряжение (выходное напряжение преобразователя). 3. Принятая емкость (неважно в данном случае), мощность нагрузки (ток х напряжение). 4. Неважно.Дальше я погонял преобразователь в разных режимах. Режимы выбирались отчасти спонтанно, параллельно измерял температуру основных компонентов и записывал в табличку.Входное напряжение я не поднимал выше 14 Вольт, ниже расскажу почему так.Судя по результатам измерений температуры я могу сказать, что плата не выдает заявленных характеристик. Но небольшой нюанс. Не выдает она их из-за перегрева, мощности силовых элементов хватает чтобы выдавать их в течении короткого времени, но при длительном перегревается. Можно конечно сделать радиатор, но охлаждать надо транзистор, два дросселя и диод, это сложно 🙁 Кроме того было замечено небольшое снижение выходного напряжения по мере прогрева преобразователя, обусловлено это часто тем, что применены не прецизионные резисторы и их сопротивление«плывет» от нагрева, но изменение не очень большое и им можно пренебречь.Так как данный тип преобразователей отличается от других решения более высоким КПД, то я решил проверить и его. В качестве демонстрации я сделал небольшой эксперимент. Для более наглядной демонстрации я выставлял такой режим работы, чтобы входная мощность была всегда равна 10 Ватт (ну или около того). в таком режиме выходная мощность будет равна КПД преобразователя. На самом деле КПД будет выше, так как в таком варианте не учтены потери на проводах. Но так как они короткие, то врядли погрешность превысит пару процентов.Еще несколько фото в разных режимах, повышение, понижение и с разным значением напряжений. Кстати, по предыдущим фотографиям можно также посчитать КПД. Для этого надо измеренную мощность нагрузки (справа) разделить на измеренную мощность источника (слева). Например на БП 15.45, на нагрузке 12.3. 12.3 / 15.45 = 0.796 Но уже даже так можно сказать, что КПД выше чем у комбинации повышающий + понижающий преобразователь.
Выше я писал что ограничил входное напряжение на уровне в 14 Вольт. Сделано это было не просто так. Дело в том, что я сначала начал тестировать, а только потом перерисовал схему. Изначально я думал что производитель просто сделал все по схеме из даташита и транзистор на плате для управления включением/выключением (кстати, преимущество SEPIC в том, что выход можно отключить, например step-up отключить нельзя) и входное напряжение не должно превышать 15 Вольт (из даташита на контроллер). Хотел еще ругаться что указали диапазон входного 35 Вольт. Но начав разбираться со схемой я понял, что производитель поступил хитрее, он поставил на плате стабилизатор питания на примерно 9.5 В. Я допускаю что так сделано не на всех платах, будьте внимательны. Сбил меня с толку именно регулирующий транзистор стабилизатора так как в схеме из даташита тоже есть транзистор. Кстати, джампер на плате управляет включением/выключением преобразователя.Разобравшись со схемой я решил продолжить тесты, но не успев даже начать я спалил плату. Мощный транзистор ушел в КЗ, я даже не понял как это произошло. Порывшись в загашниках нашел какую то материнскую плату, откуда выпаял полевой транзистор в таком же корпусе. Разница в том, что он только до 30 Вольт 🙁 Быстро перепаял, благо ничего больше из строя не вышло. Кстати. Данный преобразователь в какой то степени является «безопасным», так как при выходе из строя силового транзистора он не подаст на выход полное напряжение питания как в случае с step-down. Как еще один нюанс, данный тип преобразователей имеет выше пульсации на выходе (в сравнении с другими типами), но гораздо меньшие по входу, что дает преимущество при работе от аккумуляторов.А вот дальше я захотел не только продолжить тесты, но и попробовать разобраться, почему вышел из строя транзистор. В процессе тестов было замечено, что чем выше входное напряжение, тем ниже КПД. Например при выходном 15 Вольт КПД составил для входного 20 Вольт 80%, а для 26 Вольт всего 62%. Причем чем выше выходное, тем КПД еще меньше. При 20 Вольт выходного я легко получал входной ток более 2 Ампер и КПД ниже 40%. После этого я вспомнил, что около транзистора была небольшая капелька припоя, которой до пробоя не было, а выходное напряжение после последнего эксперимента составляло 25 Вольт, а я и на входе накрутил почти 30, он даже пискнуть не успел. Т.е. получается что транзистор буквально «спекся». Вызвано это скорее всего тем, что индуктивности начали входить в режим насыщения. SEPIC конечно может работать в широком диапазоне напряжений, но оптимальный диапазон все таки привязан к примененным компонентам и нельзя охватить все.Эксперименты показали, что чем ниже выходное напряжение, тем выше я могу поднять входное. При 10 Вольт на выходе я легко накрутил 27 Вольт на входе, выше поднимать не стал так как максимальное напряжение транзистора всего 30. Вообще это нормально и просто надо учитывать при использовании. Т.е. это скорее особенность чем неисправность.Расписывать плюсы и минусы не буду, думаю все понятно просто из обзора, но немного сведу полученную информацию вместе. 1. Преобразователь работает и обеспечивает КПД выше чем у комбинации повышающий + понижающий преобразователь. 2. Характеристики платы завышены, но при желании можно получить и 3 Ампера, и 25 Ватт, все зависит от комбинации входного и выходного напряжения. 3. Компоненты применены очень неплохие. Но дроссели должны быть рассчитаны на больший ток, а транзистор надо дополнительно охлаждать. 4. Плата содержит стабилизатор питания ШИМ контроллера, благодаря чему входное напряжение может быть увеличено выше 15 Вольт. 5. При определенной комбинации входного и выходного напряжения происходит пробой силового транзистора. 🙁 В общем плата вполне работоспособна, но с некоторыми ограничениями о которых написано выше. Подходит для питания устройств с небольшим потребляемым током в широком диапазоне входного напряжения, но для мощных устройств не пойдет из-за перегрева.
В интернете видел небольшой обзор этой платы, там результат немного другой, но скорее непонятно было то, что там указано насчет защиты. У меня она сработала один раз, напряжения на выходе не было пока не отключил питание платы, но как она определяет перегрузку я не понимаю, так как датчиков тока нет, хотя в даташите защита от КЗ заявлена и она срабатывала…
Надеюсь что обзор был интересен и полезен, если интересно, могу проверить работу в других комбинациях напряжений.
Небольшая скидка
Магазин дал еще купонов на скидку в 8%, может будет полезно WSKD89, WS9H7T, WSNHZR, WSYZK7, WS3X3L
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
Источник: https://mysku.ru/blog/china-stores/35161.html
Инвертирующий усилитель на ОУ. Принцип работы
Инвертирующий усилитель является одним из самых простых и наиболее часто используемых аналоговых схем. С помощью всего двух резисторов, мы можем выставить необходимый нам коэффициент усиления. Ничего не мешает нам сделать коэффициент менее 1, тем самым ослабив входной сигнал.
Часто к схеме добавляют еще один резистор R3, сопротивление которого равно сумме R1 и R2.
Чтобы понять, как работает инвертирующий усилитель, смоделируем простую схему. У нас на входе напряжение 4В, сопротивление резисторов составляет R1=1к и R2=2к. Можно было бы, конечно, подставить все это в формулу и сразу вычислить результат, но давайте посмотрим, как именно работает эта схема.
Начнем с напоминания основных принципов работы операционного усилителя:
Обратите внимание, что неинвертирующий вход (+) соединен с массой, то есть на нем напряжение равное 0В. В соответствии с правилом №1 на инвертирующем входе (-) так же должно быть 0В.
Итак, мы знаем напряжение, находящееся на выводах резистора R1 и его сопротивление 1к. Таким образом, с помощью закона Ома мы можем выполнить расчет, и рассчитать, какой ток течет через резистор R1:
IR1 = UR1/R1 = (4В-0В)/1к = 4мА.
Чтобы знать, куда дальше течет этот ток, мы должны знать еще принцип действия усилителя:
Таким образом, ток, протекающий через R1, течет далее через R2!
Снова воспользуемся законом Ома и вычислим, какое падение напряжения происходит на резисторе R2. Мы знаем его сопротивление и знаем какой ток через него, следовательно:
UR2 = IR2R2 = 4мА *2к = 8В.
Получается, что на выходе мы имеем 8В? Не совсем так. Напомню, что это инвертирующий усилитель, т. е. если на вход мы подаем положительное напряжение, а на выходе снимаем отрицательное. Как же это происходит?
Это происходит вследствие того, что обратная связь установлена на инвертирующем входе (-), и для уравнивания напряжений на входе усилитель снижает потенциал на выходе. Соединения резисторов можно рассмотреть как простой делитель напряжения, поэтому чтобы потенциал в точке их соединения был равен нулю, на выходе должно быть минус 8 вольт: Uвых. = -(R2/R1)*Uвх.
Есть еще один подвох, связанный с 3 правилом:
То есть нужно проверить, что рассчитанные нами напряжения можно реально получить через усилитель. Часто начинающие думают, что усилитель работает как источник свободной энергии и вырабатывает напряжение из ничего.
Но надо помнить, что для работы усилителя также нужно питание.
Классические усилители работают от напряжения -15В и +15В.
В такой ситуации наши -8В, которые мы рассчитали, являются реальным напряжением, так как находится в этом диапазоне.
Однако современные усилители часто работают с напряжением 5В и ниже. В такой ситуации нет никаких шансов, чтобы усилитель выдал нам минус 8В на выходе. Поэтому, при проектировании схем всегда помните, что теоретические расчеты всегда нужно подкреплять реальностью и физическими возможностями.
Необходимо отметить, что инвертирующий усилитель имеет один недостаток. Мы уже знаем, что повторитель напряжения не нагружает источник сигнала, поскольку входы усилителя имеют очень большое сопротивление, и потребляют ток так мало, что в большинстве случаев его можно игнорировать (правило №2).
Инвертирующий же усилитель имеет входное сопротивление равное сопротивлению резистора R1, на практике оно составляет от 1к…1М. Для сравнения, усилитель с входами на полевых транзисторах имеет сопротивление порядка сотен мегаом и даже гигаом! Поэтому иногда может быть целесообразно перед усилителем установить повторитель напряжения.
Источник: http://www.joyta.ru/9452-invertiruyushhij-usilitel-na-ou-princip-raboty/
DC DC
Главная > Теория > DC DC
Импульсные источники питания обеспечивают более высокую эффективность, чем обычные линейные. Они могут повышать напряжение, понижать и инвертировать. Некоторые устройства изолируют выходное напряжение от входного.
Повышающий преобразователь напряжения 12/35 В
Общее понятие о преобразователях DC DC
Линейные стабилизаторы, используемые в трансформаторных БП, поддерживают постоянное выходное напряжение благодаря элементу схемы, например, транзистору, на котором осаждается избыточное напряжение. Система управления постоянно контролирует выходное напряжение и корректирует его падение на этом элементе.
Линейные стабилизаторы имеют некоторые преимущества:
- отсутствие помех;
- низкая цена и простота эксплуатации.
Но такое устройство не лишено недостатков:
- избыточное напряжение преобразуется в тепло;
- нет возможности увеличить напряжение.
Преобразователи dc в dc импульсного типа представляют собой схемы, способные конвертировать один уровень напряжения в другой, используя катушки и конденсаторы, временно сохраняя в них энергию и разряжая их таким образом, чтобы получить конечные желаемые уровни сигнала.
Принцип работы импульсного преобразователя
Основа для работы многих преобразователей – явление самоиндукции. Допустим, есть катушка индуктивности, через которую протекает постоянный ток. Если внезапно прервать протекание тока, в магнитном поле, индуцированном вокруг катушки, возникает ЭДС самоиндукции и, соответственно, напряжение с обратной полярностью на ее клеммах.
Важно! Контролируя ток и время переключения схемы, можно регулировать напряжение самоиндукции.
Импульсный преобразователь – электронная схема, содержащая катушку, которая циклически подключается к источнику питания и отключается.
- Если индуцированное напряжение добавляется к входному, то получается повышающий преобразователь;
- При включении катушки так, чтобы индуцированное в ней напряжение вычиталось из напряжения ИП, будет схема понижения напряжения.
Так как катушка требует циклической зарядки, в схеме необходим конденсатор, который будет фильтровать сигнал и поддерживать постоянное выходное напряжение.
Важно! Фильтрация не идеальна – выходное напряжение всегда является импульсным. Чрезмерный уровень этих помех может привести к неисправности схемы, например, к приостановке микроконтроллера.
Параметры импульсных преобразователей
Основные технические характеристики устройств, указываемые производителем:
- Выходное напряжение. Может быть зафиксировано (нерегулируемо) или установлено в определенном диапазоне. В случае возможных отклонений производитель должен указать их пределы, например, 5В +/- 0,2 В;
- Максимальный выходной ток;
- Входное напряжение;
- Эффективность. Понимается, как отношение выходной мощности к входной. Разница между ними – это потери, выделяющиеся в виде тепла. Показатель выражается в процентах. Чем ближе к 100%, тем лучше.
Важно! Эффективность зависит еще от условий работы. Поэтому следует внимательно изучить примечания к каталогам производителей в поисках графиков. Может оказаться, что очень дорогой преобразователь имеет параметры хуже, чем намного более дешевые, оптимизированные для работы при другом питающем напряжении.
Входное напряжение, в зависимости от типа инвертора, может быть:
- ниже выходного, если схема повышающая (boost);
- выше выходного, если преобразователь понижающий (buck);
- выше или ниже, но в пределах диапазона (sepic).
Повышающие преобразователи незаменимы, когда необходимо поднять напряжение. Допустим, устройство оснащено литий-ионным аккумулятором 3,6 В и ЖК-дисплеем, предназначенным для питания 5 В.
Важно! В целом, повышение напряжения происходит с меньшей эффективностью, чем его понижение. Поэтому лучше иметь источник высокого напряжения, которое будет уменьшено до надлежащего, чем наоборот.
В случае третьей конфигурации входное напряжение может колебаться, решение о его повышении или понижении принимает сама схема, чтобы получить стабильный сигнал на выходе. Эти преобразователи идеально подходят для работы в схемах, где напряжение питания мало отличается от желаемого. Хотя диапазон регулирования может быть большим. Например, на входе – 4-35 В, на выходе – 1,23-32 В.
Так как потери мощности малы, преобразователь напряжения dc dc хорошо подходит для схем с питанием от низковольтных аккумуляторов. Он полезен, например, когда управляющая электроника питается от 5 В, а исполнительные компоненты – от батареи 12 В.
Если предположить, что управляющая электроника берет ток 200 мА, то мощность потребления будет 5 В х 200 мА = 1 Вт. При использовании стабилизатора 7805 для снижения напряжения мощность, потребляемая от батареи, составит 12 В х 200 мА = 2,4 Вт. Мощность, которую приемник не будет принимать, – 1,4 Вт, преобразуется в тепло. Нагрев стабилизатора будет значительным.
Стабилизатор 7805
В случае применения импульсного преобразователя с эффективностью 90% мощность, потребляемая от батареи, равна 1,11 Вт. Потери – всего 0,11 Вт. Температура модуля поднимется практически незаметно.
Кроме трех типов преобразователей dc dc существуют еще инвертирующие, меняющие полярность выходного сигнала. Такая схема нужна для питания операционных усилителей.
Широтно-импульсная модуляция
Широтно-импульсная модуляция (ШИМ) – это тип сигнала, используемый для изменения количества энергии, отправляемой на нагрузку. Он широко используется в цифровых схемах, которые должны эмулировать аналоговый сигнал.
Импульсный сигнал
Вырабатываемые импульсы являются прямоугольными, относительная ширина которых может изменяться по сравнению с периодом. Результат этого соотношения называется рабочим циклом, а его единицы представлены в процентах:
D = t/T x 100%, где:
- D – рабочий цикл;
- t – время, когда сигнал положительный;
- Т – период.
Рабочий цикл изменяется таким образом, что среднее значение сигнала является приблизительным напряжением, которое требуется получить. Меняя значение D, можно управлять ключевым транзистором, что применяется почти во всех схемах импульсных преобразователей.
Работа понижающего преобразователя
Фундаментальная схема состоит из индуктивности, конденсатора, диода, ключевого транзистора. Транзистор служит для переключения сигнала с высокой частотой и управляется с помощью ШИМ. Рабочим циклом D задается время открытия и закрытия транзистора.
Работа понижающего преобразователя
- Когда транзистор открыт, ток проходит через катушку, нагрузочное сопротивление и конденсатор. В дросселе и конденсаторе накапливается энергия, а ток увеличивается не скачкообразно, а постепенно. В это время диод заперт;
- При достижении заданного уровня напряжения, что определяет параметры управления транзистором, транзистор запирается, но за счет ЭДС самоиндукции в дросселе ток начинает протекать по контуру, образованному с участием открытого диода, так как полярность на катушке изменилась. При этом ток медленно уменьшается со скоростью Uout/L.
Регулируя управление транзистором, можно получить необходимый уровень напряжения, но не выше входного.
Повышающий преобразователь
Его схема содержит те же элементы, что и понижающее устройство, но соединение их отличается. Открытием транзистора по-прежнему управляют настройки ШИМ.
Функциональная схема повышающего преобразователя
- При открытом транзисторе ток проходит через дроссель и транзистор. Ток в катушке увеличивается со скоростью Vin/L, и она запасает энергию. Диод на этом этапе закрыт, чтобы не позволить разрядиться через транзистор выходному конденсатору, который, в свою очередь, питает нагрузочное сопротивление;
- При понижении напряжения меньше определенного уровня транзистор закрывается управляющим сигналом. Диод открывается, и выходной конденсатор подзаряжается. Напряжение входа суммируется с напряжением, генерируемым на катушке, и выходной сигнал оказывается выше;
- При достижении пределов заданного напряжения тиристор опять открывается, и цикл повторяется.
В преобразователях SEPIC схема построена по комбинированному принципу. В ней устанавливается еще один дроссель и конденсатор. Компоненты L1 и C2 работают для повышения напряжения, L2 и C1 – для понижения напряжения.
Схема преобразователя SEPIC
Преобразователь напряжения с гальванической развязкой
Изолированные dc dc преобразователи требуются в широком диапазоне применений, включая измерение мощности, промышленные программируемые логические контроллеры (PLC), источники питания с биполярным транзистором с изоляцией (IGBT) и т. д. Они используются для обеспечения гальванической изоляции, повышения безопасности и помехоустойчивости.
В зависимости от точности регулирования выходного напряжения, dc dc преобразователи с гальванической развязкой делятся на три категории:
- регулируемые;
- нерегулируемые;
- полурегулируемые.
У таких устройств входная цепь изолирована от выходной. Самая простая схема прямоходового преобразователя имеет две изолированных цепи: в одной – ключевой транзистор и трансформатор, в другой – катушка индуктивности, конденсатор, нагрузочное сопротивление. На транзистор подается импульсный управляющий сигнал с рабочим циклом D.
Схема однотактного прямоходового и обратноходового преобразователя
- Когда транзистор открыт, то диод VD пропускает ток, а D1 заперт. Ток протекает по контуру через катушку, конденсатор и нагрузку. В катушке идет накопление энергии;
- При запирании транзистора напряжение на трансформаторных обмотках изменяет знак, поэтому VD закрывается, а D1 начинает пропускать ток, который протекает по контуру между катушкой, D1, конденсатором и нагрузочным сопротивлением. Выходное напряжение будет равно:
Uout = (w2/w1) x D, где w2, w1 – количество витков двух обмоток трансформатора.
Так работает схема прямоходового однотактного преобразователя. Существуют обратноходовые схемы и двухтактные, с подачей энергии на выход в течение обоих преобразовательных циклов. Для снижения потерь вместо диодов применяются МОП-транзисторы.
Видео
Источник: https://elquanta.ru/teoriya/dc-dc.html