Общий провод и заземление в схемах
Прежде, чем разбираться с тем, где и как изображаются точки заземления и общий провод, надо разобраться с тем, что же это такое.
Согласно определению, общим проводом (землей, корпусом) обозначается такая точка, в которой электрический потенциал принимают за ноль. Согласно этого, все другие значения в схеме замеряют относительно к этой точке, именуемой общим проводом.
Как правило, общий провод на схемах – это тот, относительно которого производят замеры всех напряжений схемы. В электронных схемах эту функцию далеко не всегда несет отрицательный полюс.
Существует немало схем, в которых эта функция возложена на положительный провод, тогда, как для схем, имеющих питание двухполярного типа (то есть питание по системе +-Uпит) общим проводом является общая точка источников питания.
Иными словами, общим проводом схемы можно именовать тот проводник, на который сходится самое большое число выводов всей схемы.
Сие понятие, как раз, и введено было с целью упрощения процесса начертания и чтения схем (ведь вместо прокладки проводников к нему, зачастую, просто вычерчивается знак, состоящий из вертикальной черты, идущей в середину горизонтальной) одновременно это позволяет экономить пространство на чертеже схемы.
Применительно к электронным схемам небольших размеров, которые выполняются на платах с помощью печатного монтажа, общий провод (он же заземление) выполняется в виде подложки из меди.
Кроме того, проводники этого назначения на печатных платах, как правило, имеют достаточно большую площадь (на много большую, чем у других проводников).
Применительно к любой электрической (либо электронной) схеме, общий провод (он же масса) настолько удобная штука, что чтение любых схем, если в них нет этого элемента, значительно затруднено и неудобно.
Для схем, предназначенных для работы на высоких скоростях, уже давно стало аксиомой то, что каждый квадратный миллиметр платы, не имеющий радиоэлектронных компонентов, или проводников следует заливать полигоном, предназначенным для земляного провода.
Если этого не сделать, то результат может быть весьма плачевным. Однако, бывают случаи, при которых достаточно тяжело (а иногда и не возможно) выполнять эти правила (например, когда монтаж довольно плотен).
Чтобы преодолеть эту сложность, приходится снижать плотность монтажа, отводя тем самым больше пространства под «общий провод».
Примером максимальной заливки полигоном заземления (массы) легко может служить любая плата печатного монтажа промышленного типа (например, «печатка» любого магнитофона, или телевизора). Если требуется найти общий провод на таких платах, то, ткнувшись в проводник с наибольшей площадью, попадем именно на общий провод.
С цифрой немного иначе, хотя тоже ничего сложного: тут достаточно вычислить точку, в которую сходятся обязательно присутствующие практически в каждой цифровой схеме конденсаторы (бесполярные), установленные параллельно питанию каждой цифровой микросхемы.
Обычно, в промавтоматике все системы имеют как аналоговую, так и цифровую часть. По этой причине могут возникать помехи, наведенные цифровой частью схемы.
Чтобы максимально избавиться от помех, наведенных цифровой частью оборудования на всю остальную схему, общий провод аналоговой части максимально разъединяют с цифровой, делая так, чтобы «земля» от «цифры» соединялась с «землей» от «аналога» лишь в одной единственной точке, расположенной как можно ближе к общему проводу источника питания. И обозначают их, так же, по-разному: AGND – общий провод аналогового типа, тогда, как, DGND – соответственно цифровой.
Теперь разберемся с тем, каким образом принято обозначать на схемах различные виды общего провода и точек заземления.
Согласно ЕСКД, точка, относительно которой выполняются замеры всех напряжений и токов схемы считается общей и обозначается вертикальной чертой, касающейся короткой горизонтальной черточки (иногда от этой черточки отходят короткие линии, наклоненные вправо).
Точка же, подлежащая соединению с заземлителем, обозначается так же, с той разницей, что под горизонтальной линией расположены еще две, образующие в сумме с первой треугольник (вторая короче первой, а третья – короче второй).
На зарубежных схемах, кроме того, имеется еще и разграничение между общим проводом аналогового и цифрового типов: аналоговый общий провод обозначается в виде вертикальной черточки, заканчивающейся закрашенным равносторонним треугольником, вершина которого направлена вниз, тогда, как в цифровом виде эта черточка оканчивается лишь контуром такого треугольника. В любом случае, если используется отдельный общий провод для цифры и аналога, то на схемах разработчики стараются подписывать какой тип общего провода используется: AGND или DGND.
Существует множество программ, предназначенных для вычерчивания схем на экране компьютера с возможностью последующей разводки их печатного рисунка. Среди них такие, как sPlan, Eagle, DipTrace и прочие.
P.S. Если у вас есть чем дополнить статью, то пишите в комментариях.
Источник: http://cxem.net/beginner/beginner134.php
Как сделать заземление в доме, коттедже, на даче
Современная бытовая техника и аппаратура требует наличия заземления. Только в этом случае производители будут поддерживать свои гарантии. Обитателям квартир приходится ждать капремонта сетей, а владельцам домов можно все сделать своими руками. Как сделать заземление в частном доме, каков порядок действий и схемы подключения — обо всем этом читайте тут.
Виды контуров заземления
Вообще, контуры заземления могут быть в виде треугольника, прямоугольника, овала, линии или дуги. Оптимальный вариант для частного дома — треугольник, но вполне подойдут и другие.
Заземление в частном доме — виды заземляющих контуров
Треугольник
Заземление в частном доме или на даче чаще всего делают с контуром в виде равнобедренного треугольника. Почему так? Потому что при таком строении на минимальной площади получаем максимальную площадь рассеивания токов. Затраты на устройство заземляющего контура минимальны, а параметры соответствуют номам.
Чаще всего заземление в частном доме делают с контуром в виде треугольника
Минимальное расстояние между штырями в треугольнике контура заземления — их длина, максимальное — удвоенная длина. Например, если штыри забиваете на глубину 2,5 метра, то расстояние между ними должно быть 2,5-5,0 м. В этом случае при измерении сопротивления контура заземления получите нормальные показатели.
Во время работ не всегда получается сделать треугольник строго равнобедренным — камни попадаются в нужном месте или другие труднопроходимые участки грунтов. В этом случае можно штыри сдвигать.
Линейный контур заземления
В некоторых случаях проще сделать контур заземления в виде полукруга или цепочки штырей, выстроенных в линию (если нет свободного участка подходящих размеров). В этом случае расстояние между штырями тоже равно или больше длины самих электродов.
При линейном контуре необходимо большее число вертикальных электродов — чтобы площадь рассеивания была достаточной
Недостаток такого способа — для получения нужных параметров необходимо большее количество вертикальных электродов. Так как забивать их — то еще удовольствие, при наличии мета стараются сделать треугольный контур.
Материалы для контура заземления
Чтобы заземление частного дома было эффективным, его сопротивление не должно быть больше 4 Ом. Для этого необходимо обеспечить хороший контакт заземлителей с грунтом.
Проблема в том, что измерить сопротивление заземления можно только специальным прибором. Эту процедуру проводят при вводе системы в эксплуатацию. Если параметры хуже, акт не подписывают.
Потому, делая заземление частного дома или дачи своими руками, старайтесь строго придерживаться технологии.
Пример заземления для частного дома
Параметры и материалы штырей
Штыри заземления обычно делают из черного металла. Чаще всего используется пруток сечением 16 мм и больше или уголок параметрами 50*50*5 мм (полочка 5 см, толщина металла — 5 мм). Обратите внимание, что арматуру использовать нельзя — ее поверхность каленая, что изменяет распределение токов, к тому же в земле она быстро ржавеет и разрушается. Нужен именно пруток, не арматура.
Возможные профили электродов
Еще вариант для засушливых регионов — толстостенные металлические трубы. Их нижнюю часть сплющивают в виде конуса, в нижней трети сверлят отверстия. Под их установку сверлят лунки требуемой длины, так как забить их не получится. При пересыхании грунтов и ухудшении параметров заземления, в трубы заливают соляной раствор — для восстановления рассеивающей способности грунтов.
Длинна стержней заземления — 2,5-3 метра. Этого достаточно для большинства регионов. Конкретнее есть два требования:
- стержень контура заземления должен заходить в грунт ниже уровня промерзания не менее чем на 60 см (лучше — 80-100 см);
- в засушливых регионах как минимум 1/3 заземлителя должна находиться во влажных грунтах, потому еще надо ориентироваться на уровень расположения грунтовых вод — при низком их расположении могут понадобиться более длинные стержни.Чаще всего используют стальной уголок и полосу
Конкретные параметры заземления можно высчитать, но требуются результаты геологического исследования. Если у вас таковые имеются, можно заказать расчет в специализированно организации.
Из чего делать металлосвязь и как соединять со штырями
Все штыри контура соединяются между собой металлосвязью. Ее можно сделать из:
- медного провода сечением на менее 10 мм2;
- алюминиевого провода сечением не менее 16 мм2
- стальной проводник сечением не менее 100 мм2 (обычно полоса 25*5 мм) .
Чаще всего штыри между собой соединяются при помощи стальной полосы. Ее приваривают к уголкам или оголовкам прутка. Очень важно чтобы качество сварного шва было высоким — от этого зависит пройдет ли ваше заземление испытание или нет (будет ли оно соответствовать требованиям — сопротивление меньше 4 Ом).
Параметры, которых необходимо добиться при самостоятельном изготовлении контура заземления
При использовании алюминиевого или медного провода к штырям приваривают болт большого сечения, к нему уже крепят провода.
Провод можно накрутить на болт и прижать шайбой с гайкой, можно провод оконечить разъемом подходящего размера. Главная задача та же — обеспечить хороший контакт.
Потому не забудьте зачистить болт и провод до чистого металла (можно обработать шкуркой) и хорошо поджать — для хорошего контакта.
Как сделать заземление своими руками
После того как закуплены все материалы, можно приступать к собственно изготовлению контура заземления. Для начала нарезают металл на отрезки. Длина их должна быть больше расчетной примерно на 20-30 см — при забивании вершины штыре изгибаются, так что приходится их срезать.
Заточить забиваемые края вертикальных электродов — дело пойдет быстрее
Есть способ уменьшить сопротивление при забивании электродов — один конец уголка или штыря заточить под углом 30°. Этот угол оптимален при забивании в грунт. Второй момент — к верхнему краю электрода, сверху, приварить площадку из металла. Во-первых, по ней проще попасть, во-вторых, меньше деформируется металл.
Порядок работ
Независимо от формы контура, начинается все с земляных работ. Необходимо выкопать канаву. Лучше ее сделать со скошенными краями — так она меньше обсыпается. Порядок работ такой:
- Расчищают площадь, на которой будет размещаться контур заземления, наносят разметку.
- По разметке копают траншею глубиной 70-80 см, шириной около 50 см. Глубина неслучайна — если проложить металлосвязь ниже или выше, металл будет быстрее корродировать.
- Подготовленные штыри ставят в намеченных местах, забивают до тех пор, пока над поверхностью не останется участок около 20 см.Процесс изготовления заземляющего контура — для заземления в частном доме
- Когда все вертикальные электроды забиты, срезают площадки или искореженные куски, зачищают металл, приваривают горизонтальный электрод — маталлосвязь. Шов должен быть непрерывный, хорошего качества.
- После остывания места сварки, шов прокрасить. Только ни в коем случае не красьте сами электроды и полосу, их соединяющую. Это очень ухудшит контакт с землей, все придется переделывать. Краской защищается только место сварки, как наиболее подверженное коррозии. Вся остальная поверхность металла должна быть без краски.Красить надо только места сварки
- От ближайшей к дому точки готового контура заземления копают канаву такой же глубины как и под -контур 60-70 см. Ширина ее может быть меньше — если полоса будет цельной и не надо ее сваривать.
- Полосу металла сечением не менее 25*4 мм укладывают в вырытую канаву. Ее приваривают к электроду или металлосвязи.
- Возле стены дома уложенная полоса поднимается из земли на расстояние не менее 200 мм от поверхности. В этом месте можно подключать шину или провод, который идет к шине защитного заземления, расположенной в щитке.Схема заземляющего контура с размерами
Собственно, на этом все. Заземление в частном доме своими руками сделали. Осталось его подключить. Для этого надо разобраться со схемами организации заземления.
Ввод контура заземления в дом
Контур заземления необходимо каким-то образом завести на шину заземления. Сделать это можно при помощи стальной полосы 24*4 мм, медной проволоки сечением 10 мм2, алюминиевым проводом сечением 16 мм2.
В случае использования проводов, их лучше искать в изоляции. Тогда к контуру приваривается болт, конец проводника надевается гильза с контактной площадкой (круглой). На болт накручивается гайка, на нее — шайба, затем провод, сверху — еще одна шайба и все это затягивается гайкой (картинка справа).
Как завести «землю» в дом
При использовании стальной полосы есть два выхода — завести в дом шину или провод. Стальную шину размером 24*4 мм тянуть очень не хочется — вид неэстетичный. Если есть — можно при помощи того же болтового соединения провести медную шину. Она нужна гораздо меньшего размера, смотрится лучше (фото слева).
Также можно сделать переход с металлической шины на медный провод (сечение 10 мм2). В этом случае к шине приваривают два болтана расстоянии в несколько сантиметров друг от друга (5-10 см).
Медный провод закручивают вокруг обоих болтов, прижимая их с помощью шайбы и гайки к металлу (затягивать как можно лучше). Это способ — самый экономный и удобный.
Требует не так много денег, как при использовании только медного/алюминиевого провода, провести его через стену проще, чем шину (даже медную).
Схемы заземления: какую лучше сделать
В настоящий момент в частном секторе используют только две схемы подключения заземления — TN-C-S и TT. В большинстве своем к дому подходит двухжильный (220 В) или четырехжильный (380 В) кабель (система TN-С).
При такой проводке кроме фазного (фазных) провода приходит защитный проводник PEN, в котором объединены ноль и земля.
На данный момент этот способ не обеспечивает должной защиты от поражения электротоком, потому рекомендуется заменить старую двухпроводную проводку на трехпроводную (220 В) или пятипроводную (380 В).
Две схемы, которые применяются если надо сделать заземление в частном доме
Для того чтобы получить нормальную трех- или пяти- жильную проводку необходимо провести разделение этого проводника на землю PE и нейтраль N (при этом необходим индивидуальный контур заземления). Делают это во вводном шкафу на фасаде дома или в учетно-распределительном шкафу внутри дома, но обязательно до счетчика. В зависимости от способа разделения получают либо систему TN-C-S, либо TT.
Устройство в частном доме системы заземления TN-C-S
При использовании этой схемы очень важно сделать хороший индивидуальный контур заземления. Обратите внимание, что при системе TN-C-S для защиты от поражения электрическим током необходима установка УЗО и дифавтоматов. Без них ни о какой защите речь не идет.
Также для обеспечения защиты требуется к земляной шине отдельными проводами (неразрывными) подключить все системы, которые сделаны из токопроводящих материалов — отопление, водоснабжение, арматурный каркас фундамента, канализация, газопровод (если они выполнены из металлических труб). Потому шину заземления необходимо брать «с запасом».
Схема преобразования системы TN-С на TN-С-S
Для разделения PEN проводника и создания заземления в частном доме TN-C-S нужны три шины: на металлическом основании — это будет шина PE (земляная), и на диэлектрическом основании — это будет шина N (нейтрали), и маленькая шина-расщепитель на четыре «посадочных» места.
Металлическую «земляную» шину надо прикрепить к металлическому корпусу шкафа так, чтобы был хороший электрический контакт. Для этого в местах крепления, под болты, с корпуса счищают краску до чистого металла.
Нулевую шину — на диэлектрическом основании — лучше крепить на дин-рейку. Такой способ установки выполняет основное требование — после разделения шины PE и N нигде не должны пересекаться (не должны иметь контакта).
Заземление в частном доме — переход с системы TN-С на TN-С-S
Далее подключаем так:
- Пришедший с линии проводник PEN заводится на шину-расщепитель.
- На эту же шину подключаем провод от контура заземления.
- С одного гнезда медным проводом сечением 10 мм2 ставим перемычку на земляную шину;
- С последнего свободного гнезда ставим перемычку на нулевую шину или шину нейтрали (тоже медный провод 10 мм2).
Теперь все — заземление в частном доме сделано по схеме TN-C-S. Далее для подключения потребителей фазу берем от вводного кабеля, ноль — с шины N, землю — с шины PE. Обязательно следим, чтобы земля и ноль нигде не пересекались.
Заземление по системе TT
Преобразование схемы TN-C в TT происходит вообще просто. От столба приходят два провода. Фазный и дальше используется как фаза, а защитный PEN-проводник крепится к «нулевой» шине и дальше считается нулем. На шину заземления напрямую подается проводник от сделанного контура.
Заземление в частном доме своими руками — схема TT
Недостаток этой системы в том, что она обеспечивает защиту только той техники, у которой предусмотрено использование «земляного» провода.
Если есть еще бытовая техника, сделанная по двухпроводной схеме, она может оказаться под напряжением.
Даже если корпуса их заземлить отдельными проводниками, в случае проблем напряжение может остаться на «нуле» (фазу разорвет автомат). Поэтому из этих двух схем предпочтение отдают TN-C-S как более надежной.
Источник: https://elektroznatok.ru/provodka/zazemlenie-v-chastnom-dome
Разница между заземлением и занулением, определение понятий, схемы заземления и зануления
Одна из самых сложных и запутанных тем в электромонтаже — зануление и заземление. В чем их отличие? Каковы определения понятий заземления и зануления? Всегда ли правильно и к месту используются эти термины? Попробуем рассмотреть тему более подробно.
Устройство генератора переменного тока
Рамка с витками провода в поле магнита — простейший генератор переменного тока. Если рамку с намотанной на ней катушкой вращать, переменный магнитный поток в контуре рамки будет создавать в обмотке переменный ток синусоидальной формы. Это простейший генератор переменного тока. Именно так устроены генераторы на электростанциях. Ротор (рамка) вращается в магнитном поле статора.
Ротор приводится в движение: потоком воды в гидроэлектростанциях, ветром в ветрогенераторах, паровой турбиной в тепловых и атомных электростанциях, двигателем внутреннего сгорания в бензиновых и дизельных генераторах.
Принцип один и тот же — преобразование механической энергии вращения в переменный электрический ток. Стандартная частота переменного тока в РФ — 50 Гц. То есть ротор генератора делает строго 50 оборотов в секунду или 3000 оборотов в минуту.
Частота переменного тока поддерживается с точностью ±2%.
Многофазные сети переменного тока
Если на роторе разместить не одну катушку, а две или более, мы получим многофазную сеть. Для чего они нужны? Многофазные сети могут создавать вращающееся электромагнитное поле и крутить электродвигатели.
Первые электрические сети были двухфазными. На роторе двухфазного генератора к одной обмотке добавляется вторая, повернутая на 90 градусов, то есть на четверть оборота. Ток в одной обмотке отстает от тока в другой на четверть оборота ротора или на четверть периода синусоиды. Как говорят, имеет фазовый сдвиг на 90 градусов.
Если подключить выходы фазных обмоток к двум обмоткам статора двухфазного электродвигателя, также расположенным перпендикулярно друг другу, а ротор каким-то образом намагнитить, то мы получим картину, зеркальную тому, что происходит в генераторе — ротор приводится в движение вращающимся магнитным полем статора.
У двух катушек генератора четыре вывода, соответственно, первые двухфазные сети были четырехпроводными.
Можно, конечно, соединить два конца обмоток в общий провод, но в двухфазных сетях токи разных фаз суммируются в общем проводе по правилу сложения векторов, и проводник приходится делать толще.
Большого выигрыша от уменьшения числа проводов не происходит. Со временем двухфазные сети были вытеснены трехфазными.
Две схемы подключения в трехфазных сетях
На роторе трехфазного генератора размешены уже не две, а три обмотки, сдвинутые на треть оборота или на 120 градусов. Соответственно, и фазы токов в трехфазной сети сдвинуты на 120 градусов.
В трехфазной сети есть две схемы подключения генератора и нагрузки при включении звездой концы фазных обмоток соединяются в одну общую точку — нейтраль. Концы нагрузок тоже соединены в общую точку.
Провод, который соединяет общие точки нагрузки и генератора, называется нейтралью. Провода, соединяющие другие концы фазных обмоток с нагрузкой, называются линейными.
Напряжение на выводах фазных катушек (фазное напряжение) равно 220 В. Напряжение между линейными проводами называется линейным. В трехфазной сети оно равно 380 В. При соединении звездой нагрузки находятся под фазным напряжением.
В схеме включения треугольником нагрузки включаются между концами фазных обмоток. В схеме треугольника нет нейтрали, а линейное напряжение равно фазному.
Роль нейтрального провода в трехфазных сетях
Если нагрузки в разных фазах равны, то такая нагрузка называется симметричной. Симметричной нагрузкой, например, является трехфазный электродвигатель. При симметричной нагрузке равные токи в нейтрали при сложении дают ноль.
То есть при симметричной нагрузке ток в нейтрали отсутствует. Нейтральный провод вообще можно убрать. При несимметрии нагрузок происходит так называемый перекос фаз, и потенциал нейтральной точки на нагрузке смещается.
Напряжения на нагрузках в разных фазах при отсутствии нейтрального провода становятся разными.
Если нейтральные точки нагрузки и генератора соединены, напряжения на нагрузках остаются равными, но в нейтрали начинает протекать компенсирующий ток.
Чем отличается заземление от зануления
Заземлением называется преднамеренное присоединение токопроводящих частей к земле. То, что вкапывается в землю, называется заземлителем, а то, что присоединяет проводящие части к заземлителю, называется заземлителем.
Занулением называется присоединение токопроводящих частей к нейтрали. Эти два понятия постоянно путают.
Цель заземления — сделать потенциал на корпусе прибора в случае пробоя изоляции равным или очень близким к потенциалу земли. Цель зануления — создать при пробое фазы на корпус ток короткого замыкания настолько большой, чтобы успел быстро сработать автомат защиты сети и замкнутая цепь была обесточена.
Путаница в терминах вызвана тем, что в наших сетях нейтральный провод всегда заземляется в источнике тока. Для нас источник — это ближайшая трансформаторная подстанция.
В этом случае потенциал нейтрального провода относительно земли близок к нулю, как при заземлении. При прикосновении к нейтрали пробник не светится. Поэтому нейтральный провод стали называть нулевым.
На самом деле нейтраль заземляется не всегда, есть схемы подключения и с изолированной нейтралью. И цели у заземления и зануления разные.
Согласно правилам устройства электроустановок потребителей (ПУЭ), в сетях с глухозаземленной нейтралью, а это все наши распределительные сети, основной мерой по защите от поражения электрическим током является именно зануление, а заземление является дополнительной мерой. Это значит, что зануление надо делать обязательно, а заземление нет.
Заземление без зануления не обеспечивает нужной защиты.
Это связано с тем, что если корпус прибора соединен только с землей и не соединен с нейтралью, то при пробое на корпус аварийный ток потечет к источнику через сопротивление земли межу заземлителем и нейтралью подстанции.
Это сопротивление намного больше сопротивления нейтрали.
В результате ток короткого замыкания на землю будет настолько мал, что автомат защиты сети либо вообще не заметит замыкания и цепь останется под напряжением, либо сработает с большой задержкой и не обеспечит защиты от удара током.
До появления устройств защитного отключения (УЗО) отключение замкнутой сети автоматом было единственной эффективной мерой защиты.
Схемы заземления и зануления
Существует несколько схем подключения, которым присвоены соответствующие обозначения:
Первая буква в обозначении говорит о способе соединения нейтрали источника с землей :
- Т — заземленная;
- I — изолированная;
Вторая буква обозначает присоединение корпуса электроприемника к земле или нейтрали (заземление или зануление по-нашему):
- T — корпус соединен с землей (заземлен);
- N — корпус соединен с нейтралью (занулен).
Все наши распределительные сети выполнены по схеме T. N. Буквы после ТN говорят о совмещении в одном нейтральном проводника рабочего и защитного нулевого провода:
- C — рабочий N и защитный PE проводники совмещены (PEN) ;
- S — рабочий и защитный проводники разделены;
- C-S — от источника идет сначала совмещенный проводник, затем разделяется.
Первый вариант — худший. Так выполнена проводка в старых домах.
Второй — самый лучший, но встречается редко на практике, так как энергетики экономят кабель.
Третий вариант — компромисс. В наших многоквартирных домах ввод в дом всегда четырехпроводный с совмещенной нейтралью PEN, затем от главной заземляющей шины во вводном устройстве PEN разделяется на N и PE.
Чем опасен обрыв нейтрали
Как правило, подключение квартир и частных домов у нас однофазное. Только в последнее время стали выделять по три фазы на домохозяйство.
Но даже при однофазном подключении мы все равно подключены к трехфазной сети, только к разным ее фазам.
Как было показано, при обрыве нуля и несимметричной нагрузке в трехфазной сети происходит перекос фаз. В зависимости от ситуации, напряжение в фазе может меняться от 0 до величины линейного напряжения 380 В с непредсказуемыми последствиями. Поэтому электрики тщательно следят за состоянием нейтрали.
В зануленном по схеме TN-C устройстве при обрыве нейтрали корпус прибора оказывается под линейным напряжением, хотя и не напрямую, а через нагрузку. В схеме TN-S такого не произойдет, поскольку корпус присоединен к отдельному защитному проводнику. В схеме TN-CS опасен обрыв нейтрали до точки разделения на N и PE.
Современные устройства защиты
На самом деле ни заземление, ни зануление сами по себе высокого уровня защиты не обеспечивают. Автомат защищает скорее провода сети, а не людей. Пробой изоляции на корпус до короткого замыкания маловероятен. А ухудшения изоляции и появления токов утечки он не чувствует.
К счастью, сейчас появились устройства защитного отключения (УЗО), которые обнаруживают очень малые токи утечки от 10 до 30 мА и при их появлении отключают сеть. Грамотно установленное УЗО обеспечит реальную защиту от поражения электрическим током.
От перекоса фаз защитят устройства контроля фаз. Эти приборы следят за величиной фазных напряжений и при их выходе за заданные пределы отключат сеть.
Источник: https://elektro.guru/osnovy-elektrotehniki/ponyatiya-zanuleniya-i-zazemleniya-v-chem-raznitsa-shemyi-podklyucheniya.html
Требования к заземляющим проводникам: стационарным и временным
Требование к проводам заземления
Заземляющий провод является одним из неотъемлемых элементов любой электроустановки.
Его основное назначение — защита от косвенного прикосновения к частям электроустановки, находящимся под напряжением.
Косвенным называется прикосновение к частям оборудования, которые в нормальных условиях не находятся под напряжением, например, корпуса двигателей, трансформаторов или даже ручка фена.
Но вследствие нарушения изоляции токоведущих частей (проводов), они могут оказаться под напряжением. Именно для защиты от таких случайностей и предназначено защитное заземление.
Немного теории
Обычному человеку, не особо вдающемуся в основы электротехники, достаточно сложно разобраться во всех этих нюансах. Особенно когда начинают оперировать такими понятиями как заземление, зануление, глухо заземленная или эффективно заземленная нейтраль. Поэтому, для начала попробуем доступным языком объяснить суть всех этих обозначений, и определить основную цель, с которой их придумали.
Нейтраль электрооборудования
- Существует пять основных схем подключения нейтрали электрооборудования. Нейтралью называют общую точку обмоток электрооборудования, соединенного в звезду. Соединение звезда — это кода три начала обмотки подключаются к соответствующим фазным проводам, а концы этих обмоток соединяются между собой — нейтраль.
- В точке соединения концов этих обмоток, в идеальных условиях потенциал будет равен нулю. Такой же потенциал имеет земля. Поэтому при помощи шины или проводника выполняется заземление нейтрального провода. Обычно подключается он к специальной шине стационарного заземлителя.
- Такая система называется TN или системой с глухо заземленной нейтралью. В нашей стране она повсеместно используется в электроустановках до 1000В и подразделяется на три подвида.
- Но прежде чем мы приступим к разбору этих подвидов, давайте определимся, что такое нулевой и защитный провод. Как говорит инструкция, нулевым или нейтральным проводом называется проводник, подключенный к нейтрали. На схемах этот провод обычно обозначают – «N».
Отличия зануления и заземления
- Кроме того, существует еще так называемый проводник защитного заземления. Он обозначается «РЕ». Используя КС 066 1 зажим плашечный заземляющего провода или другой подобный вид подключения, он подключается к земле и к корпусу оборудования, тем самым, обеспечивая нулевой потенциал на корпусе. Но как мы помним, в сетях с глухо заземленной нейтралью она так же подключается к земле.
Именно, исходя из этого условия, в сетях TN и существует три вида подключения:
Первый вариант это TN-S. При этом варианте, к нейтрали одним проводом подключается нулевой проводник, а вторым провод защитного заземления. На всем протяжении до конечного потребителя они не соединяются. |
Второй вариант это – TN-С. В этом случае провода для заземления и нулевой проводник подключаются к нейтрали в одной точке, и по всей длине идут единым проводником. Такой проводник называется «PEN», то есть нулевой и защитный. |
Последним вариантом для систем с глухо заземлённой нейтралью является система TN-C-S, то есть система, совмещающая первые два варианта. Для этой системы характерно использование одного проводника для подключения к нейтрали. Но затем он разделяется на два проводника – заземления и зануления. Провода заземления для снижения потенциала корпуса и зануления для работы электроустановки. В дальнейшем они уже не пересекаются. |
Кроме приведенных выше систем, существуют еще IT (система с изолированной нейтралью) и TT (система с эффективно заземленной нейтралью). Такие системы обычно используются в сетях выше 1000, куда без должной подготовки и знаний лезть не следует. Ведь цена ошибки там очень велика. Поэтому в нашей статье мы не будем их даже рассматривать. |
Требования к заземлителям
Ну вот, разобравшись с основными теоретическими аспектами, давайте поговорим и о самих проводниках. В зависимости от места их установки к ним предъявляются совершенно разные требования. Поэтому давайте отдельно рассмотрим включение заземляющих проводов для стационарных и передвижных электроустановок.
Общие требования к проводам заземления
Но начнем мы наш разговор с общих требований, предъявляемых к проводникам, используемым для заземления. Как вы уже должны были понять они должны обеспечивать снижение потенциала на защищаемом оборудовании до нулевого или близкого к нему значения. В связи с этим они должны иметь возможность пропускать ток, равный току короткого замыкания в данной электроустановке.
- Казалось бы, в связи с этим, сечение таких проводников, в обязательном порядке должно быть не меньше, чем у фазных проводников, но это не так. Дело в том, что фазные проводники должны обеспечивать долговременное протекание больших токов. А вот защитный провод, должен обеспечить такую возможность только на время работы защиты. Обычно это время не превышает 2-3 секунд.
Сечение проводов заземления
- Определить такое сечение вы вполне можете и своими руками благодаря таблице 1.7.5 ПУЭ. Для проводов с сечением рабочих жил до 16 мм2, сечение защитных проводников должно быть идентичным. Для проводов от 16 до 35 мм2 сечение защитных проводов может быть 16 мм2. Для проводов большего сечения защитный проводник должен быть не менее чем в два раза меньшего сечения.
Структура кабеля с нулевым проводом меньшего сечения
Согласно нормам ГОСТ, вся кабельно-проводниковая продукция должна содержать маркировку сечения жил. Причем если сечение жил зануления и заземления отличаются от рабочих, то она должна указываться отдельно как на видео.
- В некоторых случаях допускается отдельный расчёт сечения проводника заземления. Для этого используется формула, в которой учтены такие показатели как ток короткого замыкания, время срабатывания защит, тип изоляции и проводника, а также способ прокладки кабеля. Но используют такой способ определения сечения достаточно редко.
- Теперь, что касается обозначения заземляющих и нулевых проводников. Их буквенную аббревиатуру вы уже знаете. Но кроме того они имеют еще и цветовую. Заземление при пятипроводной системе заземления должно иметь желто-зеленую окраску. Нулевой провод обозначается голубым цветом.
Знак места подключения заземления
- Отдельным вопросом является качество заземления. Его определяют путем измерения его сопротивления. Согласно п.1.7.101 ПУЭ для трехфазной сети с линейным напряжением в 380В, оно должно быть не более 4 Ом. Это достаточно маленькая величина, которая обуславливается только внутренним сопротивлением проводника.
Схема измерения сопротивления заземления
- Для достижения соответствующего качества заземления следует использовать винтовые зажимы. Они позволяют достаточно просто отключить проводник для ремонтных работ и испытаний, а также обеспечивают качественный контакт. Удлинение заземления и нулевых проводников не приветствуется, но допускается. В этом случае можно использовать зажим плашечный заземляющего провода КС 066 1 или подобные зажимы для проводов меньшего сечения.
- Отдельным вопросом является отдельная прокладка проводов заземления и зануления. Согласно п.1.7.127 ПУЭ провод медный для заземления должен быть не менее 2,5 мм2 если он имеет защиту от механических повреждений и не менее 4 мм2, если он не имеет таковой. Для алюминиевого провода, независимо от способа прокладки, сечение должно быть не меньше 16 мм2.
Требования к переносным заземлениям
Отдельной темой стоят проводники для временного использования. С их помощью к заземляющему контуру подключают электроустановки временного характера. Это могут быть передвижные будки, механизмы или автотранспорт.
- Для этого используют специальные переносные заземления. Подобные проводники используют и для создания безопасных условий работ.
- Такие проводники не должны иметь изоляции, это делается для того, чтобы всегда можно было визуально осмотреть его целостность. Для крепления к контуру заземления и механизму он должен иметь струбцины. Струбцина для провода заземления должна крепится к проводу методом сварки или винтового соединения.
Струбцина переносного заземления
- Проводник обязательно должен быть медным и многожильным. Причем количество оборванных отдельных проволок строго регламентируется и не должно превышать 5%.
- Сечение таких переносных заземлений должно быть не менее 16 мм2 для электроустановок до 1000В и не менее 25 мм2 для электроустановок более высокого напряжения. Для заземления машин и механизмов можно использовать провод с сечением не менее 16 мм2 независимо от класса напряжения.
На фото переносное заземление для заземления машин и механизмов
Качество такого заземления проверить достаточно сложно. Поэтому единственным условием является обязательная зачистка металлической поверхности перед их наложением.
Вывод
Заземление нейтрального провода и проводника заземления играют очень важную роль не только для создания безопасных условий, но и для работоспособности всей системы. Поэтому этим аспектом электроустановки не следует пренебрегать. И мы очень надеемся, что наша статья помогла вам разобраться в этом вопросе.
Источник: https://elektrik-a.su/kabeli-i-provoda/zazemleniya/trebovaniya-k-zazemlyayushhim-provodnikam-484
Заземление и зануление: в чем разница, защитное заземление
Любая электроустановка должна быть заземлена. Это требование Правил устройства электроустановок (ПУЭ) одинаково распространяется на электроприборы с металлическим и пластиковым корпусом, устройства подключения и коммутации: распределительные и вводные щитки, розетки, выключатели.
Для чего необходимо заземление
Если энергоснабжение в помещении организовано в соответствии с ПУЭ, на входе, в распределительном щитке установлены защитные автоматы.
Эти выключатели срабатывают при превышении установленной силы тока: нагревается биметаллическая пластина, происходит ее деформация, и контакты автомата механически размыкаются.
Происходит разрыв цепи, находящейся под напряжением, электроустановка (или вся цепь) обесточивается, обеспечивая безопасность. Как это работает на практике, и что такое заземление в данной цепочке?
Заземление, это электрический контакт между линией, специально выделенной в электросети, и реальной (физической) землей. То есть шина заземления имеет электрический контакт с грунтом. Одновременно, любая установка, вырабатывающая или распределяющая электрический ток, соединена нулевым проводом с той же землей.
Даже если к вам в дом заведено три фазы (такое встречается в частном секторе), для конечного потребления все равно используется два провода: ноль и фаза.
Допустим, у вашей электроустановки (холодильник, бойлер, стиральная машина), особенно с металлическим корпусом, произошла утечка фазы.
То есть, провод под напряжением касается корпуса (отсоединился контакт, нарушена изоляция, протекла вода). Прикоснувшись к электроприбору, вы будете поражены электрическим током.
Кроме того, сопротивление в точке касания мизерное, вследствие чего произойдет мгновенный нагрев провода, и возгорание электроприбора.
Если ваш бойлер заземлен, электрический ток потечет по пути наименьшего сопротивления, то есть по контуру: фаза — «земля» — нулевая шина. Сила тока спонтанно возрастет, и сработает аварийное отключение в автомате защиты. Никто не пострадает, материальный ущерб не будет нанесен.
Если вы имеете поверхностные знания устройства электроустановок, возникает вопрос: а зачем нужно заземление, если то же самое произойдет между фазным и нулевым проводом? И собственно, чем отличается заземление от зануления?
Разберем ситуацию со схемами
С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.
Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата.
Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор.
По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.
Представим ситуацию, когда нулевой провод по какой-то причине разорван:
- потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
- механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
- несанкционированное вмешательство доморощенного «электрика»;
- авария на подстанции (возможно отключение только нулевой шины).
На схеме это выглядит следующим образом:
При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной.
Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию.
При этом утечки тока на физическую землю нет, и защитный автомат не сработает.
Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.
А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена.
Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе.
Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.
Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.
Для справки: Обычно используется цветовая маркировка проводов:
- Фаза — коричневого или белого цвета.
- Рабочий ноль — синего цвета.
- Защитное заземление — желто-зеленая оболочка.
Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.
Как отличить рабочий ноль и защитное заземление
Разумеется, проверять сопротивление между «нулевым» и «земляным» проводами не следует, особенно если энергосистема под напряжением. В общую щитовую вас тоже никто не пустит. Поэтому, проверять правильность разведения нуля и земли, будем с помощью мультиметра (бытового тестера).
Поскольку точки ввода заземляющих устройств (ноль на подстанции и шина заземления в доме) находятся на удалении друг от друга, между ними есть определенное сопротивление. Грунт, даже влажный, не является идеальным проводником. Если организовать электрическую цепь без нагрузки, мы увидим разницу в потенциалах.
Подключаем измерительный прибор к фазному контакту и рабочему нолю. На схеме это будет цепь «А». Фиксируем значение.
Сразу же подключаем тестер к фазному проводу и контакту защитного ноля. На схеме это цепь «Б». Разницы в потенциале нет: прибор зафиксирует одинаковое значение напряжения. Почему так произошло? При объединении рабочего и защитного ноля, ток в обоих вариантах измерения, фактически протекает по одному и тому же проводу. Сопротивление не меняется, потерь нет, падения напряжения не происходит.
Если ваши результаты измерения показали одинаковое напряжение – проводка подключена с нарушениями Правил устройства электроустановок.
Что произойдет при разнесенном рабочем ноле и защитном заземлении?
При подключении прибора к фазе и нолю, падения напряжения практически нет (на схеме это цепь «А»). Вы увидите действительное значение рабочего напряжения в сети.
Подключив тестер к фазному проводу и защитному заземлению, вы замеряете потенциал в длинной цепи. Чтобы замкнуть круг, электрический ток (на схеме цепь «Б») проходит по реальному грунту между точками физических контактов «земли».
Учитывая сопротивление грунта, произойдет падение напряжения от 5% до 10%. Прибор покажет более низкое напряжение.
Это говорит о том, что ваша электропроводка организована правильно, у вас имеется настоящее разнесенное защитное заземление. При наличии правильно подобранных автоматов, электрооборудование и пользователи надежно защищены.
Мы разобрались, в чем разница между заземлением и занулением. Польза от правильной организации электроснабжения очевидна.
А как быть, если в вашем доме вообще не предусмотрено защитное заземление
Понятное дело, при проведении капитального ремонта, электрики заменят проводку в соответствии с Правилами устройства электроустановок. Как минимум, в вашем вводном щитке появится три независимых провода: фаза, рабочий ноль и защитное заземление. Останется лишь заменить проводку в розеточной сети.
Но капитальный ремонт может быть выполнен через несколько лет, а вы уже сегодня пользуетесь бойлером и стиральной машинкой без заземления, или того хуже — с защитным занулением. Выход один: организовывать заземление самостоятельно. Если вы живете в частном доме — техническая сторона вопроса существенно упрощается. А вот для многоэтажек, стоимость и сложность работ зависит от этажа.
Как вариант — организовать вскладчину с соседями шину заземления, с распаячными коробками на каждой лестничной клетке.
Шина должна быть неразъемной до самого ввода в грунт. Вблизи фундамента, желательно не в дорожном покрытии, а на клумбе, организуется контур заземления согласно Правилам устройства электроустановок. Каждый жилец подъезда может подключится общей шине и завести «землю» в квартиру. Далее есть два варианта:
- Организовать контактную группу заземления в распределительном щитке, и заменить всю электропроводку на трехжильную.
- Внутри плинтуса, протянуть земляной кабель под каждую розетку, и завести его в монтажные коробочки.
При любом способе, вы защитите и свои электроприборы, и главное — свое здоровье.
Важно! Как нельзя организовывать защитное заземление
То, что «землю» нельзя брать из рабочего ноля, понятно из нашего материала. Есть любители заземлиться на трубы водоснабжения или отопления. Теоретически – стальная труба имеет связь с грунтом. На практике, по стояку могут быть вставки из полипропиленовых труб, и никакого контакта с «реальной землей» нет.
Кроме того, что вы не получаете надежного заземления, ставятся под удар соседи, которые могут получить удар током, просто взявшись за батарею отопления.
Видео по теме
Источник: https://ProFazu.ru/provodka/bezopasnost-provodka/zazemlenie-i-zanulenie-v-chem-raznitsa.html
2. Заземленные и незаземленные схемы
Заземленные и незаземленные схемы
Как вы уже знаете, непрерывный поток электронов возможен только в замкнутой цепи. Поэтому, замыкая своим телом цепь между двумя объектами с разными потенциалами, можно получить удар от разряда статического электричества. Разряд этот носит кратковременный характер (до выравнивания потенциалов), и поэтому не опасен.
Поражение электрическим током наступает тогда, когда тело соприкасается с электрической цепью в двух точках (есть точка входа и точка выхода). Именно поэтому птицы могут безопасно отдыхать на высоковольтных линиях электропередач, не опасаясь поражения током: они соприкасаются с цепью только в одной точке.
Чтобы в каком-либо проводнике создать поток электронов, к нему нужно приложить напряжение. Напряжение-же, как вы помните, всегда взаимосвязано с двумя точками цепи. Не существует такого понятия, как напряжение “на” или “в” одной точке цепи.
Поэтому на птице, соприкасающейся с одной точкой вышеприведенной схемы, нет никакого напряжения, которое могло-бы мотивировать поток электронов через ее тело. Здесь вы можете возразить, что птица опирается на провод двумя ногами, а поэтому соприкасается с цепью в двух точках.
Ответ на это возражение прост: обе ноги птицы соприкасаются с одним и тем же проводом, что делает их электрически общими по отношению друг к другу, а следовательно между ними нет никакого напряжения.
Все это может навести на мысль, что мы не получим удара током, если прикоснемся рукой только к одному проводу. К сожалению, это не так. Человек, в отличие от птиц, прикасаясь к проводу стоит на “земле”.
А так как электрическая сеть общего пользования также соединена с землей (заземлена), то человек, прикасающийся к одному проводу, фактически вступает в контакт с двумя точками цепи (проводом и землей):
В левом нижнем углу этой схемы, а также на ноге человека вы можете увидеть условное обозначение заземления, которое представляет собой набор из трех горизонтальных полос, сужающихся к низу.
В реальности заземление представляет собой металлический проводник, закопанный глубоко в землю с целью создания максимального контакта с ней.
Этот проводник подключается к соответствующей точке схемы, а заземление человека происходит через его ноги, которые стоят на земле.
К этому моменту в вашем сознании могут возникнуть следующие вопросы:
-
Почему большинство схем заземляются, если существует высокая опасность поражения электрическим током? Не будет-ли незаземленная схема безопаснее?
-
Пораженный током человек наверняка не стоял босиком на земле, а был во что-то обут. Тогда почему подошва обуви, сделанная из резины или другого изоляционного материала, не защитила его от поражения?
-
Насколько хорошим проводником является земля? Если она является хорошим проводником, то почему бы ее не использовать в наших схемах?
В ответ на первый вопрос можно сказать следующее: преднамеренное “заземление” схемы гарантирует безопасность при соприкосновении с одной ее стороной. Если бы человек в вышеупомянутой схеме коснулся нижней стороны резистора, то ничего бы не произошло даже при том, что его ноги стоят на земле:
Нижняя сторона вышеприведенной схемы надежно заземлена через точку в ее левом нижнем углу, а это значит, что весь нижний провод будет электрически общим с землей (его еще называют общим проводом).
Поскольку между электрически общими точками не может быть никакого напряжения, то его не будет и на теле человека, прикоснувшегося к нижнему проводу схемы (человек не будет поражен электрическим током).
По этой же причине провод, соединяющий схему с заземляющим стержнем, обычно не имеет изоляции, и любой металлический предмет, с которым он соприкасается, становится электрически общим с землей.
Таким образом, заземленная схема гарантирует вам безопасное прикосновение хотя бы к одной ее точке. А что будет, если схему вообще не заземлять? Разве это не повысит безопасность человека при прикосновении к одному из проводов схемы? В идеале – да, на практике – нет. Давайте посмотрим, как поведет себя незаземленная схема:
Несмотря на то, что ноги человека находятся на земле, прикосновение к любой одной точке этой схемы будет безопасно.
В данном случае не сформирована полная схема от верхнего до нижнего контактов источника напряжения через тело человека, а соответственно нет потока электронов по этому пути.
Однако такая ситуация может измениться с появлением случайного заземления. Случайным заземлением может стать, например, ветка дерева, коснувшаяся линии электропередач:
Случайный контакт между проводником системы электроснабжения и землей называется замыканием на землю.
Причинами этих замыканий могут послужить такие факторы, как скопление грязи на изоляторах линии электропередач (во время дождя она намокает и создает путь для тока от проводника до столба и на землю), проникновение грунтовых вод в подземные линии электропередач и т.д..
Учитывая вышесказанное можно сделать вывод, что замыкания на землю непредсказуемы. В случае с деревом, никто не сможет предсказать, какого провода коснутся его ветви.
Если они коснутся верхнего провода схемы, то прикосновение к нему будет безопасным, а прикосновение к нижнему проводу может вызвать поражение электрическим током (этот сценарий противоположен предыдущему, где дерево соприкоснулось с нижним проводом):
Когда ветка дерева касается верхнего провода схемы, этот провод становится заземленным, а следовательно, электрически общим с землей.
Поэтому между ним и землей не будет никакого напряжения, но напряжение по отношению к земле будет присутствовать на нижнем проводе. Как упоминалось ранее, ветки деревьев – это только один из потенциальных источников замыканий на землю.
Теперь давайте рассмотрим незаземленную схему без дерева, но с двумя людьми, которые касаются разных проводов:
В этом случае путь для тока создается по следующей цепочке: человек, касающийся одного провода – земля – человек, касающийся другого провода. Несмотря на то, что каждый человек думает, что он в безопасности, поскольку касается только одной точки незаземленной схемы, их совместные действия создают смертельный сценарий.
По сути дела, здесь один человек выступает в качестве замыкания на землю, что делает его опасным для другого человека. Именно поэтому незаземленные системы электропитания очень опасны.
При использовании таких систем, напряжение между разными точками схемы и землей непредсказуемо, потому что замыкание на землю может появиться в любой точке схемы в любое время. Единственным персонажем, которому обеспечена безопасность во всех рассмотренных сценариях, является птица, которая вообще не контактирует с землей.
Подключив определенную точку схемы к земле (“заземлив” цепь), вы гарантированно можете обезопасить эту точку, а это все же лучше, чем иметь незаземленную схему.
В ответ на второй вопрос можно сказать, что обувь на резиновой подошве действительно обеспечивает некоторую электрическую изоляцию, способную защитить человека от поражения электрическим током через его ноги.
Однако, наиболее распространенная конструкция обуви не является электрически “безопасной”, ее подошва слишком тонкая и не обеспечивает требуемую защиту.
Кроме того, любая влага, грязь, впитанный в подошву пот человека (его проводящие соли) сводят на нет имеющиеся изначально изоляционные свойства обуви.
Для проведения опасных электромонтажных работ существует специальная обувь и толстые резиновые коврики, которые в целях обеспечения надлежащей защиты должны быть в чистом, сухом состоянии. Короче говоря, обычная обувь не может гарантировать вам защиту от поражения электрическим током.
Исследования по замерам сопротивления контакта между различными частями тела человека и точкой соприкосновения (например землей) показывают широкий диапазон значений:
-
контакт рук или ног в резиновых сапогах или перчатках – 20 МОм.
-
контакт через сухую кожу подошвы босой ноги – от 100 КОм до 500 КОм.
-
контакт через влажную кожу подошвы босой ноги – от 5 КОм до 20 КОм.
Как видите, резина намного лучший изоляционный материал чем кожа, сопротивление которой может значительно понизить присутствие воды в ее порах.
И наконец, ответим на третий вопрос. Земля не является хорошим проводником (по крайней мере в сухом состоянии!). Она обладает слишком низкой проводимостью и поэтому не может поддерживать необходимый для питания нагрузки поток электронов.
Однако для того, чтобы ранить или убить человека требуется совсем небольшой ток, поэтому даже низкой проводимости земли будет достаточно чтобы обеспечить путь для смертельного тока при наличии высокого напряжения (которое обычно есть в электрических сетях).
Если брать разные поверхности земли, то одни из них будут лучшими изоляторами, чем другие. У асфальта, например, сопротивление будет больше чем у большинства видов земли и горных пород, потому что в его состав входит нефтяная основа. Бетон же, наоборот, будет иметь достаточно низкое сопротивление из за входящих в его состав проводящих химических компонентов.
Краткий обзор:
-
Поражение электрическим током может произойти только при контакте с двумя точками схемы (когда к телу человека будет приложено напряжение).
-
Силовые цепи обычно имеют подключенную к закопанному в землю металлическому стержню точку “заземления”, которая гарантирует безопасность одной стороны этой цепи (она будет являться электрически общей с землей).
-
Замыкание на землю – это случайный контакт проводника схемы с землей.
-
Защитить человека от поражения током, через электропроводность земли, могут специальные резиновые сапоги и коврики, которые должны быть в чистом, сухом состоянии. Обычная обувь не способна обеспечить гарантированную изоляцию человека от земли.
-
Земля не является хорошим проводником, но она в состоянии провести достаточное количество тока, чтобы травмировать или убить человека.
Источник: http://www.radiomexanik.spb.ru/3.-elektrobezopasnost/2.-zazemlennyie-i-nezazemlennyie-shemyi.html