Технология поддержания температуры теплоносителя

Регулирование температуры теплоносителя

Технология поддержания температуры теплоносителя

В этой статье я хочу рассказать каким образом и на основании чего производится регулирование температуры теплоносителя. Не думаю, что данная статья будет полезна или интересна работникам теплоэнергетики, так как ничего нового они из нее не почерпнут. А вот обычным гражданам она, надеюсь, окажется полезной.

Я буду приводить цитаты из «Правил технической эксплуатации электрических станций и сетей Российской Федерации». 

Температурный график разрабатывается для каждого города, в зависимости от местных условий. В нем четко определено какая должна быть температура сетевой воды в тепловой сети при конкретной температуре наружного воздуха.

Например, при -35° температура теплоносителя должна быть 130/70. Первая цифра определяет температуру в подающем трубопроводе, вторая — в обратном.

Задает эту температуру диспетчер тепловых сетей для всех теплоисточников (ТЭЦ, котельные).

Правила допускают отклонения от заданных параметров:

Этой весной мне позвонил один мужик и стал мне рассказывать как жарко у него дома и, что приходится и днем и ночью держать окна открытыми и т. д. и т. п. На улице, действительно, было уже тепло, но постановления об окончании отопительного сезона еще не было.

Я пытался ему объяснить, что прохладнее батареи не станут, т. к. на выходе из котельной температура теплоносителя составляет минимальные 70°С, согласно правилам. Мои доводы разбивались о стену непонимания этого «разогретого парня».

Живет он недалеко от котельной, поэтому получал тепловую энергию практически без потерь. Я искренне сочувствовал ему, так как сам страдал от жары в квартире, но слушать меня он не хотел.

«Убавьте температуру и точка!» Помочь я ему не мог, только и посоветовал обратиться к своим жилищникам, чтобы они «прижали» отопление в доме. 

С такой проблемой люди сталкиваются в начале (в конце) отопительного сезона, т. к. на улице еще бывают (уже стали) теплые деньки, а батареи «жарят» по-полной. Как с этим можно бороться я рассказывал в статье «Регулирование температуры отопительных радиаторов (батарей)».

Так что, дорогие граждане, не пытайтесь как-то воздействовать на тепловые сети, если вам стало очень жарко весной. Они ничего для вас не сделают, т. к. не имеют ни права ни возможности.

Жалуйтесь в администрацию, тогда, возможно, они прикажут прекратить отопительный сезон раньше.

Но помните, что весной температура на улице изменчива и, если сегодня тепло и вы добились отключения отопления, то завтра может стать очень холодно, а отключать оборудование гораздо быстрее, чем включать его в работу.

Теперь поговорим о том, как бывает холодно в квартире зимой, особенно когда основательно «подморозит». Если в квартире холодно, то кто обычно виноват? Правильно — тепловые сети! Так думают большинство граждан. Отчасти, они правы, но не все так просто.

Начнем с того, что в сильные морозы газоснабжающие организации могут ввести ограничение на поставки газа. Из-за этого котельным приходится поддерживать температуру теплоносителя «сколько получится». Как правило, градусов на 10 ниже, чем заложено в температурном графике.

Электростанциям проще — они переходят на сжигание мазута, а котельным, которые зачастую стоят чуть ли не посреди жилых кварталов, жечь мазут разрешают только в аварийных случаях (например, полное прекращение газоснабжения), чтобы люди не замерзли совсем.

Из-за ограничений поставок газа могут даже отключить горячую воду, чтобы снизить расходы теплоносителя и тем самым поддерживать температуру в системах отопления на нужном уровне. Так что не удивляйтесь в случае чего.

Также причиной того, что зимой в квартирах холодно, является высокая степень изношенности самих тепловых сетей, а в частности тепловой изоляции трубопроводов. В результате, в дома, которые находятся довольно далеко от теплоисточника теплоноситель «доходит» уже порядком остывший.

Ну и последняя причина, о которой я расскажу — это неудовлетворительная теплоизоляция самих квартир и домов. Щели в окнах, дверях, отсутствие теплоизоляции самого дома — все это приводит к тому, что тепло уходит в окружающую среду и нам холодно. Эту причину устранить можете вы сами.

Установите новые окна, сделайте теплоизоляцию квартиры, поменяйте радиаторы отопления на новые, ведь со временем чугунные батареи забиваются и теплоотдача значительно снижается. Кстати, если покрасить батарею в черный цвет, то она будет греть лучше.

Это не шутка, опыты подтверждают этот факт.

Ну вот, кажется, и все, что я хотел рассказать в этой статье. Так же хочу оговориться, что я писал статью, основываясь во многом на личном опыте. В разных регионах нашей страны ситуация может быть разной и в корне отличаться от того, что я тут понаписал. Но в целом, думаю, обстановка схожа. По крайней мере в крупных городах.

Источник: https://energoworld.ru/blog/regulirovanie-temperatury-teplonositelya/

Норматив температуры теплоносителя в системе отопления

Обеспечение комфортных условий жизни в холодное время года — задача теплоснабжения. Интересно проследить, как человек пытался согреть своё жилище. Изначально избы топили по-чёрному, дым уходил в отверстие на крыше.

Позже перешли к печному отоплению, затем, с появлением котлов, к водяному. Котельные установки наращивали свои мощности: от котельной в одном взятом доме до районной котельной. И, наконец, с увеличением количества потребителей при росте городов люди пришли к централизованному отоплению от теплоэлектростанций.

Классификация теплоносителей

Дорогие читатели!

Наши статьи рассказывают о типовых способах решения юридических вопросов, но каждый случай носит уникальный характер. Если вы хотите узнать,

как решить именно Вашу проблему — звоните по телефонам:

8 (499) 703-15-47 — Москва
8 (812) 309-50-34 — Санкт-Петербург

или если Вам так удобнее, воспользуйтесь формой онлайн-консультанта!

Все консультации у юристов бесплатны.

В зависимости от источника теплоэнергии различают централизованные и децентрализованные системы теплоснабжения. К первому типу относится производство тепла на основе комбинированного производства электроэнергии и теплоэнергии на тепловых электростанциях и отпуск тепла от районных отопительных котельных.

К децентрализованным системам теплоснабжения относятся котельные установки небольшой производительности и индивидуальные котлы.

По виду теплоносителя отопительные системы подразделяются на паровые и водяные.

Преимущества водяных теплосетей:

  • возможность транспортировки теплоносителя на большие расстояния;
  • возможность централизованного регулирования отпуска тепла в теплосети изменением гидравлического или температурного режима;
  • отсутствие потерь пара и конденсата, которые всегда бывают в паровых системах.

Формула расчета подачи тепла

Температура теплоносителя в зависимости от наружной температуры поддерживается теплоснабжающей организацией на основании температурного графика.

Температурный график подачи тепла в систему отопления строится на основании мониторинга температур воздуха в отопительный период. При этом выбирают восемь самых холодных зим за пятьдесят лет.

Учитывается сила и скорость ветра в различных географических районах. Просчитываются необходимые тепловые нагрузки для обогрева помещения до 20−22 градусов.

Для промышленных помещений установлены свои параметры теплоносителя для поддержания технологических процессов.

Составляется уравнение теплового баланса. Рассчитываются тепловые нагрузки потребителей с учётом потерь тепла в окружающую среду, производится расчёт соответствующего отпуска тепла для покрытия суммарных тепловых нагрузок. Чем холоднее на улице, тем выше потери в окружающую среду, тем больше тепла отпускается от котельной.

Отпуск тепла считается по формуле:

Q= Gсв * С * (tпр-tоб), где

  • Q — тепловая нагрузка в квт, количество теплоты, отпущенное за единицу времени;
  • Gсв — расход теплоносителя в кг/сек;
  • tпр и tоб — температуры в прямом и обратном трубопроводах в зависимости от температуры наружного воздуха;
  • С — теплоёмкость воды в кДж/ (кг*град).

Методы регулирования параметров

Применяются три метода регулирования тепловой нагрузки:

  1. Количественный.
  2. Качественный.
  3. Количественно-качественный.

При количественном методе регулирование тепловой нагрузки осуществляется за счёт изменения количества подаваемого теплоносителя. С помощью насосов теплосети повышается давление в трубопроводах, отпуск тепла увеличивается с возрастанием скорости потока теплоносителя.

Качественный метод заключается в увеличении параметров теплоносителя на выходе из бойлеров при сохранении расхода. Этот метод наиболее часто применяется на практике.

При количественно-качественном методе изменяют параметры и расход теплоносителя.

Факторы, влияющие на нагрев помещения в отопительный период:

  1. параметры воды в подающем трубопроводе;
  2. температура наружного воздуха;
  3. скорость ветра, приводящая к увеличению сквозняков и теплоотдачи от оконных рам и дверей;
  4. теплоизоляция стен.

Системы теплоснабжения подразделяются в зависимости от конструкции на однотрубные и двухтрубные. Для каждой конструкции утверждается свой тепловой график в подающем трубопроводе.

Для однотрубной системы отопления максимальная температура в подающей магистрали 105 градусов, в двухтрубной — 95 градусов.

Разница температуры подачи и обратки в первом случае регулируется в диапазоне 105−70, для двухтрубной — в диапазоне 95−70 градусов.

Выбор системы отопления для частного дома

Принцип работы однотрубной системы отопления заключается в подаче теплоносителя на верхние этажи, к нисходящему трубопроводу подключаются все радиаторы. Понятно, что будет теплее на верхних этажах, чем на нижних. Так как частный дом в лучшем случае имеет два или три этажа, контраст в обогреве помещений не грозит. А в одноэтажном строении вообще будет равномерный обогрев.

Какие преимущества такой системы теплоснабжения:

  • простота проектирования и монтажа;
  • устойчивый гидродинамический режим;
  • меньшие материальные затраты по сравнению с другими типами систем отопления;
  • сохранение естественной циркуляции при повышенном давлении воды.

Недостатки конструкции заключаются в высоком гидравлическом сопротивлении, необходимости отключения отопления всего дома во время ремонта, ограничение в подключении обогревательных приборов, невозможности регулирования температуры в отдельно взятом помещении, высоких тепловых потерях.

Для усовершенствования было предложено использовать систему байпасов.

Байпас — отрезок трубы между подающим и обратным трубопроводом, обходной путь помимо радиатора. Они оснащаются клапанами или кранами и позволяют регулировать температуру в помещении или совсем отключить отдельно взятую батарею.

Однотрубная отопительная система может быть вертикальной и горизонтальной. В обоих случаях в системе появляются воздушные пробки. На входе в систему поддерживается высокая температура, чтобы прогреть все помещения, поэтому трубная система должна выдерживать высокое давление воды.

Двухтрубная система отопления

Принцип работы заключается в подключение каждого обогревательного устройства к подающему и обратному трубопроводам. Охлаждённый теплоноситель по обратному трубопроводу направляется к котлу.

При монтаже потребуются дополнительные вложения, но воздушных пробок в системе не будет.

Нормативы температурного режима для помещений

В жилом доме температура в угловых комнатах не должна быть ниже 20 градусов, для внутренних помещений норматив составляет 18 градусов, для душевых — 25 градусов. При снижении температур наружного воздуха до -30 градусов норматив поднимается до 20−22 градусов соответственно.

Свои нормативы установлены для помещений, где находятся дети. Основной диапазон — от 18 до 23 градусов. Причём для помещений разного назначения показатель варьируется.

Читайте также:  Энергия из радиочастотных систем

В школе температура не должна опускаться ниже 21 градуса, для спален в интернатах допускается не ниже 16 градусов, в бассейне — 30 градусов, на верандах детских садов, предназначенных для прогулок, — не ниже 12 градусов, для библиотек — 18 градусов, в культурно-массовых учреждениях температура — 16−21 градус.

При разработке нормативов для разных помещений принимается во внимание, сколько времени человек проводит в движении, поэтому для спортивных залов температура будет ниже, чем в классных комнатах.

Утверждены строительные нормы и правила РФ СНиП 41−01−2003 «Отопление, вентиляция и кондиционирование», регламентирующие температуру воздуха в зависимости от предназначения, этажности, высоты помещений. Для многоквартирного дома максимальная температура теплоносителя в батарее для однотрубной системы 105 градусов, для двухтрубной 95 градусов.

Рекомендуемый диапазон регулирования 80−90 градусов, так как при температуре 100 градусов, вода закипает.

В системе отопления частного дома

Оптимальная температура в индивидуальной системе отопления 80 градусов. Необходимо следить, чтобы уровень теплоносителя не снизился ниже 70 градусов. С газовыми котлами регулировать тепловой режим проще. Совсем по-другому работают котлы на твёрдом топливе. В этом случае вода очень легко может превратиться в пар.

Электрокотлы позволяют легко регулировать температуру в диапазоне от 30−90 градусов.

Возможные перерывы в подаче тепла

  1. Если температура воздуха в помещении составляет 12 градусов, разрешается отключать тепло на 24 часа.
  2. В диапазоне температур от 10 до 12 градусов предусмотрено отключение тепла максимум на 8 часов.
  3. При нагреве помещения ниже 8 градусов не разрешается отключать отопление дольше, чем на 4 часа.

Источник: https://domovik.guru/mnogokvartirnyedoma/normativ-temperatury-teplonositelya-v-sisteme-otopleniya.html

Теплоносители в системах отопления

Отопление:

Движущаяся среда в системе отопления – теплоноситель – аккумулирует теплоту и затем передает ее в обогреваемые помещения. Теплоносителем для отопления может быть под­вижная, жидкая или газообразная среда, соответствующая требованиям, предъявляемым к системе отопления.

Для отопления зданий и сооружений в настоящее время преимущественно используют во­ду или атмосферный воздух, реже водяной пар или нагретые газы.

Сопоставим характерные свойства указанных видов теплоносителя при использовании их в системах отопления.

Газы, образующиеся при сжигании твердого, жидкого или газообразного органического топлива, имеют сравнительно высокую температуру и применимы в тех случаях, когда в соответствии с санитарно-гигиеническими требованиями удается ограничить температуру теплоотдающей поверхности отопительных приборов. При транспортировании горячих газов имеют место значительные попутные теплопотери, обычно бесполезные для обогре­вания помещения.

Высокотемпературные продукты сгорания топлива могут выпускаться непосредственно в помещения или сооружения, но при этом ухудшается состояние их воздушной среды, что в большинстве случаев недопустимо.

Удаление же продуктов сгорания наружу по каналам усложняет конструкцию и понижает КПД отопительной установки.

При этом возникает необходимость решения экологических проблем, связанных с возможным загрязнением атмосферного воздуха продуктами сгорания вблизи отапливаемых объектов.

Область использования горячих газов ограничена отопительными печами, газовыми кало­риферами и другими подобными местными отопительными установками.

В отличие от горячих газов вода, воздух и пар используются многократно в режиме цир­куляции и без загрязнения окружающей здание среды.

Вода представляет собой жидкую, практически несжимаемую среду со значительной плотностью и теплоемкостью. Вода изменяет плотность, объем и вязкость в зависимости от температуры, а температуру кипения – в зависимости от давления, способна сорбиро­вать или выделять растворимые в ней газы при изменении температуры и давления.

Пар является легкоподвижной средой со сравнительно малой плотностью. Температура и плотность пара зависят от давления. Пар значительно изменяет объем и энтальпию при фазовом превращении.

Воздух также является легкоподвижной средой со сравнительно малыми вязкостью, плот­ностью и теплоемкостью, изменяющей плотность и объем в зависимости от температуры.

Сравним эти три теплоносителя по показателям, важным для выполнения требований, предъявляемых к системе отопления.

Одним из санитарно-гигиенических требований является поддержание в помещениях равномерной температуры. По этому показателю преимущество перед другими теплоносителями имеет воздух.

При использовании нагретого воздуха-теплоносителя с низкой теплоинерционностью – можно постоянно поддерживать равномерной температу­ру каждого отдельного помещения, быстро изменяя температуру подаваемого воздуха, т.е. проводя так называемое эксплуатационное регулирование.

 При этом одновременно с ото­плением можно обеспечить вентиляцию помещений.

Применение в системах отопления горячей воды также позволяет поддерживать равно­мерную температуру помещений, что достигается регулированием температуры, подавае­мой в отопительные приборы воды. При таком регулировании температура помещений все же может несколько отклоняться от заданной (на 1 -2 °С) вследствие тепловой инер­ции масс воды, труб и приборов.

При использовании пара температура помещений неравномерна, что противоречит гигие­ническим требованиям.

Неравномерность температуры возникает из-за несоответствия теплопередачи приборов при неизменной температуре пара (при постоянном давлении) изменяющимся теплопотерям помещения в течение отопительного сезона.

В связи с этим приходится уменьшать количество подаваемого в приборы пара и даже периодически от­ключать их во избежание перегревания помещений при уменьшении их теплопотерь.

Другое санитарно-гигиеническое требование – ограничение температуры наружной по­верхности отопительных приборов – вызвано явлением разложения и сухой возгонки ор­ганической пыли на нагретой поверхности, сопровождающимся выделением вредных ве­ществ, в частности окиси углерода. Разложение пыли начинается при температуре 65-70 °С и интенсивно протекает на поверхности, имеющей температуру более 80 °С.

При использовании пара в качестве теплоносителя температура поверхности большинства отопительных приборов и труб постоянна и близка или выше 100 °С, т.е. превышает ги­гиенический предел.

При отоплении горячей водой средняя температура нагретых по­верхностей, как правило, ниже, чем при применении пара. Кроме того, температуру воды в системе отопления понижают для снижения теплопередачи приборов при уменьшении теплопотерь помещений.

Поэтому при теплоносителе воде средняя температура поверх­ности приборов в течение отопительного сезона практически не превышает гигиеническо­го предела.

Важным экономическим показателем при применении различных теплоносителей явля­ется расход металла на теплопроводы и отопительные приборы.

Расход металла на теплопроводы возрастает с увеличением их поперечного сечения. Вы­числим соотношение площади поперечного сечения теплопроводов, по которым подаются различные теплоносители для передачи в помещение одинакового количества теплоты.

Примем, что для отопления используется вода, температура которой понижается с 150 до 70 °С, пар избыточным давлением 0,17 МПа (температура 130 °С) и воздух, охлаждаю­щийся с 60 °С до температуры помещения (например, 15 °С). Результаты расчетов, а так же характерные параметры теплоносителей (плотность, теплоемкость, удельная теплота конденсации пара) сведем в табл.

Таблица  Сравнение основных теплоносителей для отопления

Параметры Теплоноситель
вода пар воздух
Температура, разность температуры, °СПлотность, кг/м”Удельная массовая теплоемкость,кДж/(кг – °С)Удельная теплота конденсации, кДж/кгКоличество теплоты для отопления вобъеме 1 м  теплоносителя, кДжСкорость движения, м/сСоотношение площади поперечногосечения теплопроводов 150-70=809174,31-316 3701,51 1301,51,8421753263801,8 60-15=451,031,0-46,415680

Видно, что площади поперечного сечения водоводов и паропроводов относительно близ­ки, а сечение воздуховодов в сотни раз больше. Это объясняется, с одной стороны, значи­тельной теплоаккумуляционной способностью воды и свойством пара выделять большое количество теплоты при конденсации, с другой стороны – малыми плотностью и теплоем­костью воздуха.

При сравнении расхода металла следует также учесть, что площадь поперечного сечения труб для отвода конденсата от приборов в паровой системе – конденсатопроводов значи­тельно меньше площади сечения паропроводов, так как объем конденсата примерно в 1000 раз меньше объема той же массы пара.

Можно сделать вывод, что расход металла как на водоводы, так и на паро- и конденсато-проводы будет значительно меньшим, чем на воздуховоды, даже если последние выпол­нить со значительно более тонкими стенками.

Кроме того, при большой длине металличе­ских воздуховодов малотеплоемкий теплоноситель (воздух) сильно охлаждается по пути движения.

Этим объясняется, что при дальнем теплоснабжении в качестве теплоносителя используют не воздух, а воду или пар.

Расход металла на отопительные приборы, обогреваемые паром, меньше, чем на приборы, нагреваемые горячей водой, вследствие уменьшения площади приборов при более высо­ких значениях температуры нагревающей их среды.

Конденсация пара в приборах проис­ходит без изменения температуры насыщенного пара, а при охлаждении воды в приборах понижается средняя температура (например, до 110 °С при температуре воды, входящей в прибор, 150 °С и выходящей из прибора 70 °С).

Так как площадь нагревательной поверх­ности приборов обратно пропорциональна температурному напору (разности между сред­ней температурой поверхности прибора и температурой окружающего его воздуха), то при температуре пара 130 °С (см. табл. 1.

1) площадь паровых приборов приблизительно (считая коэффициенты теплопередачи приборов равными и принимая температуру поме­щения – 20 °С) составит (ПО – 20) / (130 – 20) = 0,82 площади водяных приборов.

В дополнение к известным эксплуатационным показателям следует отметить, что из-за высокой плотности воды (больше плотности пара в 600-1500 раз и воздуха в 900 раз) в системах водяного отопления многоэтажных зданий может возникать разрушающее гид­ростатическое давление. В связи с этим в высотных зданиях в США применялись системы парового отопления.

Воздух и вода до определенной скорости движения могут перемещаться в теплопроводах бесшумно. Частичная конденсация пара вследствие попутных теплопотерь через стенки паропроводов и появления попутного конденсата вызывает шум (щелчки, стуки и удары) при движении пара.

В суровых условиях российской зимы в некоторых случаях рекомендуется использовать в системе отопления специальный незамерзающий теплоноситель – антифриз. Антифризами являются водные растворы этиленгликоля, пропиленгликоля и других гликолей, а так же растворы некоторых неорганических солей.

Любой антифриз является достаточно ток­сичным веществом, требующим особого с ним обращения. Его использование в системе отопления может привести к некоторым негативным последствиям (ускорение коррози­онных процессов, снижение теплообмена, изменение гидравлических характеристик, за-воздушивание и др.).

В связи с этим, применение антифриза в качестве теплоносителя в каждом конкретном случае должно быть достаточно обоснованным.

В заключение перечислим преимущества и недостатки основных теплоносителей для отопления.

При использовании воды обеспечивается достаточно равномерная температура помеще­ний, можно ограничить температуру поверхности отопительных приборов, сокращается по сравнению с другими теплоносителями площадь поперечного сечения труб, достигается бесшумность движения в теплопроводах. Недостатками применения воды являются значительный расход металла и большое гидростатическое давление в системах. Тепловая инерция воды замедляет регулирование теплопередачи приборов.

При использовании пара сравнительно сокращается расход металла за счет уменьшения площади приборов и поперечного сечения конденсатопроводов, достигается быстрое про­гревание приборов и отапливаемых помещений.

Гидростатическое давление пара в верти­кальных трубах по сравнению с водой минимально.

Однако пар как теплоноситель не от­вечает санитарно-гигиеническим требованиям, его температура высока и постоянна при данном давлении, что затрудняет регулирование теплопередачи приборов, движение его в трубах сопровождается шумом.

Читайте также:  Воспроизведение звука на pic

При использовании воздуха можно обеспечить быстрое изменение или равномерность температуры помещений, избежать установки отопительных приборов, совмещать ото­пление с вентиляцией помещений, достигать бесшумности его движения в воздуховодах и каналах. Недостатками являются его малая теплоаккумулирующая способность, значи­тельные площадь поперечного сечения и расход металла на воздуховоды, относительно большое понижение температуры по их длине.

Источник: http://teplo.kr-company.ru/glav/otoplenie/dopolnitelnaya_informaciya/teplonositeli_v_sistemah_otopleniya/

Регулирование системы отопления

Регулирование системы отопления подразумевает приведение процесса потребления тепловой энергии в соответствие с реальными потребностями в ней. Простой пример: чем холоднее на улице, тем интенсивнее должна работать отопительная система и, наоборот, при повышении температуры воздуха в доме выше предельного значения, температура теплоносителя в приборах отопления должна снижаться.

Самый простой способ регулирования системы отопления состоит в ручном управлении работой котла и отопительных приборов: жарко в доме, можно перекрыть вентиль подачи теплоносителя в прибор отопления, в результате чего обратная вода вернется в котел горячей, что приведет к отключению котла или к уменьшению расхода топлива.

Еще более простой способ регулирования системы отопления состоит во временном отключении котла и включении его в работу при снижении температуры в помещении.

На сегодняшний день подобное «ручное управление» устарело и вести о нем речь можно только применительно к приборам отопления, не имеющим систем автоматического контроля, например, к дровяным печам или к некоторым видам дровяных котлов отопления.

Современные системы регулирования отопления решают одновременно две задачи:

  • позволяют создать действительно комфортные условия в доме, поддерживая в нем заданный уровень температуры
  • оптимизируют расход топлива, и, как следствие, снижают затраты на отопление

Регулировка системы отопления производится по одному из двух параметров

  • Температуре наружного воздуха
  • Температуре внутри помещения

Считается, что более комфортные условия в частном доме можно получить при изменении температуры теплоносителя в зависимости от условий внутри помещения. Объясняется это просто: тепловые потери не всегда линейно зависят от температуры наружного воздуха: необходимо учитывать скорость ветра и расположение строения относительно сторон света.

Для многоквартирных домов и систем центрального отопления важнее температура наружного воздуха, позволяющая получать усредненные результаты сразу для всех потребителей тепловой энергии.

Методы регулирования систем отопления

Как было сказано выше, основная задача регулирования системы отопления состоит в поддержании определенного уровня температуры в помещении. Сделать это можно несколькими способами:

  1. Меняя скорость движения теплоносителя через прибор отопления с помощью запорной арматуры или с помощью циркуляционного насоса. При этом происходит изменение количества теплоносителя, проходящего через прибор отопления в единицу времени. Такой метод называется количественным.

  2. Меняя температуру нагрева теплоносителя (изменяя его качество). Такой метод называется качественным.

Следует отметить, что оба метода неразрывно связаны друг с другом и в системах высокого качества используются одновременно.

Практическая реализация метода №1

Самый простой способ управления отоплением состоит в изменении режимов работы циркуляционного насоса в зависимости от температуры в помещении: холодно, насос работает с максимальной скоростью, что обеспечивает наиболее интенсивную теплоотдачу приборов отопления. Стало жарко: скорость движения теплоносителя минимальная. В ночное время или днем, когда все жильцы дома на работе или на учебе, может также использоваться режим экономии тепла, предусматривающий минимальную скорость движения воды в отопительной системе.

Недостатком управления отоплением с помощью циркуляционного насоса является общий подход ко всем помещениям в доме, независимо от реальных потребностей в тепловой энергии.

Более точное, локальное регулирование системы отопления можно получить, управляя работой отдельно взятого радиатора.

Как управлять работой радиатора отопления?

На практике менять расход теплоносителя можно с помощью автоматических головок, в конструкцию которых включается клапан и термодатчик, реагирующий на изменение температуры в помещении.

Принцип действия устройства достаточно прост: полость головки заполнена жидкостью, объем которой зависит от температуры: при похолодании объем жидкости уменьшается, клапан открывается, увеличивая при этом расход теплоносителя.

При повышении температуры в помещении напротив: объем жидкости увеличивается, клапан закрывается, перекрывая движение теплоносителя.

Недостатком автоматических головок является их невысокая надежность и частый выход из строя. Более совершенным и надежным является способ регулирования отопления с использованием сервопривода, приводимого в движение и перекрывающего подачу теплоносителя в радиатор также в зависимости от температуры в помещении.

И автоматическая головка, и сервопривод рассчитаны на изменение температуры теплоносителя не во всей системе отопления, а лишь в одном отдельно взятом радиаторе. Если в комнате несколько отопительных приборов, оборудовать подобными системами автоматического контроля придется каждый из них. Только в этом случае можно действительно регулировать отопление.

Все приборы отопления в доме могут быть объединены в одну систему автоматического управления отоплением.

Регулировка во время эксплуатации

Также известен и другой способ – эксплуатационное регулирование. Как следует из названия, регулирование системы отопления проводится во время ее работы. Это необходимо, чтобы производить настройку по мере необходимости.

К примеру, если есть потребность увеличить количество тепла или уменьшить (в зависимости от температуры воздуха на улице и метеорологических условий). Изменение количества вырабатываемого системой тепла обеспечивается за счет регулировки температуры или же путем изменения расхода теплоносителя.

Таким образом, можно условно разделить на «качественный» и «количественный» варианты осуществления контроля системы.

Качественное регулирование проводится прямо на тепловой станции. Бывает местное и групповое. Количественное имеет три подразделения: групповое, индивидуальное и местное.

Индивидуальное регулирование

Данный способ контролирования системы производится вручную при помощи клапанов и кранов, и автоматически при перемене температуры воздуха в квартире. В разветвленных системах необходимо изменить расход теплоносителя – это должно упростить задачу регулировки.

Регулирование системы отопления в частных домах требует знаний об особенностях индивидуального водяного отопления. Основная задача системы заключается в обеспечении оптимального микроклимата для всей семьи.

К сожалению, достаточно часто отопление выходит из-под контроля. Чаще всего, неправильная эксплуатация и несвоевременная корректировка параметров ведут к неэффективности показателей.

Причинами также могут быть ошибки, допущенные при проектировании отопления, или плохое утепление.

 Как показывает практика, во время проведения системы отопления люди не задаются вопросом расчетов. Специалисты, занимающиеся монтажом, предпочитают делать все оперативно, за счет чего страдает точность. Как результат, в одной комнате может быть прохладно, а в другой – чересчур жарко. Комфорта в таком случае можно не ждать.

Самый простой способ отрегулировать циркуляцию воды – использовать термостат, расположенный на котле. Это своего рода рычажное устройство, которое позволит переключить теплозатраты и в таким образом произойдет снижение температуры в доме. Также при необходимости можно повысить уровень нагрева жидкости и за счет этого повысить температуру воздуха в доме.

Источник: http://aquagroup.ru/articles/regulirovanie-sistemy-otopleniya.html

Регулирование температуры в зданиях

Производственные и жилые здания имеют большую тепловую инерцию, поэтому для регулирования температуры в зданиях не годятся обычные методы регулирования. Традиционные методы регулирования (позиционный и ПИД) являются методами регулирования по отклонению температуры.

То есть, сначала температура должна отклониться от заданной, а затем прибор примет решение об изменении мощности, подводимой к объекту. Другим известным математическим методом является метод регулирования по возмущению.

В этом случае регистрируется не температура объекта, а внешние тепловые воздействия на объект, рассчитывается их возможное влияние на температуру объекта и принимается решение об изменении мощности, подводимой к объекту. В применении к задачам отопления это означает, что требуется измерять температуру не в здании, а на улице.

Теплопотери здания зависят от наружной температуры. Чем холоднее температура на улице, тем больше тепловой энергии нужно подавать в здание. Отопительным графиком называется зависимость требуемой температуры теплоносителя от наружной температуры. График является индивидуальным для каждого здания.

Регулирование по отопительному графику

Приборы Термодат специально разработаны для задач отопления. Регулирование температуры теплоносителя, подаваемого в здание, ведется по отопительному графику. Отопительный график заносится в память прибора по точкам (10 точек от -35 до +10, через 5 градусов). График должен быть рассчитан или найден экспериментально наладчиком. Типовой пример отопительного графика приведен в таблице:

Температура на улице, Тнаружная, °CТемпература теплоносителя, Т °C
-35 93
-30 84
-25 76
-20 69
-15 62
-10 56
-5 50
45
+5 40
+10 35

В системах централизованного отопления от тепловой магистрали температура теплоносителя регулируется, как правило, электроуправляемой задвижкой, установленной в первичном трубопроводе перед бойлером.

При зависимой схеме подключения к теплосети, температура теплоносителя регулируется управляемым элеватором или иным способом. Регулирование задвижкой или элеватором ведется по трехпозиционному импульсному закону.

В системах индивидуального электроотопления температура теплоносителя после электрокотла регулируется путем измерения мощности ТЭНов, по позиционному или ПИД закону.

Учет температуры воздуха в здании

График отопления строится приведенным к температуре внутри здания равной 20С. То есть в идеальном случае, если подать теплоноситель в здание с температурой определенной из графика, температура в здании будет равна 20С.

В этом случае не учитываются внутренние источники тепла в здании, солнечное излучение и ветер. Поэтому в ветреную погоду в здании будет холодно, а в солнечную жарко.

Кроме того, требуется изменять температуру в здании в зависимости от времени суток для экономии тепла.

Ттеплоносителя = Тгр+f1(Тнаружная)*(Тзаданная-20) + K2*f2(Тнаружная)*(Тзаданная — Твнутренняя)

В приведенной формуле первое слагаемое Тгр — температура, определенная из отопительного графика. Второе слагаемое учитывает сдвиг графика при отличии уставки внутренней температуры от 20°С. Функция f1 от наружной температуры задается разработчиком прибора.

Третье слагаемое вводит поправку к температуре теплоносителя, вызванную отклонением внутренней температуры воздуха от заданной. Функция f2 задается разработчиком. Коэффициент k2 задается наладчиком системы в третьем уровне режима настройки прибора. Иногда не требуется измерять температуру в здании и вводить поправку по внутренней температуре.

В этом случае коэффициент К2 следует задать равным нулю, а датчик внутренней температуры можно не устанавливать.

Ограничение температуры обратки

В системах централизованного отопления от тепловой магистрали, необходимо контролировать и ограничивать температуру обратки. Если управлять системой отопления без учета температуры обратки, вместо экономии можно получить убыток от штрафов. В приборах Термодат для этого введен дополнительный контур управления.

Прибор рассчитывает максимально допустимую температуру обратки. Если температура обратки выходит за допустимый предел, прибор уменьшает подачу теплоносителя из тепловой сети и переходит в режим поддержания максимально допустимой температуры обратки.

Температура обратки управляется той же электрозадвижкой, что и температура теплоносителя. Приоритет автоматически отдается алгоритму управления температуры обратки.

То есть если в здании холодно, и прибор знает , что нужно увеличить подачу тепла в здание, он не сможет это сделать, пока температура обратки не снизится до допустимой нормы. Максимально допустимая температура обратки может определяться в приборах Термодат одним из двух способов:

  • по температуре теплоносителя поступающего из теплоцентрали. Для этого устанавливается дополнительный датчик температуры первичного теплоносителя. Температура обратки находится по графику, задаваемому теплосетсями и записанному в память прибора.
  • по температуре наружного воздуха. Температура обратки находится по другому графику, задаваемому теплосетями, который записывается наладчиком в память прибора.
Читайте также:  Многофункциональный циклический таймер

Выбор способа определения максимально допустимой температуры обратки зависит от способа контроля обратки энергоснабжающей организацией. Таким образом, для решения задачи регулирования температуры в здании, прибор Термодат имеет пять датчиков температуры:

  • для измерения температуры воздуха на улице,
  • для измерения температуры воздуха в здании,
  • для измерения температуры теплоносителя, подаваемого в здание (после бойлера),
  • для измерения температуры обратки,
  • для измерения температуры теплоносителя в сети.

Источник: http://termodat.msk.ru/article/regulirovanie-temperaturyi/regulirovanie-temperaturyi-v-zdaniyah

Теплоносители в системах отопления

Движущаяся среда в системе отопления — теплоноситель – аккумули­рует теплоту и затем передает ее в обогреваемые помещения. Теплоносите­лем для отопления может быть подвижная, жидкая или газообразная среда, соответствующая требованиям, предъявляемым к системе отопления.

Для отопления зданий и сооружений в настоящее время преимущест­венно используют воду или атмосферный воздух, реже водяной пар или на­гретые газы.

Сопоставим характерные свойства указанных видов теплоносителя при использовании их в системах отопления.

Газы, образующиеся при сжигании твердого, жидкого или газообраз­ного органического топлива, имеют сравнительно высокую температуру и применимы в тех случаях, когда в соответствии с санитарно-гигиенически­ми требованиями удается ограничить температуру теплоотдающей поверх­ности отопительных приборов. При транспортировании горячих газов име­ют место значительные попутные теплопотери, обычно бесполезные для обогревания помещения.

Высокотемпературные продукты сгорания топлива могут выпускать­ся непосредственно в помещения или сооружения, но при этом ухудшается состояние их воздушной среды, что в большинстве случаев недопустимо.

Удаление же продуктов сгорания наружу по каналам усложняет конструк­цию и понижает КПД отопительной установки.

При этом возникает необхо­димость решения экологических проблем, связанных с возможным загряз­нением атмосферного воздуха продуктами сгорания вблизи отапливаемых объектов.

Область использования горячих газов ограничена отопительными пе­чами, газовыми калориферами и другими подобными местными отопитель­ными установками.

В отличие от горячих газов вода, воздух и пар используются много­кратно в режиме циркуляции и без загрязнения окружающей здание среды.

Вода представляет собой жидкую, практически несжимаемую среду со значительной плотностью и теплоемкостью. Вода изменяет плотность, объем и вязкость в зависимости от температуры, а температуру кипения – в зависимости от давления, способна сорбировать или выделять растворимые в ней газы при изменении температуры и давления.

Пар является легкоподвижной средой со сравнительно малой плот­ностью. Температура и плотность пара зависят от давления. Пар значитель­но изменяет объем и энтальпию при фазовом превращении.

Воздух также является легкоподвижной средой со сравнительно ма­лыми вязкостью, плотностью и теплоемкостью, изменяющей плотность и объем в зависимости от температуры.

Сравним эти три теплоносителя по показателям, важным для выпол­нения требований, предъявляемых к системе отопления.

Одним из санитарно-гигиенических требований является поддер­жание в помещениях равномерной температуры.

По этому пока­зателю преимущество перед другими теплоносителями имеет воздух.

При использовании нагретого воздуха – теплоносителя с низкой теплоинерцион- ностью – можно постоянно поддерживать равномерной температуру каждо­го отдельного помещения, быстро изменяя температуру подаваемого возду­ха, т. е. проводя так называемое эксплуатационное регулирование. При этом одновременно с отоплением можно обеспечить вентиляцию помещений.

Применение в системах отопления горячей воды также позволяет поддерживать равномерную температуру помещений, что достигается регу­лированием температуры, подаваемой в отопительные приборы воды. При таком регулировании температура помещений все же может несколько от­клоняться от заданной (на 1-2 °С) вследствие тепловой инерции масс воды, труб и приборов.

При использовании пара температура помещений неравномерна, что противоречит гигиеническим требованиям.

Неравномерность температуры возникает из-за несоответствия теплопередачи приборов при неизменной температуре пара (при постоянном давлении) изменяющимся теплопотерям помещения в течение отопительного сезона.

В связи с этим приходится уменьшать количество подаваемого в приборы пара и даже периодически отключать их во избежание перегревания помещений при уменьшении их теплопотерь.

Другое санитарно-гигиеническое требование – ограничение темпе­ратуры наружной поверхности отопительных приборов – вызвано явлением разложения и сухой возгонки органической пыли на нагретой поверхности, сопровождающимся выделением вредных веществ, в частности окиси угле­рода. Разложение пыли начинается при температуре 65-70 °С и интенсивно протекает на поверхности, имеющей температуру более 80 °С.

При использовании пара в качестве теплоносителя температура по­верхности большинства отопительных приборов и труб постоянна и близка или выше 100 °С, т. е. превышает гигиенический предел.

При отоплении го­рячей водой средняя температура нагретых поверхностей, как правило, ни­же, чем при применении пара. Кроме того, температуру воды в системе отопления понижают для снижения теплопередачи приборов при уменьше­нии теплопотерь помещений.

Поэтому при теплоносителе воде средняя тем­пература поверхности приборов в течение отопительного сезона практиче­ски не превышает гигиенического предела.

Важным экономическим показателем при применении различных теплоносителей является расход металла на теплопроводы и отопительные приборы.

Расход металла на теплопроводы возрастает с увеличением их попе­речного сечения. Вычислим соотношение площади поперечного сечения теплопроводов, по которым подаются различные теплоносители для переда­чи в помещение одинакового количества теплоты.

Примем, что для отопле­ния используется вода, температура которой понижается с 150 до 70 °С, пар избыточным давлением 0,17 МПа (температура 130 °С) и воздух, охлажда­ющийся с 60 °С до температуры помещения (например, 15 °С).

Результаты расчетов, а также характерные параметры теплоносителей (плотность, теп­лоемкость, удельная теплота конденсации пара).

Видно, что площади поперечного сечения водоводов и паропроводов относительно близки, а сечение воздуховодов в сотни раз больше. Это объ­ясняется, с одной стороны, значительной теплоаккумуляционной способно

стью воды и свойством пара выделять большое количество теплоты при конденсации, с другой стороны – малыми плотностью и теплоемкостью воз­духа.

При сравнении расхода металла следует также учесть, что площадь поперечного сечения труб для отвода конденсата от приборов в паровой си­стеме – конденсатопроводов значительно меньше площади сечения паро­проводов, так как объем конденсата примерно в 1000 раз меньше объема той же массы пара.

Можно сделать вывод, что расход металла как на водоводы, так и на паро- и конденсатопроводы будет значительно меньшим, чем на воздухово­ды, даже если последние выполнить со значительно более тонкими стенка­ми.

Кроме того, при большой длине металлических воздуховодов малотеп­лоемкий теплоноситель (воздух) сильно охлаждается по пути движения.

Этим объясняется, что при дальнем теплоснабжении в качестве теплоноси­теля используют не воздух, а воду или пар.

Расход металла на отопительные приборы, обогреваемые паром, меньше, чем на приборы, нагреваемые горячей водой, вследствие уменьше­ния площади приборов при более высоких значениях температуры нагрева­ющей их среды.

Конденсация пара в приборах происходит без изменения температуры насыщенного пара, а при охлаждении воды в приборах пони­жается средняя температура (например, до 110 °С при температуре воды, входящей в прибор, 150 °С и выходящей из прибора 70 °С).

Так как площадь нагревательной поверхности приборов обратно пропорциональна темпера­турному напору (разности между средней температурой поверхности при­бора и температурой окружающего его воздуха), то при температуре пара 130 °С (см. табл. 1.

1) площадь паровых приборов приблизительно (считая коэффициенты теплопередачи приборов равными и принимая температуру помещения – 20 °С) составит (110 – 20) / (130 – 20) = 0,82 площади водяных приборов.

В дополнение к известным эксплуатационным показателям следует отметить, что из-за высокой плотности воды (больше плотности пара в 600- 1500 раз и воздуха в 900 раз) в системах водяного отопления многоэтажных зданий может возникать разрушающее гидростатическое давление. В связи с этим в высотных зданиях в США применялись системы парового отопле­ния.

Воздух и вода до определенной скорости движения могут переме­щаться в теплопроводах бесшумно. Частичная конденсация пара вследствие попутных теплопотерь через стенки паропроводов и появления попутного конденсата вызывает шум (щелчки, стуки и удары) при движении пара.

В суровых условиях российской зимы в некоторых случаях рекомен­дуется использовать в системе отопления специальный незамерзающии теплоноситель — антифриз. Антифризами являются водные растворы эти- ленгликоля, пропиленгликоля и других гликолей, а также растворы некото­рых неорганических солей.

Любой антифриз является достаточно токсич­ным веществом, требующим особого с ним обращения. Его использование в системе отопления может привести к некоторым негативным последстви­ям (ускорение коррозионных процессов, снижение теплообмена, изменение гидравлических характеристик, завоздушивание и др.).

В связи с этим, при­менение антифриза в качестве теплоносителя в каждом конкретном случае должно быть достаточно обоснованным.

В заключение перечислим преимущества и недостатки основных теплоносителей для отопления.

При использовании воды обеспечивается достаточно равномерная температура помещений, можно ограничить температуру поверхности ото­пительных приборов, сокращается по сравнению с другими теплоносителя­ми площадь поперечного сечения труб, достигается бесшумность движения в теплопроводах. Недостатками применения воды являются значительный расход металла и большое гидростатическое давление в системах. Тепловая инерция воды замедляет регулирование теплопередачи приборов.

При использовании пара сравнительно сокращается расход металла за счет уменьшения площади приборов и поперечного сечения конденсато- проводов, достигается быстрое прогревание приборов и отапливаемых по­мещений.

Гидростатическое давление пара в вертикальных трубах по срав­нению с водой минимально.

Однако пар как теплоноситель не отвечает са­нитарно-гигиеническим требованиям, его температура высока и постоянна при данном давлении, что затрудняет регулирование теплопередачи прибо­ров, движение его в трубах сопровождается шумом.

При использовании воздуха можно обеспечить быстрое изменение или равномерность температуры помещений, избежать установки отопи­тельных приборов, совмещать отопление с вентиляцией помещений, дости­гать бесшумности его движения в воздуховодах и каналах. Недостатками являются его малая теплоаккумулирующая способность, значительные пло­щадь поперечного сечения и расход металла на воздуховоды, относительно большое понижение температуры по их длине.

Таблица 1. Сравнение основных теплоносителей для отопления

Параметры

Теплоноситель

вода

пар

воздух

Температура, разность температуры, °С

150-70=80

130

60-15=45

Плотность, кг/м3

917

1,5

1,03

Удельная массовая теплоемкость,

4,31

1,84

1,0

кДж/(кг • °С)

Удельная теплота конденсации, кДж/кг

2175

Количество теплоты для отопления в

316 370

3263

46,4

объеме 1 м3 теплоносителя, кДж

Скорость движения, м/с

1,5

80

15

Соотношение площади поперечного

1

1,8

680

сечения теплопроводов

Источник: http://ru-stroyka.com/vodorazdel/725-teplonositeli-v-sistemah-otopleniya.html

Ссылка на основную публикацию
Adblock
detector