Автоматическое зу автомобильных аккумуляторов на pic

Автоматическое зарядное устройство автомобильное

   Автоматическое зарядное устройство предназначено для зарядки и десульфатации 12-ти вольтовых АКБ ёмкостью от 5 до 100 Ач и оценки уровня их заряда. Зарядное имеет защиту от переполюсовки и от короткого замыкания клемм.

В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей дозарядкой до полного уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор вручную или выбрать уже заложенные в управляющей программе.

    Основные режимы работы устройства для заложенных в программу предустановок. 

 >>

Режим зарядки — меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:

первый этап — зарядка стабильным током 0.1С до достижения напряжения14.6В 

второй этап -зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С 

третий этап — поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С — ёмкость батареи в Ач. 

четвёртый этап — дозарядка. На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала. 

   Для стартерных АКБ применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается дозарядка.

 >> Режим десульфатации — меню «Тренировка». Здесь осуществляется тренировочный цикл: 10 секунд — разряд током 0,01С, 5 секунд — заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее — обычный заряд. 

 >>

Режим теста батареи позволяет оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ. 

 >> Контрольно-тренировочный цикл.

Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим.

При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор».

В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С — 0.05С (ток 10-ти или 20-ти часового разряда). 

Принципиальная схема автоматического автомобильного ЗУ

Рисунок платы автоматического автомобильного ЗУ

   Основа схемы — микроконтроллер AtMega16. Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню. Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля. Настроенные параметры сохраняются в энергонезависимой памяти.

   Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор».

Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор».

На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM. Более подробно о настройке читайте на форуме.

   Управление основными процессами возложено на микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы.

Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4, C9, R7, C11.

Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера — встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10 R11. 

   Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5 R6 R10 R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине.    Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения — на элементах VD1, EP1, R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии.    В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.   Резистор R8 – керамический или проволочный, мощностью не менее 10 Вт, R12 — тоже 10Вт. Остальные — 0.125Вт. Резисторы R5, R6, R10 и R11 нужно применять с допустимым отклонением не хуже 0.5%. От этого будет зависеть точность измерений. Транзисторы T1 и Т1 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В. 

   Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2,Т1 иТ2 через изолирующие прокладки размещаются на одном радиаторе площадью 40 квадратных сантиметров. Звукоизлучатель — со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13. 

   ЖКИ – WH1602 или аналогичный, на контроллере HD44780, KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр 

   Налаживание заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «». Нажимаем «Выбор». 

   Далее идет калибровка по току при КУ=10. Теми же кнопками «» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5, R6, R10, R11, R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично — калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 секунды устройство перейдет в главное меню. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком — либо КУ сильно отличаются от нуля, нужно подобрать другие резисторы делителя R5, R6, R10, R11, R8, иначе в работе устройства возможны сбои. При точных резисторах поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. И в заключение. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.

Переделка БП АТХ под зарядное устройство

Схема электрическая доработки стандартного ATX

   В схеме управления лучше использовать прецизионные резисторы, как указано в описании. При использовании подстроечников параметры не стабильные. проверено на собственном опыте. При тестировании данного ЗУ проводил полный цикл разрядки и зарядки АКБ (разряд до 10,8В и заряд в режиме тренировки, потребовалось около суток). Нагревание ATX БП компьютера не более 60 градусов, а модуля МК еще меньще.

   Проблем в настройке не было, запустилось сразу, только нужна подстройка под максимально точные показания. После демострации работы другу-автолюбителю этого зарядного автомата, сразу заявка поступила на изготовление еще одного экземпляра. Автор схемы — Slon, сборка и тестирование — sterc.

   Форум по АЗУ на МК

Источник: http://radioskot.ru/publ/zu/avtomaticheskoe_zarjadnoe_ustrojstvo_avtomobilnoe/8-1-0-635

Зарядное устройство для автомобильных аккумуляторов на Atmega 16

Как то проходил я мимо аккумуляторной комнаты на работе. Проходя возле двери, почувствовал запах тухлых яиц. Так было несколько раз. Я спросил у мужиков, что за ядерная вонь? Они сказали, что сероводород из батарей так пованивает. Заглянул я туда и увидел что стоят пару батарей на зарядке и кипят как суп в кастрюле.

Оказывается некоторые пользователи автомобилей оставляют свои батареи на ночь на зарядку и идут баиньки. А там пусть все огнем горит. С одной стороны откуда пользователь знает, что там за зарядное и как оно работает? К тому же эти зарядники общественные, ну то есть колхозные. А колхозное, часто качественным не бывает.

Разобрал я один зарядник и увидел, что там стоит трансформатор и диодный мост. Это все что там было. Конечно при такой схеме батарея будет кипеть. Ну вот и решили я грохнуть эти зарядные и сделать что то получше. Начал рыть интернет, скачал пару книг. Посмотрел теорию. Схем зарядных устройств валом. Но большинство из них 70х годов. Сделаны как правило на транзисторах.

В более продвинутых еще тиристоры есть. Все это очень скучно, серо и уныло. Есть так же схемы на микроконтроллерах, это уже интересней. Можно данные на LCD дисплей вывести, разные органы управления замутить. Но мне захотелось изобрести свой велосипед. Творчество как никак. Вот я и склепал с десяток зарядников по такой схеме. 8 ампер выжимают. Этого хватит за глаза.

Схема в нормальном качестве лежит в архиве в конце статьи.Это было правда года 4 назад. Этими зарядниками до сих пор пользуются. Одна из целей, собрать из того что было под рукой. Корпуса использовал из под старых зарядников. Трансформатор использовал от списанных, сгоревших бесперебойников для компьютеров. Так называемых УПСов. Вот он.

Вот его внутренности:Силовой трансформатор УПСа оказался идеальным по всем параметрам. Вторичная обмотка толстая с «мизинец». Сам трансформатор мощный, сделан качественно, с креплениями. Выходное напряжение 16 — 17 V AC. То что надо. В упсе есть еще второй трансформатор, маленький такой. Я его использовал для питания самой управляющей платы.

Причем в нем есть две вторичные обмотки соединенные последовательно. Двухполярное питание для операционников считай уже готово. Прелесть. Диодный силовой мост, тоже был использован из старых зарядников. Охлаждение для тиристора взял из старых материнок для компьютеров. Вентилятор для охлаждения тоже снял со сгоревших китайских импульсных блоков питания, для тех же материнок.

Остальную мелочевку, аккуратно выпаял из плат со старых мониторов. Купить только пришлось LCD дисплеи для индикации, энкодеры, ну и парочку мелочевок. Так что большинство деталей наколупал в загашниках. Atmega16 тоже лежали в загашнике. Ее и использовал.

Задачи перед зарядником были поставлены такие:

1. Автоматическое поддержание тока зарядки, изначально выставленным пользователем. 2. Простота в управлении. Один энкодер. Повернул и нажал. Это все. 3. При неправильно подключенной батарее (ошибка полярности), заряд невозможен. 4. Защита от к.з. Если при заряде, вдруг упал ломик на клеммы батареи, зарядник должен вырубится. А батарея, ну уж как получится. 5. Если батарея дохлая, и не может достичь порога 14.4 вольт при зарядке, то программный таймер должен вырубить заряд с соответствующим выводом сообщения не дисплей. Иначе батарея просто выкипит. 6. Зарядник невозможно запустить, пока не будет подключена батарея к клеммам зарядника с соблюдением полярности. 7. Зарядник не должен выходить из строя если к нему подключили батарею не соблюдая полярность. 8. Должен иметься режим «хранение батареи». Предположим ты не планируешь пользоваться батареей в течении пол года. Можно просто подключить батарею к заряднику, поставить на полку и забыть. Зарядник время от времени проверяет напряжение на батарее. И ели оно упало ниже чем например 12.5 вольт, автоматически врубается зарядка малым током 0.5 А. Пин ADC0 — измеряет ток заряда батареи. Пин ADC1 — фиксирует скачек тока при к.з. Пин ADC2 — измеряет напряжение батареи. Пин AIN1 — фиксирует отсутствие/присутствие батареи. Пин PB4 — если что не так пошло, врубает защитное реле, которое отключает силовой трансформатор. К пинам PD0, PD1, PD3 подключен энкодер. Пин INT0 — ловит прохождение синусоиды после диодного моста, через нулевую точку. Зная когда эта точка появляется, можно легко вычислить когда надо включить тиристор. А вырубается тиристор сам, в точке указанной ниже на схеме.

Читайте также:  Изготовление печатных плат

Немного о теории заряда автомобильных аккумуляторов:

1. Батарея считается заряженной на 100% когда на ней 12.9 вольт. 2. Если на батарее 10.8 вольт, то она разряжена на 100%. Дальнейшее хранение или эксплуатация приведет с сульфатации пластин. Этот процесс фактически необратим. Если пластины засульфатированы, то такая батарея уже мусор. Существуют конечно такие спец зарядники, которые специальной импульсной формой тока как бы десульфатируют пластины. Но сами понимаете батарея уже будет не та. Так что если на батарее 12 вольт или ниже, то бегом ноги в руки и заряжать. 3. Зарядник в процессе заряда должен довести батарею до 14.4 вольта. Это так называемая точка закипания электролита. Когда эта точка достигнута, заряд еще не закончен. Далее надо плавно убавлять ток заряда. Убавили, подождали, пока опять не будет 14.4 вольта. Потом снова убавили. И так пока ток заряда не достигнет меньше 0.5 ампера. Ну а там уже можно вырубить. 4. Для батареи всегда более эффективна зарядка малым током. Это дольше по времени, но зато батарея целее будет. И при таком заряде она зарядится максимально. Так что гнаться за большими токами заряда не стоит. Большие токи оправданы в том случае, если вам надо срочно ехать, а батарея сдохла. Тогда можно конечно влупить 20А но не на слишком большой срок. Это реанимирует батарею и стартер она провернет. Опять таки, для батареи с большой емкостью этот ток еще ничего, с малой уже чего. Ток заряда выбирается делением емкости батареи на 10. Если у вас емкость 65 А/ч, значит начальный ток заряда можно установить 6.5А. Вот график заряда батареи моим зарядником для батареи 65 А/ч.Если посмотреть на оциллограмму работы тиристора, то увидим такую картину.

Красная зона, это и есть та временная часть, когда осуществляется заряд батареи.Получается когда открывается тиристор, батарея подкорачивает вторичную обмотку на себя. И напруга на обмотке падает до напряжения на батарее. Из-за этого трансформатор в красном диапазоне может входить в насыщение. И начинать нехило греться.

Поэтому лучше брать транс по мощнее. Если нет такого, тоже можно выкрутиться из ситуации. Тиристор надо открывать попозже. Тогда красная зона заряда будет поменьше. Нагрев уменьшится, но и токи заряда будут меньше. Как раз таки двигая точку открытия тиристора по синусоиде, регулируем ток заряда батареи.

Драйвер работы с дисплеем писал с нуля.

Вообще ничего не мешает, перекроить схему по желанию, что нибудь выкинуть или добавить. Ну и прошивку самому написать. Творчество великое дело. Прошивку накатал на ассемблере в AvrStudio 4.19. Весь проект на асме и схема в нормальном качестве лежит в топике.

Недостатки:

1. Тяжелый. Можно вместо гантелей использовать. Если долбанет по ноге, ногти сразу отлетят. На импульсной схеме полегче был бы. 2. Если покупать детали с нуля, то дорого выйдет. Дешевле купить готовый. С другой стороны когда делаешь сам, то сделаешь то, что тебе самому надо. + творчество и + кайф пусконаладочных работ. 3. Из-за конденсатора(интегрирующая цепочка) на ноге ADC0 есть некоторая инерционность работы зарядника. Но без него никак. Но по сути работе это не мешает. 4.… остальные пункты сами добавите.

Достатки:

1. Творчество. 2. Развитие умственных способностей. 3. Повышения уровня знаний в том как работают те или иные электронные приборы. В частности тиристор, LCD дисплей, аппаратные узлы микроконтроллера и др. Если просто купить готовый, то этого никогда не узнаешь. Ну только если из книг, но это сухая теория. А здесь тебе и практика и польза колхозу. 4. Как выше говорилось, кайф пусконаладочных работ. 5.… остальные пункты сами добавите. Вот две книженции выкладываю.

Зарядно пусковые устройства.zip — 2005г.

Зарядные устройства.zip — 2005г.
Но судя ниже из комментария clawham ни в коем случае их не скачивайте. Потому что там все схемы тупо кипятильные. Ну и моя схема в статье тоже тупо кипятильная. Только то зарядное которое он спроектировал, является самым правильным, но он с ним не хочет делиться. Или вот такое на 24 вольта 15А. А недавно я собрал вот такое зарядное на импульсном блоке питания

Источник: http://we.easyelectronics.ru/power-electronics/zaryadnoe-ustroystvo-dlya-avtomobilnyh-akkumulyatorov-na-atmega-16.html

Радиосхемы для автолюбителя

схема управления стоп-сигналами своими руками

Устройство управления стоп-сигналами автомобиля

Данное устройство которое можно непокупать, а легко собрать своими руками предназначено для следующего, оно управляет лампами стоп-сигналов автомобиля или мотоцикла следующим образом: при нажатии на педаль тормоза лампы работают в импульсном режиме (происходит нескольковспышек ламп в течение нескольких секунд), а затем лампы переходят в обычный режим непрерывного свечения. Таким образом, при срабатывании фонари стоп-сигналов значительно эффективнее привлекают к себе внимание водителей других автомобилей.

Подробнее…

Запуск 3х фазного двигателя от 220 Вольт

Запуск 3х фазного двигателя от 220 Вольт

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Читаем подробно далее

Подробнее…

Схема зарядки автомобильного аккумулятора

Зарядка для автомобильного аккумулятора своими руками

Цены на современные зарядки для автомобильных аккумуляторов постоянно растут изза неспадающего на них спроса. На нашем сайте выложены уже несколько схем таких устройств.И представляю вашему вниманию еще одно устройство: Схема зарядки для автомобильного акб на 12 Вольт

Подробнее…

Схема простого зарядного для аккумулятора авто

Схема простого зарядного для аккумулятора авто

В старых телевизорах, которые работали еще на лампах а не микрочипах, есть силовые трансформаторы ТС-180-2

В статье приводится как сделать из такого трансформатора простое зарядное устройство для аккумулятора своими руками

Читаем

Подробнее…

Самодельная зарядка для свинцовых аккумуляторов

Самодельная зарядка для свинцовых аккумуляторов

Бродя по интернету,наткнулся на схему несложного мощного зарядного устройства для автомобильного аккумулятора .

Кода то статья была опубликовано в одном из журналов Радио,выпуск непомню.

Фотографию данного устройства вы видите на фото слева,для увеличения просто кликните на него.

Почти все используемые мной радиодетали, от старой бытовой техники, все собрано по схеме, из деталей которые тогда были у меня в наличии.

Трансформатор ТС-180, транзистор П4Б заменил на П217В, диод Д305 заменил на Д243А, немного позже, на радиатор транзистора V5 для дополнительно охлаждения я установил вентилятор от старого компьютерного процессора, транзистор V4, тоже закрепил на небольшой радиатор.

Все элементы расположены на металлическом шасси, скреплены винтами и пайкой с помощью навесного монтажа, все это вместе закрыто металлическим кожухом, который для демонстрации сейчас снят.

Плавное выключение света в салоне своими руками

Плавное выключение света в салоне своими руками

Во многих машинах до сих пор отсутствует плавное выключение света в салоне.Хотя во многих случаях это было бы неплохой помощью когда вы выходите из автомобиля и требуется хоть немного света.

Если в двух словах.То схема плавного выключения когда вы закрываете дверь, то свет начинает медленно гаснуть.

Подробнее…

Схема автоматического управления дневным светом на PIC12F629

Автоматическое управление дневным светом на PIC12F629

Устройство предназначено что бы автоматически включать и выключать дневной свет фар, при остановке и началу езды в автомобиле.При этом как вы видите на картинке даже, схема сопровождена дополнительно звуковым сигнализатором и индикацией.

Схема выполнена на недорогом микроконтроллере pic12f629

Подробнее…

Схема электронного зажигания для автомобиля

Схема электронного зажигания для автомобиля

Все знают что в каждом автомобиле используется для розжига топлива искра на свече зажигания.Которая и воспламеняет топливную смесь в цилиндре,напряжение на свече около 20Кв.

Но существуют некоторые режимы работы двигателя, когда нужна значительная энергия искры, до 100 мДж.

Например пусковой режим, работу на бедных смесях при частичном открытии дросселя, работу на холостом ходу. На наших стареньких, видавших виды автомобилях применяются классические, батарейные системы зажигания, которые имеют серьёзные недостатки.

Подробнее…

Схема радио автосигнализации своими руками

Схема радио автосигнализации своими руками

Число автомобилей в городах постоянно растет.И рядом с домом не всегда есть место для парковки,и приходится ставить в отдаленом месте и нужно как то следить.В этом поможет автосторож своими руками

Схема парктроника своими руками

Парктроник(парковочный радар) своими руками

Устройство парктроник приобретает высокие потенциалы на современном авторынке. Но как быть с автомобилями в котором такой функции нет.В таком случае устройство радар для безопасной парковки можно сделать своими руками.

Парктроник сигнализирует о приближении к какому либо предмету, что хорошо при парковании.

Подробнее…

Источник: http://radiostroi.ru/dliaavfto?start=44

Полностью автоматическое зарядное устройство для аккумуляторов

Привет всем, в этой статье я расскажу, как можно сделать простой импульсный стабилизатор, который может быть использован в качестве автомобильной зарядки, источника питания или лабораторного блока питания.

Эта схема отлично заточена под зарядку автомобильных аккумуляторов с напряжением 12 вольт, но стабилизатор универсальный, поэтому им можно заряжать любые типы аккумуляторов, как автомобильных, так и всяких других, даже литий-ионных, если они снабжены платой балансировки.

Схема зарядного устройства состоит из 2-х частей, блока питания и стабилизатора, начнём пожалуй со стабилизатора.

Стабилизатор построен на популярного шим-контроллера TL494, позволит получить выходное напряжение от 2-х до 20 вольт, с возможностью ограничения выходного тока от 1 до 6 ампер, при желании ток можно поднять до 10 ампер.

Процесс заряда будет осуществляться методом стабильного тока и напряжения, это наилучший способ для качественной и безопасной зарядки аккумуляторов. По мере заряда аккумулятора ток в цепи будет падать и в конце процесса будет равен 0, следовательно нет опасности перегрева аккумулятора или зарядного устройства, так что процесс не требует человеческого вмешательства.Возможно также использования этого стабилизатора в качестве лабораторного источника питания.

Теперь несколько о самой схеме

Это импульсный стабилизатор с шим-управлением, то есть КПД куда больше, чем у обычных линейных схем. Транзистор работает в ключевом режиме управляясь шим-сигналом, это снижает нагрев силового ключа. Основной транзистор управляется маломощным ключом, такое включение обеспечивает большое усиление по току и разгружает микросхему ШИМ.По сути это аналог составного транзистора.

Транзистор нужен с током на менее 10 ампер, возможно также использование составных транзисторов прямой проводимости. Регулировка выходного напряжения осуществляется с помощью переменного резистора R9, для наиболее точной настройки желательно использовать многооборотный резистор, притом очень советую использовать резистор с мощностью 0.5 ватт.

Нижним резистором можно установить верхнюю границу выходного напряжения, а подбором соотношения резисторов R1, R3, устанавливается нижняя граница выходного напряжения.Для более быстрой и точной подстройки этот делитель может быть заменён на многооборотный подстроечный резистор сопротивлением от 10 до 20 ком.

За ограничение тока отвечает переменный резистор R6, верхнюю границу выходного тока можно изменить подбором резистора R4.

Обратите внимание на чёткое срабатывание функции ограничения, даже при коротком замыкании, ток не более 6.5 ампер. Регулируется довольно плавно, если использовать многооборотный резистор.

Токовый шунт или датчик тока…, тут хотел бы обратить ваше внимание на то, что входные и выходные земли разделяются шунтом, обратите на это внимание при сборке. В качестве шунта можно использовать отрезок нихромовый проволоки с нужным сопротивлением.

В моём же варианте было использование snd-шунты, которые можно найти на платах защиты аккумуляторов от ноутбука. Номинальное сопротивление шунта 0.5 ом +- 50%. При токе в 6 ампер такой шунт справляется очень даже не плохо.

Силовой дроссель…  Сердечник взят из выходного дросселя групповой стабилизации компьютерного блока питания, обмотка состоит из 30 витков, намотана двойным проводом, диаметр каждого составляет 1 мм.

Тут важен один момент, количество нужно будет подобрать в зависимости от рабочей частоты генератора и материалов магнитопровода.

Не верно подобранный дроссель приведёт к сильному нагреву силового ключа при больших токах, это легко понять по характерному свисту при токах в 2-3 ампера, если свист присутствует, то нужно увеличить рабочую частоту генератора.Для этих целей сопротивление резистора R2 снижается до 1 ком и последовательно ему подключается многооборотный подстроечный резистор на 10 ком, таким образом частоту генератора можно менять в пределах от 50 до 550 кГц.

Читайте также:  Полезные советы мастеру любителю

После настройки на нужную частоту, подстроечный резистор выпаивается, измеряется его сопротивление, прибавляется к полученному числу сопротивление дополнительного резистора в 1 ком и сборка заменяется одним постоянным резистором близкого сопротивления. Этим настройка завершена…

Силовой диод VD1 очень советую — шотки, с напряжение не менее 60 вольт и током от 10 ампер. При токах в 3-4 ампера тепловыделения почти не наблюдается, если же собираетесь гонять схему на больших токах, то нужен радиатор.

Возможно и применение обычных импульсных диодов с нужным током.В качестве источника питания может быть задействован либо импульсный блок питания, либо сетевой трансформатор дополненный диодным выпрямителем и сглаживающим конденсатором.

В обоих случаях постоянное напряжение с источника питания должно быть не менее 1617 вольт и ток до 10 ампер.

Я использовал обыкновенный трансформатор с диодным мостом. Ну вот вроде и всё, всем спасибо за внимание, печатка находиться в архиве.Архив к статье; скачать…

Автор; АКА Касьян

Источник: https://xn--100—j4dau4ec0ao.xn--p1ai/polnostyu-avtomaticheskoe-zaryadnoe-ustrojstvo-dlya-akkumulyatorov/

Библиотека устройств на микроконтроллерах

В этой статье я расскажу, как из компьютерного блока питания формата АТ/АТХ и самодельного блока управления изготовить довольно-таки «умное» зарядное устройство для свинцово-кислотных аккумуляторных батарей.

К ним относятся т.н. «УПС-овые», автомобильные и другие АКБ широкого применения.

ОписаниеУстройство предназначено для зарядки и тренировки (десульфатации) свинцово-кислотных АКБ ёмкостью от 7 до 100 Ач, а также для приблизительной […]

Читать далее

Данное зарядное устройство использует 12 В солнечную батарею и регулируемый стабилизатор напряжения LM317. В солнечной батареи содержатся солнечные панели, каждая из которых выдает напряжение 1.

2 Вольта. В итоге, с солнечных панелей получается 12 В постоянного тока для зарядки аккумуляторов. Немного о работе зарядного устройства.

Ток от солнечных элементов, через диод D1 поступает на стабилизатор напряжения […]

Читать далее

Регулятор предназначен для плавного управления мощностью активнойнагрузки, питающейся от сети переменного тока 220 вольт частотой 50 Гц.Мощность нагрузки зависит от типа применяемого симистора.

В основуметода управления положен принцип фазового регулирования моментавключения симистора, включенного последовательно с нагрузкой.

Фото регулятора представлены на риснках :В момент включения мощность на нагрузке нарастает плавно, что удобно,если регулятор будет использоваться для […]

Читать далее

Во многих устройствах для охлаждения деталей, на которых рассеивается значительная мощность радиолюбители используют 12-вольтовые миниатюрные вентиляторы, предназначенные для работы в персональных компьютерах.

Такие вентиляторы относительно доступны, так как их можно купить практически в любом магазине, торгующем платами для компьютеров, либо получить с разборки неисправных источников питания персональные компьютеров.

В любом случае, возможность применения вентилятора ограничивается […]

Читать далее

  Для питания ноутбуков от бортовой сети автомобиля выпускаются преобразователи напряжения, но они имеют достаточно высокую стоимость, от $50 и выше.

Стоимость описываемого преобразователя на много ниже. Тем более, что большую часть деталей можно взять из старого блока питания от компьютера. Сборка займет пару вечеров.

    В качестве формирователя ШИМ преобразователя используется интегральный таймер […]

Читать далее

Начитавшись в Интернете всякого про SLA (VRLA) аккумуляторы, решил испробовать алгоритм заряда стабильным током. Выглядит он так. Сначала идёт заряд стабильным током, величиной 0,1C.

(где C — номинальная ёмкость аккумулятора в ампер-часах) Как только напряжение на аккумуляторе повысится до 14,5 вольт, зарядный ток выключается. Напряжение на аккумуляторе начинает самопроизвольно уменьшаться.

Как только оно уменьшится до […]

Читать далее

внешний вид устройства принципиальная схема  Попросил меня друг отремонтировать ему зарядное , думал делов то найти сгореную деталь заменить , ну оказалось устройство сильно постарелоот платы начали отваливатся дорожки и ноги  некоторых деталей все напрашивалось на новый текстолит который в разов 10ть лутше по качеству еже ли гетинакс.  Розвел печатную плату отталкиваясь от старых впаял […]

Читать далее

На входе стоит PTC термистор (Positive Temperature Coefficient) – полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef. Защищает силовые ключи в момент включения на время зарядки конденсаторов. Диодный мост на входе для выпрямления сетевого напряжения на ток 10А. Использована диодная сборка типа «вертикалка», но можно использовать […]

Читать далее

Электронный ограничитель Устройство предназначено для питания бытовых потребителей переменным током. Но-минальное напряжение 220 В, мощность потребления 1 кВт.

Применение других элементов по-зволяет использовать устройство для питания более мощных потребителей. Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и от него питается нагрузка.

Вся электропроводка остается нетронутой. Заземление не нужно. Счетчик при этом учитывает примерно […]

Читать далее

Источник: http://elektro-shemi.ru/pitanie_zarjad

Зарядное устройство для автомобильных аккумуляторов на Atmega8

В интернете существует огромное количество схем зарядных устройств (ЗУ) для автомобильных аккумуляторов. От простейших до очень сложных. В нашем случае пойдет речь о ЗУ сделанном на микроконтроллере (МК) Atmega8. Использование МК в отличие от схемы на транзисторах позволяет внедрить очень богатый функционал для ЗУ.  К примеру в данном зарядном я решил внедрить следующие функции.

1. Простота в управлении. Достаточно одного энкодера. Повернул по часовой стрелке — заряд включился. Вращением по часовой стрелке или против часовой выбирается ток  заряда. Энкодер решил выбрать с тактовым нажатием. Нажимая на него можно будет войти в меню с настройками дополнительных функций.

2. Ток заряда будет до 5А. Хотя у меня в автомобиле стоит батарея 85А/ч мне для заряда хватит и 5А, просто на заряд уйдет немного больше времени. Однако при необходимости можно будет без глобальных переделок и перепрошивки МК увеличить ток заряда до 10А.

3. Менять ток заряда можно будет с шагом до 0.1А. Минимальный ток можно будет выбрать до 0.1А. Это значит можно заряжать и батареи маленькой емкости. Причем если энкодер вращать чуть быстрее, шаг увеличения/уменьшения тока заряда будет работать в пределах 0.5 А.

4. Батарея будет заряжаться до напряжения 14.4 вольт.

5. На дисплей будет выводится информация о текущем токе заряда и напряжении на батарее, так же будет работать индикатор заряда батареи, примерно как в мобильном телефоне. Мне показалось что так будет более наглядно.

6. Обязательно должна быть защита от замыкания клемм ЗУ.  К примеру если закоротить клеммы между собой и при этом включить зарядник, то разумеется это не должно принести ему вред.

И вообще пока не будет подключена батарея на клеммах не будет никакого напряжения. Так же если по ошибке была подключена батарея не с соблюдением полярности, включение заряда будет невозможно.

Вся эта защита будет реализована программно аппаратным способом.

7. Заряд батареи должен быть полностью автоматизирован. Это вполне возможно, так как будет использоваться МК. Автоматизация процесса заряда должна исключать участие человека. Это значит подключил батарею, выбрал ток заряда и на этом все.

Все остальное должно сделать само зарядное. А именно, поддержание выбранного зарядного тока в процесе заряда.

Если батарея неисправна и заряд дальше не возможен, батарея должна быть автоматически отключена, в противном случае она будет просто бесконечно кипеть, а нам это не надо.

8. Показалось, что удобна будет функция «хранение батареи зимой». Как ни крути, абсолютно любая батарея в природе имеет свой внутренний саморазряд. Это значит, что если просто оставить без присмотра батарею на определенный срок, то из-за тока саморазряда она разрядится, что в итоге приведет к сульфатации пластин. А для батареи это смерть.

Причем время саморазряда и сульфатации не такое уж и большое. Порой достаточно пару месяцев. Чтобы этого не произошло и будет внедрена функция «хранение батареи зимой». Работает это просто, подключаем зарядник к батарее, причем батарею не нужно вынимать из автомобиля. Далее ЗУ будет раз в пол часа смотреть какое же напряжение на батарее.

Если напряжение упало ниже нормы, включится автоматический заряд, после окончания цикла заряда, ЗУ опять перейдет в режим контроля напряжения на батарее. Причем порог срабатывания выставляет сам пользователь в меню и силу тока тоже можно выбрать в меню. Лично я для себя установил порог 12.5 вольт и сила тока заряда 0.5А.

Зярадка малым током более эффективна чем большими токами.

9. Возможно будет полезна функция «продолжение заряда после отключения электричества». Хотя такое совпадение  может произойти раз в 150 лет, тем не менее эта функция есть.

Зарядное всегда «помнит», что включен процесс заряда и если произойдет отключение/включение элетричества, заряд просто продолжится дальше. В любом случае все функции можно отключить или включить по выбору в меню.

Если  отключить все функуции, то зарядное просто станет «обычным зарядным» которое зарядит батарею и выключится.

10. Ну и напоследок в ЗУ будет работать программный таймер. Таймер будет постоянно тикать вперед 0..1,2 и так далее. Если батарея заряжается, а это видно будет по тому, как на ней будет постепенно подниматься напряжение до 14.4 вольта.

Так вот, как только на батарее напряжение чуть поднялось, таймер сразу сбросится в 0 и продолжить снова считать 0…1,2… Но если батарея неисправна или старая, или не совсем правильна плотность электролита, то при определенном пороге заряд дальше невозможен. И этот порог может быть ниже 14.4 вольта.

Как быть? В таком случае таймер перестанет сбрасываться. И дотикав до определенного момента, он попросту выключит заряд с сообщением на дисплей. Дальше кипятить батарею не имеет смысла. Таймер можно выключить в меню или включить, задав диапазон тикания от 30 мин до 3х часов.

На дисплее можно будет видеть как таймер будет тикать и сбрасываться время от времени, если заряд протекат в штатном режиме.

Теперь перейдем к обсуждению схемы зарядника.

Блок питания.
В данном случае будем использовать любой импульсный блок питания (ИБП). Выходное напряжение от 16 до 20 вольт. Так как ток заряда будет до 5А, то выходной ток ИПБ должен быть с запасом где-то до 6А.

Я использовал ИПБ MEAN WELL RS-75-15  у которого выходное напряжение 15 вольт, но в блоке есть подстроечный резистор которым можно поднять напряжение до 16.5 вольт. Преимущество ИПБ в том что он легкий, компактный и имеет уже втроенную защиту от повышенных токов, замыканий и пр.

Поэтому об этом уже не надо особо заботиться. Впринципе подходит любой другой ИПБ. Хоть с ноутбука. Если в вашем ИПБ ток менее 5А, его тоже можно использовать, просто нужно следить за тем чтоб не выставлять ток заряда более чем может выдать ИПБ. Трансформатрный блок питания в нашем случае не подходит.

Зарядное на трансформаторе это отдельная тема и отдельная статья. Итак схема питания будет выглядеть примерно так.

Конденсатор на 1000uF в принципе можно не ставить так как он уже установлен в импульсном блоке питания на выходе, но если установить то хуже не будет. Конденсатор С2 лучше если будет электролит, но я поставил керамический smd. Стабилизатор 7805 нужен чтобы питать МК, дисплей LCD и прочую обвязку.

Теперь подключим батарею и полевой транзистор.

Как видим, все просто. Транзистором будем регулировать силу тока через батарею. Реле К1 будет брать на себя роль защиты, будет включаться только тогда, когда батарея подключена и подключена правильно.

Цементный резистор R18 выполняет роль шунта. При токе в 5А на нем будет напряжение 0.5 вольт. Это напряжение усилим и подадим на АЦП МК, так МК будет знать какой ток в цепи заряда и это значение можно будет вывести на дисплей.

Теперь пора подключать МК к схеме.

Как видим схема немного усложнилась. Но не сильно.  К выводу PB0 подключим реле, любое реле на 12V, контакты которого должны выдержать ток в 5А.

Последовательно с реле надо подключить гасящий резистор примерно в 200 Ом, так как питаться то реле у нас будет от напряжения 16-20 вольт.

Параллельно катушке реле надо установить защитный диод (любой, поставил LL4148), без диода может пробиться транзистор VT4. VT4 может быть любой тип npn, использовал MMBT4401LT1.

К выводам PD7, PC1, PC0 подключен энкодер. Использовался этот или этот. На выводы к которым подключен энкодер необходимо подключить конденсаторы 0.1 uF и подтягивающие резисторы по 10к. Это уменьшит дребезг контактов.

Дисплей использовался на две строки по 16 символов. Дисплей так же имеет встроенный русский шрифт. Если подключить дисплей без русских символов,  на экране будут крякозябры. Так как у МК Atmega8 не сильно много ног, то дисплей подключил по 4х битной шине. Выводы дисплея DB3-DB0 не используются.

К выводу МК PB2 подключен диод шоттки BAT54S, два конденсатора 0.1uF и резистор 100 Ом. Зачем это нужно? Дело в том что в схеме используется операционный усилитель ОУ LM358 который не «rail to rail».

В таких ОУ без отрицательного напряжения питания на минусовом выводе питания, на выходе ОУ никогда не будет 0 вольт. Поэтому эта цепочка элементов подключенная к выводу PB2 создает отрицательное напряжение где то -4V для питания ОУ.

Читайте также:  Электрический термометр

Для того чтобы цепочка на выводе PB2 заработала и генерировала -4V, на нее необходимо подать ШИМ сигнал со скважностью 50%. Таким образом на выводе PB2 всегда присутствует ШИМ с частотой 62.5 кГц.

На выводе PB3 так же всегда присутствует ШИМ, но скважность сигнала в данном случае от 0 до 100% уже регулируется вращением энкодера. Резистор R18 и конденсатор С11 составляют интегрирующую цепочку сглаживают ШИМ в постоянное напряжение.

Резисторы R19 и подстроечный R20 являются делителем напряжения. Как настроить R20? Подключаем мультиметр к выводу PB3 и вращаем энкодер до тех пор, пока прибор не покажет 2.5 Вольта. Далее вращаем подстроечный резистор R20 так чтобы на неинвертирующем выводе ОУ было напряжение 0.

25 вольта. На этом настройка R20 закончена.

Как работает регулировка и управление транзистором? Предположим что на неинвертирующем выводе ОУ (+) 0.5 вольт. Одно из свойств ОУ это то, что он стремиться к тому, чтоб уровнять разность потенциалов между его двумя входами.

Делает это он используя свой выход, повышая или понижая на нем напряжение. Итак на выводе (+) 0.5 вольт, а на выводе (-) 0 вольт. Что дальше? ОУ сразу же начнет повышать напряжение на выходе, который подключен к затвору транзистора IRF540. Транзистор начинает открываться.

Через батарею, транзистор и шунт начинает течь ток. Текущий ток вызывает падение напряжение на шунте R18. ОУ будет открывать транзистор до тех пор пока на шунте не будет напряжение 0.5 вольт. Напряжение с шунта подается через R13 на вывод (-). Как только на выводе (-) будет  0.

5 вольта (такое же как и на выводе (+)), ОУ перестанет открывать транзистор. При этом ток заряда будет равен 5А.

Если энкодером уменьшить напряжение на выводе (+) до 0.25 вольта, ОУ уменьшит напряжение на затворе транзистора до такой величины, чтоб на выводе (-), так же стало 0.25 вольта, данное значение соответствует току заряда в 2.5А. Получается что регулировка тока заряда осуществляется аппаратным способом с помощью ОУ.

А это очень хорошо, так как ОУ никогда не зависнет и скорость раекции мгновенная. Данная схема регулировки является обычным линейным источником тока.

Удобство данной схемы в том что она является простой, но минус в том, что вся разность напряжения между импульсным блоком питания и напряжением на батарее выделяется в виде тепла на транзисторе.

К примеру ИПБ выдает 20 вольт, напряжение на батарее в начале ее заряда 12 вольт, а ток заряда 5А. Какая мощность выделиться на трназисторе? (20-12)*5=40 Вт. 40Вт это очень много!!! Нужен здоровенный радиатор и пять вентиляторов. Так никуда не годиться.

Хотя транзистор IRF540 выдержит и 150 ватт, разогревать транзистором зарядник нет смысла. Как уменьшить выделение тепла? Можно понизить напряжение ИПБ например до 16 вольт. Тогда (16-12)*5 =20 Вт в два раза меньше уже лучше.

Но нагрев можно сделать еще меньше до 5 ватт и менее. Каким образом?

В ИПБ подобного типа как MEAN WELL RS-75-15 всегда есть подстроечный резистор, которым можно регулировать напряжение на выходе в пределах 10%. Это значит от 13.5 до 16.5, в моем случае получилось от 13 до 17 вольт.

Можно выпаять из ИПБ подстроечник, а вместо него впаять вывод МК, таким образом мы сможем с помощью МК регулировать напряжение на выходе ИПБ, это позволит снизить выделение тепла на транзисторе до минимума.

К примеру если на батарее 12 вольт, понижаем напряжение до 13 вольт и получаем (13-12)*5=5 Вт тепла на транзисторе, лучше чем 40. Итак модернезируем схему

В выводу PB1 подключаем оптрон PC123 или подобный ему. На выводе PB1 так же всегда дежурит шим сигнал который интегрируется цепочкой R22 и C13. В ИБП выпаиваем подстроечный резистор и вместо него впаиваем обычный на 1.2 кОм.

Вот теперь МК может управлять напряжением на выходе ИБП через оптрон. Когда оптрон выключен напряжение на выходе ИБП минимально, когда включен, резистор R23 шунтируется на землю, напряжение поднимается.

Плавно закрывая/открывая оптрон с помощью ШИМ сигнала на выводе РВ1, плавно регулируем напряжение на выходе ИБП.

Чтабы знать когда и на сколько регулировать напряжение на выходе ИБП, надо знать сколько вольт вообще на силовом транзисторе.

Нам то надо напряжение на выходе ИБП понизить настолько, чтоб разница между напряжением на батарее и напряжением на выходе ИБП была допустимо минимально. Для этого выводом РС2 используя АЦП МК измеряем напряжение на стоке транзистора.

Это делается с помощью делителя R9 и R10. Теперь зная необходимые параметры, программа в МК будет сама контролировать скважность ШИМ на выводе РВ1.

Теперь осталось совсем немного. Это измерять ток в цепи заряда и выводить его на дисплей. И еще осталось измерить напряжение на батарее и так же вывести его на дисплей.

Напряжение на батарее измеряем дифференциальным способом. Значение снимаем с вывода РС5. Резисторы R5 и R6 должны быть ровно по 3кОм, а резисторы R2 и R4 по 1кОм, желательно точность не менее 1%, у меня таких не было поэтому R4 установил подстроечным.

Суть в том, что при таких номиналах резисторов отношение напряжений на входах ОУ и на его выходе составляет 3:1. При изменении напряжения от 0 до 15 вольт на батарее, на выходе ОУ напряжение будет меняться от 0 до 5 вольт. Для настройки данной цепочки необходимо вместо батареи подключить 14.4 вольта например с лабораторного блока питания.

Далее вращаем подстроечник R4 чтоб на дисплее LCD тоже было 14.4 вольта. Настройка цепи измерения напряжения на этом закончена.

Ток измеряется через падение напряжения на шунте, роль которого играет обычный цементный резистор. Ток у нас от 0 до 5А. Напряжение на шунте соответсвенно изменяется от 0 до 0.5 вольт. Значения резисторов R16 и R17 подобраны так, чтоб на выходе ОУ значение напряжения было от 0 до 5 вольт. Отображение тока заряда настраиваем по следующей цепочке. Подключаем батарею и делаем ток в 2.

5 А. Параллельно батарее подключаем лампочку на 12 вольт. Батарею отключаем, а лампочку оставляем. Убеждаемся что ток равен 2.5 ампера. Если на шунте напряжение будет 0.25 вольт, значит ток равен 2.5А. если это не так, вращаем энкодер пока на шунте не будет 0.25 вольт. Теперь вращаем подстроечник R17 чтоб на дисплее отображался ток в 2.5А. Настройка отображения тока на этом закончена.

Что можно было бы упростить? Например если нет желания возиться с делителем напряжения в ИБП, то все что припаяно к ноге МК РВ1, можно выкинуть из схемы. Но все остальное должно быть на своих местах. Но в таком случае вся разница напряжения между батареей и на выходе ИБП высадится в виде тепла на силовом транзисторе. В таком случае радиатор берем побольше не жалеем.

Если нужен ток заряда до 10А, параллельно шунту припаиваем такой же шунт значением 0.1 Ом. Реле берем с контактами выдерживающем до 10А и параллельно транзистору IRF540 припаиваем еще один такой же.

Транзисторы прикручиваем на здоровенный радиатор и вперед, делаем тест. Единственное, значение тока на диспле надо в уме умножать на 2. Если дисплей покажет 5А, на самом деле это уже будет 10А.

Лично я сам так не делал, но в теории должно работать.

В конце концов итоговая схема будет иметь следующий вид:

Ничего не видно согласен, поэтому скачиваем схему отсюда.

Пару фрагментов прошивки.

#include «define.h»
#include «init_mcu.h»
#include «lcd.h»
#include «text.h»
#include «bits_macros.h»
#include «fun.h»
#include «encoder.h»
#include «servise.h»
#include «main.h» #include
#include
#include
#include #include

Вопросы задаем сюда dmalash@gmail com
Если кому то нужен прошитый микроконтроллер, то его можно заказать отсюда. Все остальное естественно собираем и делаем сами.

Сейчас немного видео и фотографий. Вот так выглядел самый первый прототип.

Вот так выглядела первая плата.

В последствии была сделана более цивильная плата .

Потом был придуман корпус.

Потом все это было собрано.

В итоге получилось вот что.

Скачать схему зарядного устройства можно здесь.
Заказать прошитый микроконтроллер можно здесь.
Дополнительная информация., печатная плата  здесь.
Вопросы и пожелания dmalash@gmail.com

Источник: http://geegrow.ru/articles/misc/zarjadnoe-ustrojjstvo-dlja-avtomobilnykh-akkumuljatorov-na-atmega8.html

Простое автоматическое зарядное устройство | Мастер Винтик. Всё своими руками!

Кому некогда «заморачиваться» со всеми нюансами зарядки автомобильного аккумулятора, следить за током зарядки, вовремя отключить, чтоб не перезарядить и т.д., можно порекомендовать простую схему зарядки автомобильного АКБ с автоматическим отключением при полной зарядке аккумулятора. В этой схеме используется один не мощный транзистор для определения напряжения на аккумуляторе.

Список необходимых деталей:

  • R1 = 4,7 кОм;
  • Р1 = 10K подстроечный;
  • T1 = BC547B, КТ815, КТ817;
  • Реле = 12В, 400 Ом, (можно автомобильное, например: 90.

    3747);

  • TR1 = напряжение вторичной обмотки 13,5-14,5 В, ток 1/10 от емкости АКБ (например: АКБ 60А/ч — ток 6А);
  • Диодный мост D1-D4 = на ток равный номинальному току трансформатора = не менее 6А (например Д242, КД213, КД2997, КД2999 …), установленные на радиаторе;
  • Диоды D1(параллельно реле), D5,6 = 1N4007, КД105, КД522…;
  • C1 = 100uF/25V.
  • R2, R3 — 3 кОм
  • HL1 — АЛ307Г
  • HL2 — АЛ307Б

В схеме отсутствует индикатор зарядки, контроля тока (амперметр) и ограничение зарядного тока. При желании можно поставить на выход амперметр в разрыв любого из проводов. Светодиоды (HL1 и HL2) с ограничительными сопротивлениями (R2 и R3 — 1 кОм) или лампочки параллельно С1 «сеть», а к свободному контакту RL1 «конец заряда».

Изменённая схема

Ток, равный 1/10 от ёмкости АКБ подбирается количеством витков вторичной обмотки трансформатора. При намотке вторички трансформатора необходимо сделать несколько отводков для подбора оптимального варианта зарядного тока.

Заряд автомобильного (12-ти вольтового) аккумулятора считается законченным, когда напряжение на его клеммах достигнет 14,4 вольт.

Порог отключения (14,4 вольт) устанавливается подстроечным резистором Р1 при подключенном и полностью заряженном аккумуляторе.

При зарядке разряженного аккумулятора напряжение на нём будет около 13В, в процессе зарядки ток будет падать, а напряжение возрастать. Когда напряжение на аккумуляторе достигнет 14,4 вольт, транзистор Т1 отключит реле RL1 цепь заряда будет разорвана и АКБ отключится от зарядного напряжения с диодов D1-4.

При снижении напряжения до 11,4 вольт, зарядка снова возобновляется, такой гистерезис обеспечивают диоды D5-6 в эмиттере транзистора. Порог срабатывания схемы становится 10 + 1,4 = 11,4 вольт, которые могут быть рассмотрены как для автоматического перезапуска процесса зарядки.

Такое самодельное простое автоматическое автомобильное зарядное устройство поможет Вам проконтролировать процесс зарядки, не проследить окончание зарядки и не перезарядить свой аккумулятор!

Использованы материалы сайта:homemade-circuits.com

Другой вариант схемы зарядного устройства для 12-ти вольтового автомобильного аккумулятора с автоматическим отключением по окончании зарядки

Схема немного сложнее предыдущей, но с более чётким срабатыванием.

Таблица напряжений и процент разряженности АКБ, не подключенных к зарядному устройству

  • Обзор цифрового модуля терморегулятора W1209
  • Цифровой модуль терморегулятора W1209 из Китая пользуется популярностью из за своей многофункциональности и привлекательной цены. Он может использоваться как для инкубатора (в режиме «нагрев»), так и для вентилятора (в режиме «охлаждение»).

    Подробнее…

  • Простой FM-приемник своими руками
  • Простой FM-приемник на двух транзисторах и одной микросхеме

    Что такое FM-приемник? Радиоприемник — это электронное устройство, которое принимает радиоволны и преобразует информацию, переносимую ими, в полезную для восприятия человеком.

    Приемник использует электронные фильтры, чтобы отделить нужный сигнал радиочастоты от всех других сигналов, улавливаемых антенной, электронный усилитель для увеличения мощности сигнала для дальнейшей обработки, и, наконец, восстанавливает нужной информации посредством демодуляции.

    Подробнее…

  • Как самому подключить противотуманки?
  • О параллельном и последовательном подключении

    По новым Правилам на автомобиле нужно ездить днём так же, как и ночью со светом. Можно с ближним светом, ходовыми огнями или противотуманными фарами.

    Сегодня рассмотрим: как можно подключить противотуманки на свой автомобиль. Противотуманные фары к тому же окажутся полезными и в туман. Чтобы сэкономить можно подключить противотуманные фары и самому.

    Ничего сложного в подключении противотуманок нет, и с этим заданием справится любой!

    Подробнее…

Источник: http://www.MasterVintik.ru/prostoe-avtomaticheskoe-zaryadnoe-ustrojstvo/

Ссылка на основную публикацию