Бестрансформаторный преобразователь напряжения

Преобразователь напряжения бестрансформаторный

В продолжение актуальной темы автомобильных преобразователей напряжения хотим уделить также внимание бестрансформаторным преобразователям напряжения. Принцип работы практически такой же. Разница лишь в конструктивном исполнении выходного каскада.

С одной стороны, убрав импульсный трансформатор, схема преобразователя напряжения заметно упрощается, уменьшаются габариты и вес.

Но с другой – при бестрансформаторном способе отсутствует гальваническая развязка от аккумулятора и для реализации двуполярного питания необходимо собирать две схемы.

Также затруднено получение на выходе бестрансформаторного преобразователя напряжения большего по сравнению с входящим напряжения. Обычно в бестрансформаторных вариантах Uвх?Uвых (но не всегда, в зависимости от топологии).

Такие преобразователи напряжения собираются на современной элементной базе и также содержат ШИМ – контроллеры с выходными каскадами на мощных транзисторах для обеспечения повышенной максимально допустимой силы тока. Отличительной чертой современных ШИМ контроллеров для сборки на их базе бестрансформаторных преобразователей напряжения является широкий диапазон питающих напряжений.

В рамках нашей сегодняшней статьи рассмотрим ШИМ контроллеры LM5088 и LM3488. ШИМ – контроллер LM5088 конца 2008 года выпуска, а LM3488 значительно моложе – конец 2010 года.

На вход преобразователя напряжения в первом случае можно подавать от 4,5 до 75 вольт, во втором – от 2,97 до 40 вольт. Устройство рассчитывается на любое выходное напряжение относительно входного по формулам. В зависимости от этого подбираются номиналы применяемых радиодеталей.

Приведенные ШИМ контроллеры обеспечивают высокий выходной ток преобразователя, который составляет 10 ампер.

Частота LM5088 задается в диапазоне от 50 кГц до 1 МГц. КПД очень высокий – 97%. ШИМ – контроллер LM5088 выпускается в двух исполнениях:

Упрощенная схема бестрансформаторного преобразователя напряжения на LM5088:

Назначение некоторых выводов: VIN – питающее напряжение в диапазоне 4,5…75 В; EN – если напряжение на контакте ниже 0,4 вольт, преобразователь не работает; если в диапазоне 0,4…1,2 В – LM5088 находится в режиме ожидания; если выше 1,2 вольт – ШИМ контроллер выполняет свои функции в полном объеме.

Таим образом, делителем напряжения может быть установлен порог отключения преобразователя напряжения; SS – вывод для плавного пуска; RAMP – используется для режима управления.

Конденсатор Cramp рекомендуется выбирать из диапазона 100…2000 пФ; RT/SYNC – задающий генератор частоты – частотный диапазон выбирается подбором резистора Rrt и лежит в диапазоне 50 кГц – 1 МГц; GND – земля; COMP – выходной вывод усилителя ошибки – составляет петлю с выводом FB; FB – вывод для сигнала обратной связи – соединен с инвертирующим входом усилителя ошибки, регулирует порог в 1,205 вольт; OUT – выходное (снимаемое) напряжение; SW – коммутационный узел – подключается к выходу силового транзистора; HG – подключается ко входу силового транзистора; BOOT – вход для стартерного конденсатора – конденсатор подключается между SW и BOOT выводами, чтобы обеспечить переключение MOSFET транзистора;

VCC – выход смещающего регулятора – Cvcc – керамический разделительный конденсатор номиналом 0,1…10 мкФ.

Более подробно в datasheet на LM5088.

Готовая схема бестрансформаторного преобразователя напряжения на LM5088, рассчитанная на выходное напряжение 5 вольт и ток до 7 ампер:

Чтобы рассчитать устройство на другое напряжение и ток, можно воспользоваться либо формулами из datasheet, либо специальным калькулятором.

Частота LM3488 задается в диапазоне от 100 кГц до 1 МГц с помощью одного внешнего резистора. Данный ШИМ – контроллер значительно проще и меньше по габаритам и представляет собой 8-ми контактную микросхему.

Назначение выводов аналогичное, что и у ШИМ LM5088. Более подробные технические характеристики LM3488, как базового компонента бестрансформаторного преобразователя напряжения, а также различные диаграммы зависимостей напряжения, тока и частоты можно посмотреть в datasheet.

Также можно в качестве примера привести схемы уже готовых бестрансформаторных преобразователей напряжения на LM3488. Первый с входным напряжением 3…24 В, а выходное 5 вольт – 1 ампер; второй с входным – 3,3 вольта, а выходным – 5 вольт – 2 ампера. Третья схема, мне кажется, более ходовая и обеспечивает на выходе 12 вольт – 1,5 ампера при входном напряжении 4,5…5,5 В.

Вид двухсторонней печатной платы для последней схемы преобразователя напряжения таков:

Но основная ценность ШИМ – контроллера LM3488 в том, что на его базе можно собрать отличный источник питания (точнее посредник, т.е. бестрансформаторный преобразователь) для усилителей мощности звуковой частоты.

Нами были рассчитаны номиналы радиодеталей для схемы бестрансформаторного преобразователя напряжения, который может быть использован для питания популярного УМЗЧ на TDA7294.

В качестве источника тока применяется автомобильный аккумулятор на 12 вольт. Все данные ниже на рисунках:

Также похожее устройство можно собрать на базе ШИМ LM5022, только без выходного дросселя. В заключение хочется отметить, что на современной элементной базе, в частности на контроллерах типа LM можно конструировать дешевые и простые в повторении бестрансформаторные преобразователи на любое необходимое в повседневной радиолюбительской практике напряжение.

Источник: http://xn--80a3afg4cq.xn--p1ai/vashi-voprosy/preobrazovatel-napryazheniya-bestransformatornyjj.html

Бестрансформаторные преобразователи напряжения

Выбирая доступные микросхемы для основы бестрансформаторного (и бездроссельного) преобразователя постоянного тока, остановимся на двух наиболее популярных – это NE555 таймер и аудиоусилитель ОУ LM386.

В этой статье мы проведём эксперименты с целью определить возможности каждой из них в этих функциях. Биполярные таймеры NE555 широко используются в генераторах различных преобразователей постоянного напряжения, и наиболее часто в инверторных схемах.

Впрочем, еще одна очень популярная микросхема – LM386, может быть хорошим решением в данном устройстве. Следует сразу отметить, что результаты также зависят от конкретного производителя этих чипов и от качества сопутствующих компонентов.

Мы будем использовать только диоды Шоттки, чтобы свести потери напряжения до минимума.

Базовое сравнение NE555 и LM386

  1. Диапазон напряжений питания NE555 простирается от 4.5 до 16 В, но при ее использовании вблизи максимальных значений на высокой частоте могут быть проблемы. Полный диапазон напряжений питания LM386N1 составляет от 4 до 15 В, и полный диапазон напряжений питания LM386N4 – от 4 до 22 В.

    Таким образом, LM386N4 имеет преимущество над NE555 уже в том, что она может работать с более высоким входным напряжением питания. Потребляемый ток NE555 обычно 3-6 мА, а LM386 обычно 4 – 8 мА – здесь у NE555 имеется небольшое преимущество.

  2. Максимальный выходной ток NE555 указан по паспорту 200 мА, а напряжение падает через выходные транзисторы около 2 В при ±100 мА, что делает использование её при более высоких токах малоэффективным. Для сравнения, максимальный выходной ток LM386 гораздо выше выше чем у NE555, поскольку LM386N1 имеет 0.

    7W выход при питании от 9 В и нагрузке 8 Ом, а LM386N4 – 1 Вт при 16 В. Эти результаты основаны на классической формуле для усилителей класса AB с использованием максимального размаха выходного напряжения и пикового выходного тока.

  3. Максимальная мощность рассеяния NE555 в корпусе dip8 составляет всего 600 МВт, в то время как  для LM386 1,25 Вт. Здесь операционный усилитель имеет значительное преимущество по сравнению с таймером.

Практические эксперименты

Для наших тестов входное напряжение питания возьмём 10 вольт.

Частота DC-DC преобразователей будет установлена на уровне около 25 кГц (Т = 40 МКС), которая значительно ниже, чем их максимально возможные рабочие частоты.

 Точки A и B на схемах с LM386 могут быть использованы, чтобы управлять генерацией. В схеме все резисторы 0,25 Вт, ±5%, и все не электролитические конденсаторы 30 В, ±10%, керамика.

Сравнение преобразователей в различных схемах

Удвоение напряжения по плюсу питания

На схемах удвоения используется преобразователь на NE555 как простой генератор с триггером Шмитта. Частота Задается R1 и С1, с легкой зависимостью от тока нагрузки. Преобразователь на рисунке ниже основан на LM386.

Таблица 1 сравнивает выходные напряжения преобразователей на нескольких различных нагрузочных сопротивлениях. Видно, что LM386 обеспечивает более высокие напряжения при больших токах нагрузки. Это ожидаемо, поскольку выходной каскад LM386 обеспечивает больший максимальный выходной ток и имеет более низкое падение напряжения.

Инвертирование к плюсу питания

Таблица 2 сравнивает выходное напряжение на нескольких различных нагрузочных сопротивлениях для инвертирующего с положительным полюсом источника питания NE555 и LM386. Снова аудиоусилитель LM386 смог обеспечить больше мощности в нагрузке.

Удвоение и инвертирование к плюсу питания

Мы можем объединить предыдущие схемы преобразователей и разработать конструкцию, которая производит два выходных напряжения. Схема на NE555 обеспечивает меньший суммарный выходной ток и мощность по сравнению со схемой с использованием ОУ LM386. Вывод – LM386 имеет заметные преимущества по сравнению с NE555.

   Схемы блоков питания

Источник: http://elwo.ru/publ/skhemy_blokov_pitanija/bestransformatornye_preobrazovateli_naprjazhenija/7-1-0-822

:: МОЩНЫЙ БЕСТРАНСФОРМАТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ ::

   Иногда возникает необходимость иметь повышенное напряжение для зарядки конденсаторов или питания высоковольтных схем. Такой преобразователь напряжения может быть использован для маломощных гаусс-пушек и т.п. Преобразователь не имеет импульсного трансформатора, что резко уменьшает размеры печатной платы.

   Повышение входного напряжения происходит благодаря использованному дросселю. Накопительный дроссель имеет индуктивность 1000 микроГенри, именно от добротности дросселя зависит КПД преобразователя в целом. 

   Генератор импульсов настроен на частоту 14 кГц, но можно увеличить рабочую частоту, этим сокращая витки дросселя. Сам дроссель может быть намотан на Ш-образном сердечнике или в крайнем случае на стержне, размеры не критичны.

   Провод, использованный для намотки дросселя, может иметь диаметр от 0,2 мм, поскольку выходной ток преобразователя не превышает 7-8 мА. 

   Полевой транзистор – буквально любой, который может работать при напряжении более 400 Вольт, я ставил даже биполярные, но с полевыми однозначно лучше. Мощность преобразователь можно увеличить несколькими способами, которые взаимосвязаны между собой. 

Читайте также:  Нейростимулятор

 1) Увеличение напряжения питания.  2) Использование более мощных транзисторов.  3) Использование дополнительного драйвера на выходе микросхемы.

 4) Использование более толстого провода для намотки дросселя.

   Но все эти способы могут увеличить выходной ток устройства всего на несколько миллиампер. Именно из-за ничтожной выходной мощности (не более 2-х ватт) схема не нашла широкого применения, но иногда она просто незаменима. Вместо микросхемы NE555 можно использовать мультивибратор, который будет настроен на ту же частоту (14 кГц).

   Полевой транзистор не нуждается в теплоотводе, поскольку рассеиваемая мощность слишком мизерная.

   Для полной зарядки высоковольтной емкости в 1000 мкФ устройству понадобится порядка 5 минут, так что если собрались использовать такой преобразователь в гаусс-пушке, то должны ждать, но зато устройство очень простое, компактное и экономичное. 

Поделитесь полезными схемами

    Само устройство состоит из нескольких деталей и наладки не требует, работает сразу после включения. На выходе строго 5 вольт, хотя блок питания и не содержит понижающего сетевого трансформатора.
   Эта схема была разработана в связи с нуждой прослушать соседа. Смастерить подобный жук думаю не составит труда даже новичкам, поскольку устройство содержит всего пару деталей. Не смотря на простоту конструкции, устройство отличается высокой стабильностью благодаря применению транзистора КТ325 В. Рабочая частота данного транзистора выше 1000 мегагерц, заменить не советую, но можно использовать также КТ368 или импортный аналог С9018.
   Как передавать изображение и звук с видеокамеры-глазка на телевизор, без использования проводов – схема и практическая сборка устройства.

Источник: http://samodelnie.ru/publ/samodelnye_invertory/moshhnyj_bestransformatornyj_preobrazovatel/2-1-0-124

Все виды преобразователей напряжения

Преобразователи напряжения широко используются как в быту, так и на производстве.

Для производства и промышленности чаще всего изготавливаются по индивидуальному заказу, ведь там нужен мощный преобразователь и не всегда с напряжением стандартной величины.

Стандартные величины выходных и входных параметров применяются зачастую в бытовых условиях. То есть преобразователь напряжения — это электронное устройство, которое предназначено для изменения вида электроэнергии, её величины или же частоты.

https://www.youtube.com/watch?v=bca9gO9s4u0

По своей функциональности они делятся на:

  1. Понижающие;
  2. Повышающие;
  3. Бестрансформаторные;
  4. Инверторные;
  5. Регулируемые с настройкой частоты и величины выходного переменного напряжения;
  6. Регулируемые с настройкой величины постоянного выходного напряжения.

Некоторые из них могут выполняться в специальном герметичном исполнении, такие типы устройств используются для влажных помещений, или же, вообще, для установки под водой.

Итак, что же из себя представляет каждый вид.

Высоковольтный преобразователь напряжения

Такое электронное устройство, которое предназначено для получения переменного или постоянного высокого напряжения (до нескольких тысяч вольт).

Например, такие устройства применяются для получения высоковольтной энергии на кинескопы телевизоров, а также для лабораторных исследований и проверки электрооборудования напряжением, повышенным в несколько раз.

Кабеля или же силовые цепи масляных выключателей, рассчитанных на напряжение 6 кВ, испытывают напряжением 30 кВ и выше, правда, такая величина напряжения не обладает высокой мощностью, и при пробое сразу же отключается.

Эти преобразователи довольно компактны ведь их приходится переносить персоналу от одной подстанции к другой, чаще всего вручную. Нужно заметить, что все лабораторные блоки питания и преобразователи обладаю почти эталонным, точным напряжением.

Более простые высоковольтные преобразователи применяются для запуска люминесцентных ламп. Сильно повысить импульс до нужного можно за счёт стартера и дросселя, которые могут иметь электронную или же электромеханическую основу.

Промышленные установки, выполняющие преобразование более низкого напряжения в высокое, имеют множество защит и выполняются на повышающих трансформаторах (ПТН). Вот одна из таких схем дающая на выходе от 8 до 16 тысяч Вольт, при этом для его работы необходимо всего около 50 В.

Из-за того, что в обмотках трансформаторов вырабатывается и протекает довольно высокое напряжение, то и к изоляции этих обмоток, а также к её качеству предъявляются высокие требования.

Для того чтобы устранить возможность появления коронирующих разрядов, детали высоковольтного выпрямителя должны быть припаяны к плате аккуратно, без заусенцев и острых углов, после чего залиты с обеих сторон эпоксидной смолой или слоем парафина толщиной 2…3 мм, обеспечивающим изоляцию друг от друга. Иногда данные электронные системы и устройства называют повышающий преобразователь напряжения.

Следующая схема представляет собой линейный резонансный преобразователь напряжения, который работает в режиме повышения. Он основан на разделении функций повышения U и его чёткой стабилизации в абсолютно разных каскадах.

При этом некоторые инверторные блоки можно заставить работать с минимальными потерями на силовых ключах, а также на выпрямленном мосте, где появляется высоковольтное напряжение.

Преобразователь напряжения для дома

С преобразователями напряжения для дома обычный человек сталкивается очень часто, ведь во многих устройствах есть блок питания. Чаще всего это понижающие преобразователи, имеющие гальваническую развязку.

Например, зарядные устройства мобильных телефонов и ноутбуков, персональные стационарные компьютеры, радиоприёмники, стереосистемы, различные медиапроигрыватели и этот перечень можно продолжать очень долго, так как их разнообразие и применения в быту в последнее время очень широко.

Бесперебойные блоки питания оснащены накопителями энергии в виде аккумуляторов. Такие устройства применяются также для поддержания работоспособности системы отопления, во время неожиданного отключения электроэнергии.

Иногда преобразователи для дома могут быть выполнены по инверторной схеме, то есть подключив его к источнику постоянного тока (аккумулятору), работающего за счёт химической реакции можно получить на выходе обычное переменное напряжение, величина которого будет 220 Вольт.

Особенностью данных схем является возможность получить на выходе чистый синусоидальный сигнал.

Одной из очень важных характеристик, применяемых в быту преобразователей, является стабильная величины сигнала на выходе устройства, независимо от того сколько вольт подаётся на его вход.

Эта функциональная особенность блоков питания связана с тем, что для стабильной и продолжительной работы микросхем и других полупроводниковых устройств необходимо чётко нормированное напряжение, да ещё и без пульсаций.

Основными критериями выбора преобразователя для дома или квартиры являются:

  1. Мощность;
  2. Величина входного и выходного напряжения;
  3. Возможность стабилизации и её пределы;
  4. Величина тока на нагрузке;
  5. Минимизация нагрева, то есть лучше чтобы преобразователь работал в режиме с запасом по мощности;
  6. Вентиляция устройства, может быть естественная или принудительная;
  7. Хорошая шумоизоляция;
  8. Наличие защит от перегрузок и перегрева.

Выбор преобразователя напряжения дело не простое, ведь от правильно выбранного преобразователя зависит и работа питаемого устройства.

Бестрансформаторные преобразователи напряжения

В последнее время они стали очень популярны, так как на их изготовление, а в частности, производство трансформаторов, нужно тратить немалые средства, ведь обмотка их выполняется из цветного металла, цена на который постоянно растёт. Основное преимущество таких преобразователей это, конечно же, цена.

Среди отрицательных сторон есть одно существенно отличающее его от трансформаторных блоков питания и преобразователей. В результате пробоя одного или нескольких полупроводниковых приборов, вся выходная энергия может попасть на клеммы потребителя, а это обязательно выведет его из строя. Вот простейший преобразователь переменного напряжения в постоянное.

Роль регулирующего элемента играет тиристор.

https://www.youtube.com/watch?v=Pzu90_0tSQY

Проще обстоят дела с преобразователями, в которых отсутствуют трансформаторы, но работающие на основе и в режиме повышающего напряжение аппарата. Здесь даже при выходе одного элемента или нескольких на нагрузке не появится опасной губительной энергии.

Преобразователи постоянного напряжения

Преобразователь переменного напряжения в постоянное является самым часто используемым видом устройства этого типа. В быту это всевозможные блоки питания, а на производстве и в промышленности это питающие устройства:

  • Всех полупроводниковых схем;
  • Обмоток возбуждения синхронных двигателей и двигателей постоянного тока;
  • Катушек соленоидов масляных выключателей;
  • Оперативных цепей и цепей отключения там, где катушки требуют постоянного тока.

Тиристорный преобразователь напряжения — это наиболее часто применяемый для этих целей аппарат.

Особенностью этих устройств является полное, а не частичное, преобразование переменного напряжения в постоянное без всякого рода пульсаций.

Мощный преобразователь напряжения такого типа обязательно должен включать в себя радиаторы и вентиляторы для охлаждения, так как все электронные детали могут работать долго и безаварийно, только при рабочих температурах.

Регулируемый преобразователь напряжения

Эти устройства направлены на работу как в режиме повышения напряжения, так и в режиме понижения. Чаще всего это всё-таки аппараты, выполняющие плавную регулировку величины выходного сигнала, который ниже входного.

То есть на вход подаётся 220 Вольт, а на выходе получаем регулируемую постоянную величину, допустим, от 2 до 30 вольт. Такие приборы с очень тонкой регулировкой применяются для проверки стрелочных и цифровых приборов в лабораториях.

Очень удобно когда они оснащены цифровым индикатором. Нужно признать, что каждый радиолюбитель брал за основу своих первых работ именно этот вид, так как питание для определённой аппаратуры может быть разное по величине, а этот источник питания получался весьма универсальным.

Как сделать качественный и работающий долгое время преобразователь, вот основная проблема юных радиолюбителей.

Инверторный преобразователь напряжения

Данный тип преобразователей положен в основу инновационных компактных сварочных устройств. Получая для питания переменное напряжение 220 Вольт аппарат выпрямляет его, после чего снова делает его переменным, но уже с частотой несколько десятков тысяч Гц. Это даёт возможность значительно снизить габариты сварочного трансформатора, установленного на выходе.

Также инверторный способ применяется для питания отопительных котлов от аккумуляторных батарей в случае неожиданного отключения электроэнергии.

За счёт этого система продолжает работать и получает 220 вольт переменного напряжения из 12 Вольт постоянного.

Мощный повышающий аппарат такого назначения должен эксплуатироваться от батареи большой ёмкости, от этого зависит как долго он будет снабжать котёл электроэнергией. То есть емкость при этом играет ключевую роль.

Читайте также:  Анализатор свиста на cortex-m4 или включение нагрузки по свистку

Высокочастотный преобразователь напряжения

За счёт применения повышающих преобразователей появляется возможность уменьшения габаритов всех электронных и электромагнитных элементов, из которых состоят схемы, а это значит снижается и стоимость трансформаторов, катушек, конденсаторов и т. д.

Правда, это может вызывать высокочастотные радиопомехи, которые влияют на работу других электронных систем, да и обычных радиоприёмников, поэтому нужно надёжно экранировать их корпуса.

Расчет преобразователя и его помех должен производиться высококвалифицированным персоналом.

Что такое преобразователь сопротивления в напряжение?
Это особый вид, который используется только при производстве и изготовлении измерительных приборов, в частности, омметров. Ведь основа омметра, то есть прибора измеряющего сопротивление, выполнена в измерении падения U и преобразовании его в стрелочные или цифровые показатели.

Обычно измерения производятся относительно постоянного тока. Измерительный преобразователь — техническое средство, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации, а также передачи.

Он входит в состав какого-либо измерительного прибора.

Преобразователь тока в напряжение

В большинстве случаев все электронные схемы нужны для обработки сигналов, представленных в виде напряжения. Однако иногда приходится иметь дело с сигналом в виде тока. Такие сигналы возникают, например, на выходе фоторезистора или фотодиода.

Тогда желательно при первой же возможности преобразовать токовый сигнал в напряжение. Преобразователи напряжения в ток применяются в случае, когда ток в нагрузке должен быть пропорционален входному U и не зависеть от R нагрузки.

В частности, при постоянном входном U ток в нагрузке также будет постоянным, поэтому такие преобразователи иногда условно называют стабилизаторами тока.

Ремонт преобразователя напряжения

Ремонт этих устройств для преобразования одного вида напряжения в другой, лучше производить в сервисных центрах, где персонал имеет высокую квалификацию и впоследствии предоставит гарантии выполненных работ.

Чаще всего любые современные качественные преобразователи состоят из нескольких сотен электронных деталей и если нет явных сгоревших элементов, то найти поломку и устранить её будет очень сложно.

Некоторые же китайские недорогие устройства данного типа, вообще, в принципе лишены возможности их ремонта, чего нельзя сказать об отечественных производителях. Да может они немного громоздкие и не компактные, но зато подлежат ремонту, так как многие из их деталей можно заменить на аналогичные.

Источник: https://amperof.ru/elektropribory/ispolzovanie-preobrazovateley-naprazeniya.html

Бестрансформаторное сетевое питание

Схемы бестрансформаторного питания: с балластным резистором, с балластным конденсатором, с импульсным преобразователем

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“.

 Сегодня мы рассмотрим несколько схем, предназначенных для питания радиолюбительских устройств без использования сетевого трансформаторабестрансформаторные источники питания.

   Сразу отмечу, что такие источники питания представляют определенную опасность для человека – неосторожное обращение и неминуемое поражение электрическим током. Такие схемы стоит применять только если обеспечивается их надежная изоляция и не требуется постоянное присутствие человека.

  Кроме того, использовать такие источники питания целесообразно только при небольших токах нагрузки.

    Сегодня мы рассмотрим два типа таких схем:
с балластным резистором
с балластным конденсатором
Есть еще третий вариант – с импульсным AC/DC преобразователем, но они более сложны, и требуют применения специализированных микросхем.
Балластные резисторы и конденсаторы гасят излишек сетевого напряжения. Поэтому, резисторы должны быть большой мощности, а конденсаторы – должны быть пленочными (к примеру К73-17) и рабочим напряжением не менее 630 вольт.
Все схемы несложные, и особых пояснений не требуют.

https://www.youtube.com/watch?v=srrtH781-oI

Первая схема:

Диоды VD1-VD4 должны выдерживать обратное напряжение не ниже 400 вольт.
Резисторы R1, R2 – балластные для стабилитрона.
R3 – выбирается с учетом, чтобы выходное напряжение не изменялось при любом токе нагрузки.
С1, R3, С2 – фильтр сглаживающий пульсации.

Вторая схема:

Аналогично первой схеме, но параллельно включенные резисторы заменяются включенными последовательно.
RC фильтр заменен LC фильтром.
Максимально допустимый ток через дроссель должен быть с запасом больше, чем ток нагрузки.

Третья схема:
Классическая схема источника питания с балластным конденсатором С1.
Резистор R1 – обязательный в подобных схемах, ограничивает начальный ток заряда конденсатора С2.

Резистор R2 разряжает конденсатор С1 при выключении от сети.
Сборку диодов VD1.1 и VD1.2 можно заменить на 1N4004…1N4007.
Конденсатор С2 сглаживает сетевые пульсации, С3 – устраняет ВЧ-помехи.

Выходное напряжение зависит от параметров стабилитрона и тока нагрузки.

Четвертая схема:
Стабилитроны VD3 и VD4 – выполняют предварительное ограничение напряжения и должны быть повышенной мощности (1-3 ватта).

Пятая схема:
Двухполупериодный выпрямитель с диодным мостом VD1 и светодиодной индикацией включения.
Резистор R3 определяет ток в нагрузке.
Выходное напряжение зависит от параметров стабилитрона и тока нагрузки.

Шестая схема:
Двухполярный источник питания
Для полной симметрии схемы необходим одинаковый ток нагрузки по цепям +5 вольт и -5 вольт.

Седьмая схема:
Разделение выходного напряжения на две отдельные ветви для исключения взаимных помех.
Подойдет для питания микроконтроллера или управления тиристором.
Стабилитрон VD1 ограничивает напряжение на уровне 5,6 вольт, диоды VD2 и VD3 снижают его до +4,8 … +5 вольт.

Восьмая схема:
Получение двух напряжений от источника питания.
Суммарный ток нагрузки состоит из токов двух каналов.
При значительных колебаниях тока нагрузки стабилизатор следует выбирать повышенной мощности.

Девятая схема:

Вместо одного, применяются два балластных конденсатора, что позволяет выбирать их с меньшим рабочим напряжением.

Ну а напоследок, все-таки приведу одну схему импульсного бестрансформаторного преобразователя напряжения:

Типовая схема включения импульсного AC/DC преобразователя напряжения на специализированной микросхеме фирмы ROHM.

Источник: http://radio-stv.ru/radiolyubitelskie-shemyi/bloki-i-istochniki-pitaniya/bestransformatnoe-pitanie-radiolyubitelskih-ustroystv

Бестрансформаторный преобразователь напряжения

В январском и февральском номерах журнала “Радио” текущего года рассказывалось об уникальном изобретении нашего соотечественника А.Л.Чижевского – аэроионизаторе, названном впоследствии “Люстрой Чижевского”.

В редакцию звонят и пишут сотни читателей, заинтересовавшихся этой установкой, способной создать в квартире уголок отдыха с горным воздухом.

Сегодняшний рассказ посвящен еще двум вариантам блока высокого напряжения, необходимого для питания электроэффлювиальной люстры-генератора отрицательных аэроионов.

Как уже сообщалось в [1], подаваемое на электроэффлювиальную люстру постоянное напряжение отрицательной полярности не должно быть ниже 25 000 В, иначе нужного эффекта от аэроионизатора не будет. Поэтому любой блок питания, собранный по опубликованным в [1, 2] схемам либо сконструированный самостоятельно, должен отвечать именно этому наиважнейшему требованию.

Puc.1

Схема одного из вариантов подобного блока приведена на рис. 1. Это преобразователь напряжения, выполненный на двух мощных транзисторах VT1, VT2. Они работают в генераторе, собранном по двухтактной схеме.

Коллекторные выводы транзисторов соединены с обмоткой I трансформатора, а выводы базы – с обмоткой II. Самовозбуждение генератора возникает из-за положительной обратной связи между коллекторной и базовой цепями транзисторов.

Этому процессу способствует также цепочка R1C2, определяющая режим работы транзисторов.

В итоге самовозбуждения генератора на выводах обмотки I появляется переменное (точнее импульсное) напряжение частотой 3000…4000 Гц.

Оно повышается в сотни раз выходной обмоткой III и подается на выпрямитель, собранный по схеме умножения напряжения на высоковольтных диодах VD5-VD10 и конденсаторах СЗ-С8.

Выпрямленное напряжение отрицательной полярности подается на люстру через ограничительный резистор R 2.

Для питания генератора использован выпрямитель, собранный на мощных диодах VD1-VD4 по мостовой схеме. Выпрямленное напряжение фильтруется конденсатором С1. Переменное напряжение на выпрямитель снимается со вторичной обмотки понижающего трансформатора Т1.

Первичная обмотка трансформатора включается в сеть через предохранитель FU1, выключатель SA1 и вилку Х1.

Трансформатор Т1 можно изготовить самостоятельно на магнитопроводе из трансформаторного железа Ш20 при толщине набора 30 мм.

Обмотка I должна содержать 2200 витков провода ПЭВ-1 0,25, обмотка II -120 витков ПЭВ-1 1,2. Для более точного подбора выпрямленного напряжения желательно сделать отводы от 90, 100, 110-го витков.

Подойдет и готовый трансформатор с напряжением на вторичной обмотке 10…12 В при токе нагрузки до 2 А.

https://www.youtube.com/watch?v=cWDgqJB5qKM

Трансформатор Т2 выполнен на ферритовом магнитопроводе от телевизионного строчного трансформатора серии ТВС, состоящем из двух половинок (1) – рис. 2.

Puc.2

Высоковольтную обмотку (3) наматывают на каркасе, склеенном из текстолита, стеклотекстолита или органического стекла толщиной 1 мм. Ширина каркаса – не менее 30 мм. Обмотка должна содержать 8000 витков провода ПЭЛШО 0,08-0,1.

В крайнем случае подойдет провод ПЭВ или ПЭЛ. Через каждые 800 витков необходимо прокладывать слой тонкой фторопластовой ленты или покрывать обмотку расплавленным парафином.

Нужно строго следить, чтобы витки верхних слоев не западали на нижние.

Для первичных обмоток (2) понадобится втулка, которую можно склеить из плотного картона. Обмотка I должна содержать 14 витков провода ПЭВ-1 0,8 с отводом от середины, а обмотка II – 6 витков такого же провода с отводом от середины. Обмотки желательно покрыть парафином и обмотать изоляционной лентой.

В каркас и втулку вставляют половинки магнитопровода и стягивают их (здесь пригодится старое крепление строчного трансформатора).

Трансформатор генератора допускается намотать и на магнитопроводе из трансформаторного железа Ш20, толщина набора 30 мм. В этом варианте делают общий каркас из плотного картона, гетинакса или стеклотекстолита.

Сначала наматывают обмотки I и II (соответственно 20 витков ПЭВ-1 1,2 и 16 витков ПЭВ-1 0,5 – обе с отводом от середины) и покрывают их парафином. Кроме того, на них наматывают слой хорошего изолирующего материала, например, фторопластовой ленты толщиной 1 мм. Затем наматывают обмотку III – 7000…

8000 витков провода ПЭЛШО 0,1. Здесь тоже через каждые 800 витков промазывают обмотку парафином.

Оксидные конденсаторы – любой серии, резисторы – МЛТ. О вариантах высоковольтных конденсаторов и диодов можно прочитать в [1,2]. Диоды мостового выпрямителя могут быть заменены другими, рассчитанными на ток не менее 2 А, например, КД202. КД203.

Читайте также:  Регулятор громкости системного динамика ibm pc

КД206, КД210, Д242-Д248 с любыми буквенными индексами. Кроме указанных на схеме, подойдут транзисторы КТ816 с любыми буквенными индексами, КТ818А-КТ818В и даже любые П216 (кроме П216Г).

Для транзисторов необходимо изготовить из листового алюминия или дюралюминия толщиной 2-2,5 мм радиаторы площадью 60…100 см2.

Puc.3

Возможный вариант монтажа устройства показан на рис. 3.

Высоковольтные диоды Д1008 (1), конденсаторы КОБ (2), самодельный трансформатор (3) генератора и указанные на схеме транзисторы с радиаторами (4) смонтированы на изоляционной плате (но только не из органического стекла!) толщиной 2,5 мм, которая затем размещена в корпусе из изоляционного материала (органическое стекло, текстолит, пластмасса).

Особое внимание следует обратить на монтаж диодов и конденсаторов. Соединительные проводники между ними должны быть короткими, а пайка – ровной и гладкой. Острые края пайки и выступающие концы проводников тщательно зачищают надфилем для предотвращения возможности коронирования и появления запаха озона.

Выпрямитель с понижающим трансформатором собирают в виде отдельной конструкции, но вполне возможно размещение его деталей на общей с генератором плате. В этом варианте выключатель SA1 целесообразно установить вблизи сетевой розетки.

Проверку работы аэроионизатора начинают с выпрямителя. Вместо генератора к его выходу (параллельно конденсатору С1) подключают в качестве нагрузки резистор сопротивлением 8…

10 Ом мощностью 25 Вт (резистор ПЭВ или самодельный из толстого провода с высоким удельным сопротивлением). Включают вилку Х1 в сеть и подают напряжение через выключатель SA1 на трансформатор Т1.

Измеряют постоянное напряжение на нагрузочном резисторе – оно должно быть не менее 10 В.

Далее подключают к выпрямителю генератор. Если он собран правильно и детали исправны, раздастся тонкий писк высоковольтного трансформатора.

В противном случае нужно поменять местами крайние выводы обмотки I или II, а возможно, еще и подобрать резистор R1.

При появлении резкого писка или щелчков пробоя следует снизить напряжение питания генератора – подпаять выпрямитель к одному из отводов трансформатора с меньшим напряжением.

Убеждаются в отсутствии коронирования, для чего включают установку в темноте, присматриваются к высоковольтной части. Если на выводах деталей появляются фиолетовые огоньки – это признак коронирования. Вскоре почувствуется запах озона. Установку выключают, осматривают места паек, при необходимости зачищают острые концы и покрывают коронирующие выводы расплавленным парафином.

Заключительный этап – контроль высокого напряжения по методике, изложенной в [1].

После этого генератор с умножителем устанавливают вблизи люстры и подсоединяют выходной провод умножителя (левый по схеме вывод резистора R2) к люстре.

Заземляющий провод (от нижнего вывода обмотки III трансформатора Т2) соединяют с трубой водопровода или отопления. Если выпрямитель с трансформатором смонтированы в металлическом корпусе, его также заземляют.

Схема еще одного варианта блока питания люстры приведена на рис. 4. По принципу действия он мало отличается от описанного в [1].

Puc.4

Сетевое напряжение выпрямляется диодом VD1. Выпрямленное напряжение фильтруется конденсатором С1 и подается на зарядную цепочку R1C2. Как только напряжение на конденсаторе С2 достигает напряжения зажигания тиратрона VL1, он вспыхивает. Конденсатор разряжается через первичную обмотку трансформатора Т1, тиратрон гаснет, конденсатор вновь начинает заряжаться и т.д.

https://www.youtube.com/watch?v=JCxhpcTso-w

Выделяющиеся на вторичной обмотке импульсы высокого напряжения поступают на известный уже умножитель напряжения (он состоит в данном варианте из восьми каскадов), а с его выхода – на люстру.

Выпрямительный диод – любой, рассчитанный на обратное напряжение не менее 600 В и ток не менее 30 мА. Конденсатор С1 – оксидный, С2 – бумажный на указанное на схеме номинальное напряжение.

Резистор R1 допустимо составить из трех параллельно соединенных сопротивлением по 47 кОм. Трансформатор Т1 – автомобильная катушка зажигания.

Вместо тиратрона можно включить один или несколько динисторов серии КН102 – подбирая общее напряжение их включения, нетрудно регулировать высокое напряжение, поступающее на люстру.

Литература

1. Иванов Б. “Люстра Чижевского” – своими руками. – Радио, 1997, № 1, с. 36, 37.
2. Бирюков С. “Люстра Чижевского” – своими руками. – Радио, 1997, № 2, с. 34, 35.

Источник: https://shema.info/meditsina/3441-bestransformatornyi-preobrazovatel-napriajeniia.html

Бестрансформаторный источник питания

В своих конструкциях радиолюбители очень часто применяют бестрансформаторные маломощные источники питания.

В некоторых случаях это целесообразно.

Микросхемы Link Switch – TN применяются в источниках питания без гальванической развязки с током нагрузки до 360 мА .

LNK302 – LNK306, выпускаемые компанией Power Integrationws.

Это преобразователи напряжения, которые позволяют построить бестрансформаторные блоки питания с широким диапазоном входного напряжения и минимальными габаритами и массой.

Для увеличения электрической прочности в корпусах используются 7 выводов.

Структура микросхемы содержит N- канальный МОП-транзистор и контроллер управления этим транзистором.

Работа преобразователя по схеме импульсного понижающего стабилизатора, роль ключа в котором выполняет микросхема LNK304.

Входная цепь – резистор RF1, выпрямительные диоды D3, D4, емкости С4, С5 и дроссель L2.

Дроссель L1 обеспечивает непрерывный режим работы преобразователя, при котором в течение каждого периода ток через дроссель не прерывается.

Напряжение обратной связи снимается с дросселя L1, выпрямляется диодом D2, сглаживается фильтром С3, и через делитель R1R3 подается на вывод FB (4) микросхемы.

Напряжение на нагрузке соответствует напряжению на дросселе L1 во время обратного хода преобразователя с точностью до падения напряжения на диоде D1.

В результате при равенстве падений напряжений на диодах D1 и D2 напряжение соответствует выходному и его стабильность может быть очень высокой.

Конденсатор С2 сглаживает пульсации, а резистор R4 служит начальной нагрузкой преобразователя.

Стабилизация выходного напряжения осуществляется за счет запрещения включения транзистора микросхемы на некоторое время,

т.е. осуществляется пропуск одного или нескольких циклов работы преобразователя.

В этом существенное отличие преобразователей на микросхемах Link Switch-TN от аналоговых устройств, использующих широтно-импульсную модуляцию.

Такой преобразователь может быть использован для питания бытовой техники, светодиодных устройств, ЖК индикаторов, счетчиков электроэнергии и других приборов, где не требуется гальваническая развязка по сети.

Печатная плата.

Даташит LNK302 – LNK306

———————————————————————– ————————————————————————–

Еще вот такая распространенная схема, просто и надежно, от 140 до 260 вольт.

Работая с такими источниками нужно не забывать, что их вторичные цепи имеют гальваническую связь с электросетью, и предпринимать все соответствующие меры электробезопасности.

Источник: http://sxem.org/2-vse-stati/20-radiol

Бестрансформаторный преобразователь напряжения

Изобретение относится к области электротехники и предназначено для использования во вторичных источниках электропитания приборов и устройств измерительной техники.

Технический результат – снижение значения потребляемой активной мощности и повышение стабильности выходного напряжения.

Преобразователь напряжения состоит из двух одинаковых секций узла гашения избыточного напряжения, выполненных в виде последовательно соединенных конденсатора и резистора, включенных соответственно в оба провода между выводами для подключения источника питания и входами первого и второго мостовых выпрямителей, выход первого выпрямителя подключен параллельно со входом стабилизатора напряжения, а в обоих проводах на выходе второго выпрямителя введены первый и второй регулирующие элементы, которые включены последовательно со входом стабилизатора напряжения. 2 ил.

Область техники

Бестрансформаторный преобразователь напряжения относится к области электротехники и предназначен для использования во вторичных источниках электропитания приборов и устройств измерительной техники, в частности, для питания электронных счетчиков электроэнергии, электронных вольтметров, различных реле защиты и автоматики, питаемых от контролируемой сети.

Предшествующий уровень техники

Известны источники питания (Хоровиц П., Хилл У. Искусство схемотехники. В 3-х томах. Т.1. Пер с англ. – 4-е изд. перераб и доп. – М.: Мир, 1993. – 413 с, ил., рис.1.

80), содержащие силовой трансформатор, выпрямитель, сглаживающий фильтр, компенсационный стабилизатор напряжения последовательного типа, в котором регулирующий элемент включен последовательно с нагрузкой и играет роль управляемого балластного сопротивления.

Наличие компенсационного стабилизатора напряжения позволяет получить стабильное напряжение питания, а наличие трансформатора позволяет получить низкую активную мощность потребления и при необходимости соединить нейтральный провод сети с общей точкой источника.

Однако именно наличие трансформатора является основным недостатком таких источников, увеличивающим их габариты и стоимость.

Известен также бестрансформаторный преобразователь на МОП транзисторе (Шрайбер Г. 300 схем источников питания. Выпрямители. Импульсные источники питания. Линейные стабилизаторы и преобразователи: Пер. с франц. – М.: ДМК, 2000. – 224 с: ил. (В помощь радиолюбителю), рис.

246), содержащий двухполупериодный мостовой выпрямитель, гасящий резистор, фильтр, параметрический стабилизатор на стабилитроне, источник опорного напряжения, сдвоенный операционный усилитель, регулирующий элемент и делитель напряжения сети.

Принцип работы бестрансформаторного преобразователя на МОП транзисторе состоит в том, что в начале каждой полуволны выпрямленное напряжение через открытый регулирующий элемент заряжает емкостной фильтр, подключенный к нагрузке.

При достижении на резисторе в делителе напряжения значения опорного напряжения операционный усилитель закрывает регулирующий элемент, и заряд емкостного фильтра прекращается. Основным недостатком такого источника питания является наличие пульсаций на выходе, ухудшающих работу большинства устройств измерительной техники, и отсутствие фиксированного потенциала одной из выходных точек относительно напряжения сети.

Источник: http://bankpatentov.ru/node/587597

Ссылка на основную публикацию