Схема включения люминесцентных ламп
Данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем. Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.
Принципиальная схема сетевого питания ламп дневного света с перегоревшими нитями накала дана на рис. 1, а в таблице приведены сведения об элементах схемы, параметры которых определяет мощность используемой лампы.
Элементы схемы сетевого питания ламп дневного света с перегоревшими нитями накала:Мощность лампы, Вт С1 и С2, мкФ С3 и С4, пФ VD1…VD4 R1, Ом 30 4 3300 Д226Б 60 40 10 6800 Д226Б 60 80 20 6800 Д205 30 100 20 6800 Д231 30Диоды VD1 и VD2 с конденсаторами С1 и С2 составляют двухполупериодный выпрямитель с удвоением на-пряжения, причём ёмкости конденсаторов С1 и С2 определяют значение напряжения, поступающего на электроды лампы HL1 (чем больше ёмкость, тем выше напряжение). В момент включения питания импульс напряжения на вы-ходе этого выпрямителя достигает 600 В.Диоды VD3 и VD4 в сочетании с конденсаторами С3 и С4 дополнительно повышают напряжение зажигания на электродах лампы HL1 примерно до 900 В. (Кроме того, конденсаторы С3 и С4 гасят радиопомехи, возникающие при ионизационном разряде внутри лампы). Столь высокое напряжение и обеспечивает надёжность зажигания лампы независимо от наличия нитей накала.После зажигания лампы сопротивление её уменьшается, что приводит к уменьшению напряжения на электродах лампы и обеспечивает нормальную её работу при напряжении около 220 В (рабочее напряжение определяется номиналом резистора R1).
Рис.1. Принципиальная схема питания лампа дневного света с перегоревшими нитями накала.Устройство сохраняет работоспособность даже при отсутствии диодов VD3 и VD4, а так же конденсаторов С3 и С4, но при этом снижается надёжность зажигания лампы.В схеме используются следующие радиодетали.
Конденсаторы С1 и С2 – бумажные или металлобумажные типа МБГ, КБГ, КБЛП, МБГО или МБГП на напряжение 600 В; конденсаторы С3 и С4 типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком) на рабочее напряжение не меньше 600 В. Резистор R1 проволочный, мощность которого соответствует мощности применяемой лампы. Подойдут резисторы типа ПЭ, ПЭВ, ПЭВР.
Диоды Д205 и Д231 для ламп мощностью 80 и 100 Вт устанавливают на радиаторах (для теплоотвода).
Как видите, данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем. Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.
Источник: https://www.freeseller.ru/2967-skhema-vkljuchenija-ljuminescentnykh-lamp.html
Ультрафиолет – получаем в домашних условиях быстро и за копейки
Сейчас химия на основе фотокатализаторов получает большое распространение. Разнообразные клеи лаки, фоточувствительные эмульсии и прочие интересные достижения химической промышленности. К сожалению, промышленные установки для УФ стоят приличных денег.
А что, делать если хочется только попробовать химию? подойдёт или нет ? Для этой цели покупать фирменные устройства за N килобаксов, слишком кучеряво…
На территории бывшего СССР обычно из положения выходят добывая кварцевые трубки из лам типа ДРЛ, иметься целая линейка лам от ДРЛ-125 до ДРЛ-1000 с помощью них можно получить достаточно мощное излучение, этого излучения обычно хватает для большинства эпизодических задач. Типа отвердеть клей или лак раз в месяц, или засветить фоторизист.
Как добывать трубку из ламп ДРЛ, как это делать безопасно, написано много информации. Хочется коснуться другого аспекта, а именно запуска этих ламп с минимальными финансовыми затратами.
Штатно для запуска используется специальный дроссель с увеличенных магнитным рассеянием. Но даже он не всегда доступен, а т.к. он тяжёлый то обычно в регионы доставка влетает в копеечку. Дроссель на 700W + доставка тянет на 100$. Что для варианта попробовать, тоже, так не разу не дешёво.
Немного теории:
Основной проблемой запуска ртутных ламп являться наличие дугового разряда. Причём холодная лампа и горячая имеют принципиально разное сопротивление горящей дуги. Примерно от единиц Ом до десятков Ом.
Соответственно для этого и служит дроссель который ограничивает ток во время запуска и работы лампы.
Надо признать, что дроссель является достаточно архаичным инструментом, и для дорогих и мощных лам применяемых в UF-сушилках (несколько килловат мощности, и несколько тыс. долларов за лампу) применяют блоки электронной стабилизации горения дуги.
Эти блоки позволяют более точно выдерживать параметры горения дуги продлевая тем самым жизнь лампы, и уменьшая проблемы при отверждении. Даже для архаичной ДРЛ производитель пишет, разброс напряжения не более 3% в противном случае уменьшение срока службы.
Как запустить Лампу ДРЛ без дросселя подручными средствами?
Ответ простой, надо всё го лишь ограничить ток, на всех режимах работы, начиная с разогрева, и заканчивая рабочим режимом. Ограничивать будем резистором.
Но так как резистор надо очень мощный, будем использовать имеющиеся под рукой нагревательные приборы (лампы накаливания, утюги, чайники, тены для нагрева воды, ручные кипятильники и т.д.) Это звучит смешно, но это будет работать и выполнять свои задачи.
Единственный недостаток, это перерасход электричества, т.е. если мы запустим лампу ДРЛ на 400W на балласте будет выделяться в тепло около 250W. Но думаю для задачи попробовать ультрафиолет, или для эпизодических работ это несущественно.
Почему так никто не делал?
Почему никто, существуют лампы ДРБ в которых использован именно этот принцип. Рядом с кварцевой трубкой, расположена нить накаливания обычной лампочки.
А писатели в интернете видимо не учили в школе физику. Ну конечно ещё один маленький нюанс, нужна цепь прогрева, т.е. греем лампу одним резистором, а на рабочий режим выводим другим. Но думаю, с выключателем и двумя проводками многие справятся 🙂
Итак схема:
Так, для многих правильные схемы, это тёмный лес, постарался изобразить в картинках. Более приближенно к жизни.
Как это работает?
1) Этап прогрева, выключатель должен быть обязательно разомкнут !!! Включаем лампу в сеть. Лампа накаливания начинает ярко светиться, трубка в лампе ДРЛ начинает мерцать и медленно разгораться. Минут через 3..5 трубка в лампе уже начнёт светить достаточно ярко.
2) Второе замыкаем выключатель на основной балласт, ток ещё увеличиться и ещё через 3 мин лампа выйдет на рабочий режим.
Внимание суммарно на нагрузке лампы + утюги чайники и т.д. будет выделять мощности сопоставимые с мощностью лампы. Утюг допустим, может отключиться встроенным термореле, и мощность лампы ДРЛ снизиться.
Для большинства такая схема будет очень сложной, особенно для тех у кого нет прибора для замера сопротивления. Для них я ещё более упростил схему:
Запуск простой, выкручиваем лампы, оставляем только нужное количество (1-2шт) для запуска горелки, и по мере прогрева начинаем вкручивать. Для мощных лам ДРЛ можно использовать в качестве резистора трубчатые галогенные лампы.
Теперь самое сложное:
Наверно, уже многие поняли, что лампы и нагрузки надо как то подбирать? Безусловно, если взять какой то утюг и подключить к лампе ДРЛ-125 от лампы ничего не останется, а вы получите ртутное заражение. К стати, тоже самое будет, если вы возьмете для лампы ДРЛ-125 дроссель от ДРЛ-700. Т.е. мозг всё таки надо включать !!!
Несколько простых правил, что бы сберечь силы нервы и здоровье 🙂
1)Ориентироваться на шильдики приборов нельзя, нужно замерять реальное сопротивление омметром и делать вычисления. Либо использовать с запасом прочности, выбирая чуть меньшую мощность чем можно.
2)Замерять сопротивление ламп накаливания бесполезно, холодная спираль имеет в 10 раз меньшее сопротивление, чем горячая. Лампы накаливания худший выбор, приходиться ориентироваться по надписи на лампе.
И не в коем случае не включаете нагрузку из лам накаливания разом, вкручивайте их по 1-штуке, уменьшая броски тока. Так как подозреваю, что это будет самый популярный способ включения лампы ДРЛ без дросселя.
Снял ролик для примера.
3)Из общих соображений для начала разогрева лампы ДРЛ используйте нагрузку не сильно больше её номинальной мощности. Для примера ДРЛ-400 для прогрева используйте 300-400ват.
Таблица для разных ламп:
Источник: http://l800.ru/zapusk-lamp-drl-bez-drosselja.html
Питание люминисцентных ламп
Источник: http://radioskot.ru/publ/bp/pitanie_ljuminiscentnykh_lamp/7-1-0-6
Принцип работы и схема подключения люминесцентной лампы
Начиная с того времени, как была изобретена лампа накаливания, люди ищут способы создания более экономичного, и в то же время без потерь светового потока, электроприбора. И вот одним из таких приборов стала люминесцентная лампа. В свое время такие светильники стали прорывом в электротехнике, таким же, как в наше – светодиодные. Людям казалось, что такая лампа вечная, но они ошибались.
Тем не менее срок службы их все же был значительно дольше простых «лампочек Ильича», что в совокупности с экономичностью помогало завоевывать все большее доверие потребителей.
Трудно найти хотя бы одно офисное помещение, где не было бы светильников для ламп дневного света.
Конечно, этот световой прибор подключается не так просто, как его предшественники, схема питания люминесцентных ламп гораздо сложнее, и она не столь экономична, как светодиодная, но все же по сей день она остается лидером на предприятиях и в офисных помещениях.
Нюансы подключения
Схемы включения ламп дневного света подразумевают наличие электромагнитного пускорегулирующего аппарата или дросселя (представляющего собой своеобразный стабилизатор) со стартером. Конечно, в наше время есть люминесцентные лампы без дросселя и стартера и даже приборы с улучшенной цветопередачей (ЛДЦ), но о них чуть позднее.
Итак, стартер выполняет следующую задачу: он обеспечивает в схеме короткое замыкание, разогревая и электроды, обеспечивая тем самым пробой, при помощи которого облегчается розжиг лампы.
После того как электроды достаточно разогрелись, стартер обеспечивает разрыв цепи.
А дроссель ограничивает ток во время замыкания, обеспечивает высоковольтный разряд для пробоя, зажигая и поддерживая стабильное горение лампы после запуска.
Принцип действия
Как уже говорилось, схема питания лампы дневного света принципиально отличается от подключения приборов накаливания. Дело в том, что электроэнергия здесь преобразовывается в световой поток посредством протекания тока сквозь скопление паров ртути, которые смешаны с инертными газами внутри колбы. Происходит пробой этого газа при помощи высокого напряжения, поступающего на электроды.
Как это происходит, можно понять на примере схемы.
Составляющие люминесцентного светильника
На ней можно увидеть:
- пускорегулирующий аппарат (стабилизатор);
- трубка лампы, включающая в себя электроды, газ и люминофор;
- слой люминофора;
- стартерные контакты;
- стартерные электроды;
- цилиндр корпуса стартера;
- пластинка из биметалла;
- наполнение колбы из инертного газа;
- нити накаливания;
- излучение ультрафиолета;
- пробой.
Слой люминофора наносится на внутреннюю стенку лампы для того, чтобы преобразовать ультрафиолет, который невидим человеку, в освещение, принимаемое обычным зрением. При изменении состава этого слоя можно изменить оттенок цвета осветительного прибора.
Общие сведения о люминесцентных лампах
Оттенок цвета люминесцентной лампы, как и светодиодной, зависит от цветовой температуры. При t = 4 200 К свет от прибора будет белым, и маркироваться она будет как ЛБ.
Если же t = 6 500 К, то освещение приобретает чуть синеватый оттенок, становится более холодным. Тогда при маркировке указывается, что это лампа ЛД, т. е. «дневная».
Интересен тот факт, что при исследованиях выявлено – лампы с более теплым оттенком имеют более высокий КПД, хотя на глаз кажется, что холодные цвета светят немного ярче.
И еще один момент, касающийся размеров. В народе люминесцентную лампу Т8 на 30 Вт называют «восьмидесяткой», подразумевая, что ее длина – 80 см, что не соответствует действительности. На самом деле длина составляет 890 мм, что на 9 см длиннее. Вообще же самые ходовые ЛЛ – это как раз Т8. Их мощность зависит от длины трубки:
- Т8 на 36 Вт имеет длину в 120 см;
- Т8 на 30 Вт – 89 см («восьмидесятка»);
- Т8 на 18 Вт – 59 см («шестидесятка»);
- Т8 на 15 Вт – 44 см («сороковка»).
Варианты подключений
Бездроссельное включение
Схема бездроссельного подключения ЛДС
Чтобы ненадолго продлить работу сгоревшего светового прибора, существует вариант, при котором возможно подключение лампы дневного света без дросселя и стартера (схема подключения на рисунке). Он предусматривает использование умножителей напряжения.
Подача напряжения происходит после короткого замыкания нитей накаливания. Выпрямленное напряжение становится больше вдвое, чего вполне хватает для запуска лампы. С1 и С2 (на схеме) необходимо подобрать для 600 В, а С3 и С4 – под напряжение в 1 000 В.
По прошествии некоторого времени пары ртути оседают в области одного из электродов, в результате чего свет от лампы становится менее ярким. Лечится это путем изменения полярности, т. е. необходимо просто развернуть реанимированную перегоревшую ЛЛ.
Подключение люминесцентных ламп без стартера
Задача этого элемента, обеспечивающего питание люминесцентных ламп – увеличение времени разогрева. Но долговечность стартера небольшая, он часто сгорает, а потому имеет смысл рассмотреть возможность того, как включить люминесцентную лампу без него. Для этого нужна установка вторичных трансформаторных обмоток.
Существуют ЛДС, которые изначально предусмотрены для подключения без стартера. На таких лампах имеется маркировка RS. При установке такого прибора в светильник, оборудованный этим элементом, лампа быстро горит.
Происходит это по причине необходимости большего времени на разогрев спиралей таких ЛЛ.
Если запомнить эту информацию, то уже не возникнет вопроса, как зажечь люминесцентный светильник, если произошло перегорание дросселя или стартера (схема соединения ниже).
Схема бесстартерного подключения ЛДС
Электронный пускорегулирующий аппарат
Электронный балласт в схеме питания ЛЛ заменил устаревший электромагнитный, улучшив пуск и добавив комфорта человеку.
Дело в том, что более старые пусковые устройства потребляли больше энергии, часто издавали гудение, отказывали и портили лампы. К тому же в работе присутствовало мерцание по причине низких частот напряжения.
При помощи электронного пускорегулирующего аппарата от этих неприятностей удалось избавиться. Необходимо разобраться, как действует ЭПРА.
Сначала происходит выпрямление тока, проходящего через диодный мост и при помощи С2 (на схеме ниже) напряжение сглаживается.
Обмотки трансформатора (W1, W2, W3), включенные противофазно, нагружают генератор с высокочастотным напряжением, установленный после конденсатора (С2). В параллель к ЛЛ включен конденсатор С4.
При поступлении резонансного напряжения происходит пробой газовой среды. Нить накаливания в это время уже разогрета.
После того как розжиг выполнен, показания сопротивления лампы снижаются, вместе с ними падает и напряжение до уровня, достаточного для поддержки свечения. Вся работа ЭПРА по запуску занимает меньше секунды. По такой схеме работают лампы дневного света без стартера.
Конструктивные особенности, а вместе с ними и схема включения люминесцентных ламп постоянно обновляются, изменяясь в лучшую сторону в экономии электроэнергии, уменьшаясь в размерах и увеличиваясь в долговечности работы. Главное – правильная эксплуатация и умение разобраться в огромном ассортименте, предлагаемом производителем. И тогда ЛЛ еще долго не покинут рынок электротехники.
Источник: https://LampaGid.ru/vidy/lyuminestsentnye/skhema-podklyucheniya-lampy
Энергосберегающая лампа №7
Недавно посмотрел на целую коробку сгоревших энергосберегающих ламп, в основном с хорошей электроникой, но перегоревшими нитями накала люминисцентной лампы, и подумал – надо куда-то всё это добро применить. Как известно, ЛДС со сгоревшими нитями накала надо питать выпрямленным током сети с использованием бесстартерного устройства запуска. При этом нити накала лампы шунтируют перемычкой и на который подают высокое напряжение для включения лампы. Происходит мгновенное холодное зажигание лампы, резким повышением напряжения на ней, при пуске без предварительного подогрева электродов.
Реализуется это простым выпрямителем, напряжение выхода которого будет почти в два раза выше входного сетевого 220В. В качестве балласта устанавливается обычная маломощная лампочка накаливания, и хотя использование лампы вместо дросселя снижает экономичность такого светильника, если использовать лампы накаливания на напряжение 127 В и её включить в цепь постоянного тока последовательно с люминисцентной лампой, то будем иметь достаточную яркость. Диоды любые выпрямительные, на напряжение от 400В и ток 1А, можно и советские коричневые КЦ-шки. Конденсаторы так-же с рабочим напряжением не менее 400В.
После зажигания лампы устройство переходит в режим двуполупе-риодного выпрямления с активной нагрузкой и напряжение одинаково распределено между лампами EL1 и EL2, что справедливо для ЛДС мощностью 30 – 80 Вт, имеющих рабочее напряжение в среднем около 100 В. При таком включении схемы, световой поток лампы накаливания будет составлять примерно четверть от потока ЛДС. Для люминисцентной лампоы мощностью 40 Вт необходима лампа накаливания 60 Вт, 127 В. Ее световой поток составит 20 % от потока ЛДС. А для ЛДС мощностью 30 Вт можно применить две лампы накаливания на 127 В по 25 Вт каждая, включив их параллельно. Световой поток этих двух ламп накаливания – около 17 % светового потока ЛДС. Такое увеличение светового потока лампы накаливания в комбинированном светильнике объясняется тем, что они работают при напряжении, близком к номинальному, когда их световой поток приближается к 100 %.
Форум по лампам |
Источник: http://zao-tehnolog.ru/page483661 Adblockdetector |