Лабораторный бп на основе модуля psmr3006a

Регулируемый dc-dc преобразователь PSMR3006A

быстродействующая токовая защита обеспечивает высокую степень защиты питаемых устройств;

— линейные стабилизаторы напряжения и тока;

— выходной ток до 6 А;

— электронное подключение/отключение нагрузки;

— ШИМ предрегулятор;

— для питания преобразователя нужно только силовое питание постоянного тока;

— выход для питания вольтметра-амперметра.

Описание

DC-DC преобразователь PSMR3006A это почти готовый лабораторный блок питания высокого качества, преобразователь предназначен для самостоятельной сборки лабораторного блока питания и имеет необходимые для этого цепи управления и регулирования.

Все наиболее сложные функции лабораторного блока питания реализованы в преобразователе, Вам достаточно подключить элементы интерфейса, запитать преобразователь от импульсного или трансформаторного источника постоянного тока, причем источник питания может быть не стабилизированным, и лабораторный блок питания готов.

Регулировка выходного напряжения и тока осуществляется переменными резисторами, для индикации режимов стабилизации напряжения и тока используется светодиодные индикаторы.

Измерение выходного напряжения и тока осуществляется вольтметром-амперметром из состава интерфейсного комплекта.

В преобразователе PSMR3006A используется многоступенчатое преобразование:  step-down -> линейный стабилизатор, чем обеспечивается высокое быстродействие, малые пульсации выходного напряжения и тока и высокий КПД преобразователя.

Благодаря многоступенчатому регулированию преобразователь PSMR3006A не требует активного охлаждения.

Рекомендуемый состав интерфейсного комплекта приведен на фото.

Состав комплекта и его цена уточняются при заказе.

Цена рекомендуемого интерфейсного комплекта, представленного на фото,  500 руб.

Параметры DC-DC преобразователя приведены в таблице

Максимальная выходная мощность 180Вт
Диапазон установки выходного напряжения 0.1-30В
Стабильность выходного напряжения ±(0,5%+20мВ)
Пульсации выходного напряжения (режим CV), не более 2мВ rms
Диапазон установки выходного тока 0.1-6А
Стабильность ограничения выходного тока ±(0,5%+4мА)
Пульсации выходного тока (режим CС), не более 2мА rms
Минимальное входное напряжение, не менее Uвых + 5В
Максимальное (пиковое) входное напряжение, не более 44В
Суммарные потери при входном напряжении 36В и максимальном выходном токе, не более 15Вт
Габариты, ДхШхВ 95х67х60мм
Масса, не более 0,15кг

Внешний вид DC-DC преобразователя может отличаться от фото, представленных на сайте.

Источник: http://www.e-core.ru/reguliruemyiy-dc-dc-preobrazovatel-psmr3006a/

下载视频,免费观看

17:44

[MiHK]【突發】挑戰極限動作受傷

Источник: https://cnvid.net/video/%D0%BB%D0%B0%D0%B1%D0%BE%D1%80%D0%B0%D1%82%D0%BE%D1%80%D0%BD%D1%8B%D0%B9-%D0%B1%D0%BF-%D0%BD%D0%B0-%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D0%B5-%D0%BC%D0%BE%D0%B4%D1%83%D0%BB%D1%8F-psmr3006a-tOJSBszvvmU.html

Схема лабораторного источника питания

   Необходимость в лабораторном источнике питания с возможностью регулировки выходного напряжения и порога срабатывания защиты по току потребления нагрузкой возникла давно. Проработав кучу материала на просторах интернета и набив шишки на собственном опыте, остановился на нижеследующей конструкции.

Диапазон регулирования напряжения 0-30 Вольт, ток отдаваемый в нагрузку определяется в основном примененным трансформатором, в моём варианте спокойно снимаю более 5-ти Ампер. Есть регулировка порога срабатывания защиты по току потребляемого нагрузкой, а также от короткого замыкания в нагрузке. Индикация выполнена на ЖК дисплее LSD16х2.

Единственным недостатком данной конструкции считаю невозможность трансформации данного источника питания в двуполярный и некорректность показания потребляемого тока нагрузкой в случае объединения полюсов – вместе. В мои цели ставилась задача питать в основном схемы однополярного питания по сему даже двух каналов, как говорится, с головой.

Итак, схема узла индикации на МК с его вышеописанными функциями:

   Измерения силы тока и напряжения I – до 10 А, U – до 30 В, схема имеет два канала, на фото показания напряжения до 78L05 и после, имеется возможность калибровки под имеющиеся шунты в наличии. Несколько прошивок для ATMega8 есть на форуме, проверенны мной не все.

В схеме в качестве операционного усилителя использована микросхема МСР602, ее возможная замена – LM2904 или LM358, тогда подключать питание ОУ нужно к 12 вольтам.

На плате заменил перемычкой диод по входу стабилизатора и дроссель по питанию, стабилизатор необходимо ставить на радиатор – греется значительно.

   Для корректного отображения величин токов необходимо обратить внимание на сечение и длину проводников включенных от шунта к измерительной части. Совет такой – длина минимальная, сечение максимальное. Для самого лабораторного источника питания, была собрана схема: 

   Завелась сразу же, регулировка выходного напряжения плавная, так же, как и порог защиты по току. Печать под ЛУТ пришлось подгонять, вот что получилось: 

   Подключение переменных резисторов: 

Расположение элементов на плате БП

Цоколевка некоторых полупроводников

Перечень элементов лабораторного ИП:

R1 = 2,2 KOhm 1W

R2 = 82 Ohm 1/4W R3 = 220 Ohm 1/4W R4 = 4,7 KOhm 1/4W R5, R6, R13, R20, R21 = 10 KOhm 1/4W R7 = 0,47 Ohm 5W R8, R11 = 27 KOhm 1/4W R9, R19 = 2,2 KOhm 1/4W R10 = 270 KOhm 1/4W R12, R18 = 56KOhm 1/4W R14 = 1,5 KOhm 1/4W R15, R16 = 1 KOhm 1/4W R17 = 33 Ohm 1/4W R22 = 3,9 KOhm 1/4W RV1 = 100K trimmer P1, P2 = 10KOhm C1 = 3300 uF/50V C2, C3 = 47uF/50V C4 = 100nF polyester C5 = 200nF polyester C6 = 100pF ceramic C7 = 10uF/50V C8 = 330pF ceramic C9 = 100pF ceramic D1, D2, D3, D4 = 1N5402,3,4 diode 2A – RAX GI837U D5, D6 = 1N4148 D7, D8 = 5,6V Zener D9, D10 = 1N4148 D11 = 1N4001 diode 1A Q1 = BC548, NPN transistor or BC547 Q2 = 2N2219 NPN transistor Q3 = BC557, PNP transistor or BC327 Q4 = 2N3055 NPN power transistor U1, U2, U3 = TL081

D12 = LED

   Готовые платы выглядят в моём варианте так:

   С дисплеем проверял, работает отлично – как вольтметр, так и амперметр, проблема тут в другом, а именно: иногда возникает необходимость в двухполярном напряжении питания, у меня вторичные обмотки трансформатора отдельные, видно из фото стоят два моста, то есть полностью два независимых друг от друга канала.

Но вот канал измерения общий и имеет общий минус, посему создать среднюю точку в блоке питания не получится, из-за общего минуса через измерительную часть. Вот и думаю либо делать на каждый канал собственную независимую измерительную часть, или может не так уж часто мне нужен источник с двухполярным питанием и общим нулем…

Далее привожу печатную плату, та что пока вытравилась:

   После сборки, первое: выставляем фьюзы именно так: 

   Собрав один канал, убедился в его работоспособности:

   Пока сегодня включен левый канал измерительной части, правая висит в воздухе, посему ток показыват почти максимум. Кулер правого канала ещё не поставил, но суть ясна из левого.

   Вместо диодов пока что в левом канале (он снизу под платой правого) диодного моста который в ходе экспериментов выкинул, хоть и 10А, поставил мост на 35А на радиатор под кулер.

   Провода второго канала вторички трансформатора пока висят в воздухе.

   Итог: напряжение стабилизации прыгает в пределах 0.01 вольт во всем диапазоне напряжений, максимальный ток который смог снять – 9.8 А, хватит с головой, тем более, что рассчитывал получить не больше трёх ампер. Погрешность измерения – в пределах 1%. 

Читайте также:  Управление маломощным электродвигателем. простые схемы

   Недостаток: данный блок питания не могу трансформировать в двухполярный из-за общего минуса измерительной части, да и поразмыслив решил, что оконечники мне не настраивать, поэтому отказался от схемы полностью независимых каналов.

Ещё одним из недостатков, на мой взгляд, данной измерительной схемы считаю то, что если соединить полюса – вместе по выходу мы теряем информативность по току потребления нагрузкой из-за общего корпуса измерительной части. Происходит это в следствии запараллеливания шунтов обоих каналов.

А в общем источник питания получился совсем не плохой и скоро будет статья о его модернизации. Автор конструкции: ГУБЕРНАТОР

   Форум по схеме

Источник: http://radioskot.ru/publ/bp/skhema_laboratornogo_istochnika_pitanija/7-1-0-528

Простой лабораторный блок питания

 

Сергей Никитин

Описанием этого простого лабораторного блока питания, я открываю цикл статей, в которых познакомлю Вас с простыми и надёжными в работе разработками (в основном различных источников питания и зарядных устройств), которые приходилось собирать по мере необходимости из подручных средств. Для всех этих конструкций в основном использовались детали и части от списанной с эксплуатации старой оргтехники.

И так, понадобился как-то срочно блок питания с регулировкой выходного напряжения в пределах 30-40 вольт и током нагрузки в районе 5-ти ампер.

В наличии имелся трансформатор от бесперебойника UPS-500, в котором при соединении вторичных обмоток последовательно, получалось около 30-33 Вольт переменного напряжения. Это меня как раз устраивало, но осталось решить, по какой схеме собирать блок питания.

Если делать блок питания по классической схеме, то вся лишняя мощность при низком выходном напряжении будет выделяться на регулирующем транзисторе. Это мне не подходило, да и делать блок питания по предлагаемым схемам как то не захотелось, и ещё нужно было-бы для него искать детали.

По этому разработал схему под те детали, какие на данный момент у меня были в наличии.

За основу схемы взял ключевой стабилизатор, чтобы на греть в пустую окружающее пространство выделяемой мощностью на регулирующем транзисторе. Здесь нет ШИМ-регулирования и частота включения ключевого транзистора, зависит только от тока нагрузки.

Без нагрузки частота включения в районе одного герца и менее, зависит от индуктивности дросселя и ёмкости конденсатора С5. Включение слышно по небольшому циканию дросселя. Транзисторы MJ15004 были в огромном количестве от ранее разобранных бесперебойников, поэтому решил поставить их на выходные.

Для надёжности поставил два в параллель, хотя и один вполне справляется со своей задачей. Вместо них можно поставить любые мощные p-n-p транзисторы, например КТ-818, КТ-825. Дроссель L1 можно намотать на обычном Ш-образном (ШЛ) магнитопроводе, его индуктивность особо не критична, но желательно, чтобы подходила ближе к нескольким миллигенри.

Берётся любой подходящий сердечник, Ш, ШЛ, с сечением желательно не меньше 3 см,. Вполне подойдут сердечники от выходных транформаторов ламповых приёмников, телевизоров, выходные трансформаторы кадровых развёрток телевизоров и т.д. Например стандартный размер Ш, ШЛ-16х24.

Далее берётся медный провод, диаметром 1,0 – 1,5 мм и мотается до заполнения окна сердечника полностью. У меня дроссель намотан на железе от трансформатора ТВК-90, проводом 1,5 мм до заполнения окна.

Магнитопровод, конечно собираем с зазором 0,2-0,5мм.(2 – 5 слоёв обычной писчей бумаги).

Единственный минус этого блока питания, под большой нагрузкой дроссель у меня жужжит, и этот звук меняется от величины нагрузки, что слышно и немного достаёт.

Поэтому наверно нужно дроссель хорошо пропитывать, а может ещё лучше – залить полностью в каком нибудь подходящем корпусе эпоксидкой, чтобы уменьшить звук “цикания” . Транзисторы я установил на небольшие алюминиевые пластины, и на всякий случай поставил внутрь ещё и вентилятор для их обдува.

Вместо VD1 можно ставить любые быстрые диоды на соответствующее напряжение и ток, у меня просто в наличии много диодов КД213, поэтому я их в таких местах в основном везде и ставлю. Они достаточно мощные (10А) и напряжение 100В, что вполне достаточно.

На мой дизайн блока питания особо внимание не останавливайте, задача стояла не та. Нужно было сделать быстро, и работоспособно. Сделал временно в таком корпусе и в таком оформлении, и пока это “временно” уже довольно долго работает.

Можно в схему ещё добавить амперметр для удобства. Но это дело личное.

Я поставил одну головку для измерения напряжения и тока, шунт для амперметра сделал из толстого монтажного провода (на фотографиях видно, намотан на проволочном резисторе) и поставил переключатель “Напряжение” – “Ток”. На схеме это просто не показал.

 

Источник: http://vprl.ru/publ/istochniki_pitanija/bloki_pitanija/prostoj_laboratornyj_blok_pitanija/11-1-0-112

Персональный сайт Пьяных А.В

  В качестве блока питания я уже лет 8-10 использую самодельный блок питания. Основная «начинка» взята от блока питания матричного принтера. Импульсный стабилизатор оказался adj версии. Замена одного резистора делителя обратной связи на переменный резистор позволила сделать регулируемый источник напряжения от 5 до 32В с максимальным током 2,5А.

   Так как новый блок питания собран из готовых модулей китайского производства и сложность конструкции минимальная, то я дополню статью информацией о лабораторных блоках питания, выпускаемых серийно, и сделаю обзор разнообразных модулей для построения своего лабораторного блока питания. Итак, начнем.

   Серийно выпускаемые блоки питания можно разделить на классы.

   По мощности:

  • Маломощные – до 3А
  • Средней мощности – до 5А
  • Мощные – до 30А
  • Сверхмощные – более 30 А

   Существуют источники питания А КИП-1135(A) с выходным регулируемым напряжением от 0 до 600В и регулируемым током от 1 до 400А. Цену источника можете представить……

   По наличию одного или нескольких выходных напряжений:

  • Одноканальные
  • Многоканальные

    У многоканальных, как правило, можно соединять выходы последовательно для получения более высокого напряжения или получения двухполярного источника питания.

   По выходному напряжению:

  • Низковольтные – до 15В
  • Среднего вольтажа – от 15 до 60В
  • Высоковольтные – более 60В

   По типу устройства:

  • Линейные
  • Импульсные
  • Гибридные

   Линейные обладают лучшим «качеством» выходного напряжения, малыми пульсациями, шумом и т.д., но, как правило, небольшой мощностью, большим нагревом и низким КПД. Импульсные более «шумные», но славятся малыми габаритами, большей мощностью и высоким КПД.

В гибридных основная регулировка напряжения основана на импульсных технологиях (обычно ШИМ), потом напряжение подается на линейный стабилизатор. Объясню на примере, довольно грубом, но верном. Линейный стабилизатор получает питание с трансформатора 30В при токе 10А. На выходе установлено напряжение 10В при том же токе.

Читайте также:  Припои и флюсы

На силовых транзисторах «сжигается» Pт = Iвых.макс(Uвх – Uвых) 10А х 20В = 200Вт мощности. Это очень много. В гибридном с импульсного стабилизатора приходит на несколько вольт больше, чем установлено регулировкой на выходе блока питания. С импульсной части в линейную приходит 12В, с линейной выходит 10В.

Потери на линейной части 2В х 10А = 20Вт. В итоге имеем преимущества линейного по качеству и небольшие потери по количеству.

   Также бывают прецизионные блоки питания. У них большая точность установки выходных параметров и очень маленькие пульсации на выходе. И ооооочень высокая цена при невысокой мощности.

   В основном необходимый в радиолюбительской практике диапазон перекрывают блоки питания с напряжением на выходе до 30-50В с током до 5А.

Большей популярностью пользуются двухканальные блоки питания низкого и среднего ценового диапазона. От совсем дешевых китайских ожидать достижения заявленных характеристик не приходится.

Они часто выходят из строя из-за неправильного подбора компонентов. Детали подбираются без запаса по параметрам для удешевления конструкции.

   По типу индикаторов блоки питания можно разделить на цифровые и стрелочные аналоговые. Цифровые более точны в измерениях. Стрелочные индикаторы более наглядно отображают изменение параметров.

   Многие блоки питания средней мощности имеют режим стабилизации тока. Это очень полезная функция.

   Применение стабилизации тока:

  • Тестирование светодиодов и других «токовых приборов».
  • Подбор и калибровка шунтов для амперметров
  • Зарядка аккумуляторов
  • Ограничение тока в разных опытах. Например, питаемое устройство штатно потребляет 0,5А. Устанавливаете на выходе, например, 0,52А, и даже при сбое в устройстве не потечет ток значительно выше потребляемого штатно.

   Обзор стабилизаторов/преобразователей.

Приведу обзор наиболее популярных преобразователей/стабилизаторов, которые можно будет использовать в самодельных лабораторных блоках питания.

Рассматривать модули с выходным током менее 5А не буду. От простого к сложному. Многие модули названия не имеют и ищутся по набору слов.

DC to DC 4V-38V to 1.25V-36V 5A Step Down Power Supply Buck Module

Заявленные характеристики:

  • Входное напряжение 4-38В
  • Выходное напряжение 1,25-36В
  • Выходной ток до 5А (не регулируется)
  • Пульсации

Источник: http://zlitos.com/publ/ehlektronika/ehlektronika/laboratornyj_blok_pitanija/10-1-0-36

Как собрать лабораторный блок питания из принтера

В последние десятилетия электронная техника развивается настолько быстро, что аппаратура устаревает гораздо раньше, чем выходит из строя. Как правило, устаревшая аппаратура списывается и, попадая в руки радиолюбителей, становится источником радиодеталей. Часть узлов этой аппаратуры вполне возможно использовать.

В один из визитов на радиорынок удалось практически за бесценок купить несколько печатных плат от списанной аппаратуры (рис. 1). В комплекте к одной из плат шел и трансформатор питания.

После поисков в Интернете удалось установить (предположительно), что все платы — от матричных принтеров EPSON. Кроме множества полезных деталей, на плате смонтирован неплохой двухканальный источник питания.

 И если плату не предполагается использовать для других целей, на основе его можно построить регулируемый лабораторный блок питания. Как это сделать, рассказано ниже.

Источник питания содержит каналы +24 В и +5 В. Первый построен по схеме понижающего широтно-импульсного стабилизатора и рассчитан на ток нагрузки около 1,5 А. При превышении этого значения срабатывает защита и напряжение на выходе стабилизатора резко падает (ток короткого замыкания — примерно 0,35 А). Примерная нагрузочная характеристика канала показана на рис.

2 (кривая черного цвета). Канал +5В также построен по схеме импульсного стабилизатора но, в отличие от канала +24 В. по так называемой релейной схеме.

Питается этот стабилизатор с выхода канала +24 В (рассчитан на работу от источника напряжения не ниже 15 В) и токовой защиты не имеет, поэтому при коротком замыкании выхода (а такое в практике радиолюбителя не редкость) может выйти из строя.

И хотя ток стабилизатора ограничен в канале +24 В, при коротком замыкании ключевой транзистор примерно за секунду нагревается до критической температуры. Схема стабилизатора напряжения +24В показана на рис. 3 (буквенные позиционные обозначения и нумерация элементов соответствуют нанесенным на печатной плате).

Рассмотрим работу некоторых его узлов, имеющих особенности или отношение к переделке. На транзисторах Q1 и Q2 построен силовой ключ. Резистор R1 служит для уменьшения рассеиваемой мощности на транзисторе Q1.

На транзисторе Q4 построен параметрический стабилизатор напряжения питания задающего генератора, выполненного на микросхеме, обозначенной на плате как ЗА (далее будем рассматривать её как DA1).

Схема лабораторного блока питания

Эта микросхема — полный аналог знаменитой по компьютерным блокам питания TL494 [1]. О её работе в различных режимах написано довольно много, поэтому рассмотрим лишь некоторые цепи.

 Стабилизация выходного напряжения осуществляется следующим образом: на один из входов встроенного компаратора 1 (вывод 2 DA1) через резистор R6 подается образцовое напряжение с внутреннего источника микросхемы (вывод 14).

На другой вход (вывод 1) через резистивный делитель R16R12 поступает выходное напряжение стабилизатора, причём нижнее плечо делителя подключено к источнику образцового напряжения компаратора токовой защиты (вывод 15 DA1). Пока напряжение на выводе 1 DA1 меньше, чем на выводе 2, ключ на транзисторах Q1 и Q2 открыт.

Как только напряжение на выводе 1 становится больше, чем на выводе 2, ключ закрывается. Разумеется, процесс управления ключом определяется работой задающего генератора микросхемы. Токовая защита работает аналогично, за исключением того, что на ток нагрузки влияет выходное напряжение.

Датчиком тока является резистор R2. Рассмотрим токовую защиту подробнее. Образцовое напряжение подаётся на инвертирующий вход компаратора 2 (вывод 15 DA1). В его формировании участвуют резисторы R7. R11, а также R16. R12.

Пока ток нагрузки не превышает максимального значения, напряжение на выводе 15 DA1 определяется делителем R11R12R16.

Резистор R7 имеет довольно большое сопротивление и на образцовое напряжение почти не влияет. При перегрузке выходное напряжение резко падает. При этом уменьшается и образцовое напряжение, что вызывает дальнейшее снижение тока.

Выходное напряжение снижается почти до нуля, и поскольку теперь последовательно соединённые резисторы R16, R12 через сопротивление нагрузки подключаются параллельно R11, образцовое напряжение, а следовательно, и выходной ток также резко уменьшаются.

Так формируется нагрузочная характеристика стабилизатора +24 В.

Выходное напряжение на вторичной (II) обмотке понижающего трансформатора питания Т1 должно быть не ниже 29В при токе до 1,4 А. Стабилизатор напряжения +5В выполнен на транзисторе Об и интегральном стабилизаторе 78L05, обозначенном на плате как SR1.

Описание аналогичного стабилизатора и его работы можно найти в [2]. Резисторы R31, R37 и конденсатор С26 образуют цепь ПОС для формирования крутых фронтов импульсов.

Читайте также:  Индикатор неисправности стоп-сигнала

Для использования источника питания в лабораторном блоке нужно выпилить из печатной платы участок, на котором размещены детали стабилизаторов (на рис.1 отделён светлыми линиями).

Чтобы можно было регулировать выходное напряжение стабилизатора +24 В, его следует немного доработать.

Для начала следует отсоединить вход стабилизатора +5 В, для чего необходимо выпаять резистор R18 и перерезать печатный проводник, идущий к выводу эмиттера транзистора Q6. Если источник +5 В не нужен, его детали можно удалить.

Далее следует выпаять резистор R16 и подключить вместо него переменный резистор R16* (как и другие новые элементы, он изображён на схеме утолщёнными линиями) номинальным сопротивлением 68 кОм.

Затем надо выпаять резистор R12 и припаять его с обратной стороны платы между выводом 1 DA1 и минусовым выводом конденсатора С1. Теперь выходное напряжение блока можно изменять от 5 до 25 В.

 Понизить нижний предел регулирования примерно до 2В можно, если изменить пороговое напряжение на выводе 2 DA1.

Для этого следует выпаять резистор R6, а напряжение на вывод 2 DA1 (около 2 В) подать с подстроечного резистора R6’ сопротивлением 100 кОм, как показано на схеме слева (напротив прежнего R6).

Этот резистор можно припаять со стороны деталей прямо к соответствующим выводам микросхемы. Есть и другой вариант — вместо резистора R6 впаять R6″ номиналом 100 кОм, а между выводом 2 микросхемы DA1 и общим проводом припаять ещё один резистор — R6″’ номиналом 36 кОм.

 После этих переделок следует изменить ток защиты стабилизатора. Выпаяв резистор R11, впаять на его место переменный R11* номинальным сопротивлением 3 кОм с включённым в цепь движка резистором R11″.

Валик резистора R1 V можно вывести на лицевую панель для оперативной регулировки тока защиты (примерно от 30 мА до максимального значения, равного 1,5 А).

При таком включении изменится и нагрузочная характеристика стабилизатора: теперь при превышении тока нагрузки стабилизатор перейдёт в режим его ограничения (синяя линия на рис. 2).

Если длина провода, соединяющего резистор R11′ с платой, превышает 100 мм, желательно параллельно ему на плате припаять конденсатор емкостью 0,01 мкФ. Также желательно снабдить транзистор Q1 небольшим теплоотводом.

Вид на доработанную плату с регулировочными резисторами показан на рис. 4.

Такой блок питания можно эксплуатировать с нагрузкой, некритичной к пульсациям напряжения, которые при максимальном токе нагрузки могут превышать 100 мВ.

 Существенно понизить уровень пульсаций можно, добавив несложный компенсационный стабилизатор, схема которого представлена на рис. 5. В основе стабилизатора — широко распространенная микросхема TL431 (её отечественный аналог — КР142ЕН19).

На транзисторах VT2 и VT3 построен регулирующий элемент. Резистор R4 здесь выполняет ту же функцию, что и R1 в импульсном стабилизаторе (см. рис. 3).

На транзисторе VT1 собран узел обратной связи по падению напряжения припаять со стороны деталей прямо к соответствующим выводам микросхемы. Есть и другой вариант — вместо резистора R6 впаять R6″ номиналом 100 кОм, а между выводом 2 микросхемы DA1 и общим проводом припаять ещё один резистор — R6″’ номиналом 36 кОм.

После этих переделок следует изменить ток защиты стабилизатора. Выпаяв резистор R11, впаять на его место переменный R11* номинальным сопротивлением 3 кОм с включённым в цепь движка резистором R11″.

Валик резистора R1 V можно вывести на лицевую панель для оперативной регулировки тока защиты (примерно от 30 мА до максимального значения, равного 1,5 А).

При таком включении изменится и нагрузочная характеристика стабилизатора: теперь при превышении тока нагрузки стабилизатор перейдёт в режим его ограничения (синяя линия на рис. 2).

Если длина провода, соединяющего резистор R11′ с платой, превышает 100 мм, желательно параллельно ему на плате припаять конденсатор емкостью 0,01 мкФ. Также желательно снабдить транзистор Q1 небольшим теплоотводом.

Вид на доработанную плату с регулировочными резисторами показан на рис. 4.

Такой блок питания можно эксплуатировать с нагрузкой, некритичной к пульсациям напряжения, которые при максимальном токе нагрузки могут превышать 100 мВ.

Существенно понизить уровень пульсаций можно, добавив несложный компенсационный стабилизатор, схема которого представлена на рис. 5. В основе стабилизатора — широко распространенная микросхема TL431 (её отечественный аналог — КР142ЕН19).

На транзисторах VT2 и VT3 построен регулирующий элемент. Резистор R4 здесь выполняет ту же функцию, что и R1 в импульсном стабилизаторе (см. рис. 3). На транзисторе VT1 собран узел обратной связи по падению напряжения на резисторе R2.

Участок коллектор- эмиттер этого транзистора необходимо подключить вместо резистора R16 в схеме на рис. 3 (разумеется, переменный резистор R16’ в этом случае не нужен).

Работает этот узел следующим образом. Как только напряжение на резисторе R2 превысит примерно 0,6 В, транзистор VT1 открывается, что вызывает переключение компаратора микросхемы DA1 в импульсном стабилизаторе и, следовательно, закрывание ключа на транзисторах Q1,02.

Выходное напряжение импульсного стабилизатора уменьшается. Таким образом, напряжение на этом резисторе поддерживается на уровне около 0,65 В. При этом падение напряжения на регулирующем элементе VT2VT3 равно сумме падения напряжения на резисторе R2 и напряжения на эмиттерном переходе транзистора VT3. т. е.

около 1,25… 1,5В в зависимости от тока нагрузки.

В таком виде блок питания способен отдавать в нагрузку ток до 1,5А при напряжении до 24В, при этом уровень пульсаций не превышает нескольких милливольт. Следует отметить, что при срабатывании защиты по току уровень пульсаций увеличивается, поскольку микросхема DA1 компенсационного стабилизатора закрывается и регулирующий элемент открыт полностью.

Печатная плата для этого стабилизатора не разрабатывалась. Транзистор VT3 должен иметь статический коэффициент передачи тока Ь21Э не менее 300, а VT2 — не менее 100. Последний необходимо установить на теплоотвод с площадью охлаждающей поверхности не менее 10 см².

Налаживание блока питания с таким дополнением заключается в подборе резисторов выходного делителя R5— R7. При самовозбуждении блока можно шунтировать эмиттерный переход транзистора VJ1 конденсатором ёмкостью 0,047 мкФ. Несколько слов о стабилизаторе канала +5 В.

Его можно использовать как дополнительный источник, если в трансформаторе Т1 есть дополнительная обмотка на 16…22 В. В этом случае понадобится ещё один выпрямитель с фильтрующим конденсатором.

Поскольку этот стабилизатор не имеет защиты, нагрузку к нему необходимо подключать через дополнительное устройство защиты, например, описанное в [3], ограничив ток последнего до 0.5 А.

 В статье описан простейший вариант переделки, но можно ещё улучшить характеристики источника, дополнив компенсационный стабилизатор собственной регулируемой защитой по току, например, на операционном усилителе, как это сделано в [4].

Источник: http://www.radiochipi.ru/laboratornyj-blok-pitaniya-iz-bp-matrichnogo-printera/

Ссылка на основную публикацию