Схемы включения операционных усилителей | Мастер Винтик. Всё своими руками!
Типы и схемы включения операционных усилителей. Всё про обратную связь усилителей
Операционные усилители часто используются для выполнения различных операций: суммирования сигналов, дифференцирования, интегрирования, инвертирования и т. д. А также операционные усилители были разработаны как усовершенствованные балансные схемы усиления.
Операционный усилитель – универсальный функциональный элемент, широко используемый в современных схемах формирования и преобразования информационных сигналов различного назначения как в аналоговой, так и в цифровой технике. Давайте далее рассмотрим виды усилителей.
Инвертирующий усилитель
Рассмотрим схему простого инвертирующего усилителя:
а) падение напряжения на резисторе R2 равно Uвых,
б) падение напряжения на резисторе R1 равно Uвх.
Uвых/R2 = -Uвх/R1, или коэффициент усиления по напряжению = Uвых/Uвх = R2/R1.
Для того чтобы понять, как работает обратная связь, представим себе, что на вход подан некоторый уровень напряжения, скажем 1 В. Для конкретизации допустим, что резистор R1 имеет сопротивление 10 кОм, а резистор R2 — 100 кОм. Теперь представим себе, что напряжение на выходе решило выйти из повиновения и стало равно 0 В.
Что произойдет? Резисторы R1 и R2 образуют делитель напряжения, с помощью которого потенциал инвертирующего входа поддерживается равным 0,91 В. Операционный усилитель фиксирует рассогласование по входам, и напряжение на его выходе начинает уменьшаться.
Изменение продолжается до тех пор, пока выходное напряжение не достигнет значения -10 В, в этот момент потенциалы входов ОУ станут одинаковыми и равными потенциалу земли.
Аналогично, если напряжение на выходе начнет уменьшаться и дальше и станет более отрицательным, чем -10 В, то потенциал на инвертирующем входе станет ниже потенциала земли, в результате выходное напряжение начнет расти.
Недостаток этой схемы состоит в том, что она обладает малым входным импедансом, особенно для усилителей с большим коэффициентом усиления по напряжению (при замкнутой цепи ОС), в которых резистор R1, как правило, бывает небольшим. Этот недостаток устраняет схема, представленная ниже, на рис. 4.
Неинвертирующий усилитель. Усилитель постоянного тока
Рассмотрим схему на рис. 4. Анализ ее крайне прост: UA = Uвх. Напряжение UA снимается с делителя напряжения: UA = Uвых R1 / (R1 + R2). Если UA = Uвх, то коэффициент усиления = Uвых / Uвх = 1 + R2 / R1. Это неинвертирующий усилитель.
В приближении, которым мы воспользуемся, входной импеданс этого усилителя бесконечен (для ОУ типа 411 он составляет 1012 Ом и больше, для ОУ на биполярных транзисторах обычно превышает 108 Ом). Выходной импеданс, как и в предыдущем случае, равен долям ома.
Если, как в случае с инвертирующим усилителем, мы внимательно рассмотрим поведение схемы при изменении напряжения на входах, то увидим, что она работает, как обещано.
Усилитель переменного тока
Схема выше также представляет собой усилитель постоянного тока. Если источник сигнала и усилитель связаны между собой по переменному току, то для входного тока (очень небольшого по величине) нужно предусмотреть заземление, как показано на рис. 5. Для представленных на схеме величин компонентов коэффициент усиления по напряжению равен 10, а точке -3 дБ соответствует частота 16 Гц.
Усилитель переменного тока. Если усиливаются только сигналы переменного тока, то можно уменьшить коэффициент усиления для сигналов постоянного тока до единицы, особенно если усилитель обладает большим коэффициентом усиления по напряжению. Это позволяет уменьшить влияние всегда существующего конечного «приведенного ко входу напряжения сдвига».
Для схемы, представленной на рис. 6, точке -3 дБ соответствует частота 17 Гц; на этой частоте импеданс конденсатора равен 2,0 кОм. Обратите внимание, что конденсатор должен быть большим.
Если для построения усилителя переменного тока использовать неинвертирующий усилитель с большим усилением, то конденсатор может оказаться чрезмерно большим. В этом случае лучше обойтись без конденсатора и настроить напряжение сдвига так, чтобы оно было равно нулю.
Можно воспользоваться другим методом — увеличить сопротивления резисторов R1 и R2 и использовать T-образную схему делителя.
Несмотря на высокий входной импеданс, к которому всегда стремятся разработчики, схеме неинвертирующего усилителя не всегда отдают предпочтение перед схемой инвертирующего усилителя. Как мы увидим в дальнейшем, инвертирующий усилитель не предъявляет столь высоких требований к ОУ и, следовательно, обладает несколько лучшими характеристиками.
Кроме того, благодаря мнимому заземлению удобно комбинировать сигналы без их взаимного влияния друг на друга.
И наконец, если рассматриваемая схема подключена к выходу (стабильному) другого ОУ, то величина входного импеданса для вас безразлична — это может быть 10 кОм или бесконечность, так как в любом случае предыдущий каскад будет выполнять свои функции по отношению к последующему.
Повторитель
На рис. 7 представлен повторитель, подобный эммитерному, на основе операционного усилителя.
Он представляет собой не что иное, как неинвертирующий усилитель, в котором сопротивление резистора R1 равно бесконечности, а сопротивление резистора R2 — нулю (коэффициент усиления = 1).
Существуют специальные операционные усилители, предназначенные для использования только в качестве повторителей, они обладают улучшенными характеристиками (в основном более высоким быстродействием), примером такого операционного усилителя является схема типа LM310 или OPA633, а также схемы упрощенного типа, например схема типа TL068 (она выпускается в транзисторном корпусе с тремя выводами).
Усилитель с единичным коэффициентом усиления называют иногда буфером, так как он обладает изолирующими свойствами (большим входным импедансом и малым выходным).
Основные предостережения при работе с ОУ
1. Правила справедливы для любого операционного усилителя при условии, что он находится в активном режиме, т.е. его входы и выходы не перегружены.
Например, если подать на вход усилителя чересчур большой сигнал, то это приведет к тому, что выходной сигнал будет срезаться вблизи уровня UКК или UЭЭ. В то время когда напряжение на выходе оказывается фиксированным на уровне напряжения среза, напряжение на входах не может не изменяться.
Размах напряжения на выходе операционного усилителя не может быть больше диапазона напряжения питания (обычно размах меньше диапазона питания на 2 В, хотя в некоторых ОУ размах выходного напряжения ограничен одним или другим напряжением питания). Аналогичное ограничение накладывается на выходной диапазон устойчивости источника тока на основе операционного усилителя.
Например, в источнике тока с плавающей нагрузкой максимальное падение напряжения на нагрузке при «нормальном» направлении тока (направление тока совпадает с направлением приложенного напряжения) составляет UКК — Uвх, а при обратном направлении тока (нагрузка в таком случае может быть довольно странной, например, она может содержать переполюсованные батареи для получения прямого тока заряда или может быть индуктивной и работать с токами, меняющими направление) -Uвх — UЭЭ.
2. Обратная связь должна быть отрицательной. Это означает (помимо всего прочего), что нельзя путать инвертирующий и неинвертирующий входы.
3. В схеме операционного усилителя обязательно должна быть предусмотрена цепь обратной связи по постоянному току, в противном случае операционный усилитель обязательно попадет в режим насыщения.
4. Многие операционные усилители имеют довольно малое предельно допустимое дифференциальное входное напряжение.
Максимальная разность напряжений между инвертирующим и неинвертирующим входами может быть ограничена величиной 5 В для любой полярности напряжения.
Если пренебречь этим условием, то возникнут большие входные токи, которые приведут к ухудшению характеристик или даже к разрушению операционного усилителя.
Понятие «обратная связь» (ОС) относится к числу распространенных, оно давно вышло за рамки узкой области техники и употребляется сейчас в широком смысле.
В системах управления обратная связь используется для сравнения выходного сигнала с заданным значением и выполнения соответствующей коррекции.
В качестве «системы» может выступать что угодно, например процесс управления движущимся по дороге автомобилем — за выходными данными (положением машиты и ее скоростью) следит водитель, который сравнивает их с ожидаемыми значениями и соответственно корректирует входные данные (с помощью руля, переключателя скоростей, тормоза). В усилительной схеме выходной сигнал должен быть кратен входному, поэтому в усилителе с обратной связью входной сигнал сравнивается с определенной частью выходного сигнала.
Всё об обратной связи
Отрицательная обратная связь — это процесс передачи выходного сигнала обратно на вход, при котором погашается часть входного сигнала. Может показаться, что это глупая затея, которая приведет лишь к уменьшению коэффициента усиления. Именно такой отзыв получил Гарольд С.
Блэк, который в 1928 г. попытался запатентовать отрицательную обратную связь. «К нашему изопрелению отнеслись так же, как к вечному двигателю» (журнал IEEE Spectrum за декабрь 1977 г.).
Действительно, отрицательная обратная связь уменьшает коэффициент усиления, но при этом она улучшает другие параметры схемы, например устраняет искажения и нелинейность, сглаживает частотную характеристику (приводит ее в соответствие с нужной характеристикой), делает поведение схемы предсказуемым.
Чем глубже отрицательная обратная связь, тем меньше внешние характеристики усилителя зависят от характеристик усилителя с разомкнутой обратной связью (без ОС), и в конечном счете оказывается, что они зависят только от свойств самой схемы ОС.
Операционные усилители обычно используют в режиме глубокой обратной связи, а коэффициент усиления по напряжению в разомкнутой петле ОС (без ОС) достигает в этих схемах миллиона.
Цепь ОС может быть частотно-зависимой, тогда коэффициент усиления будет определенным образом зависеть от частоты (примером может служить предусилитель звуковых частот в проигрывателе со стандартом RIAA); если же цепь ОС является амплитудно-зависимой, то усилитель обладает нелинейной характеристикой (распространенным примером такой схемы служит логарифмический усилитель, в котором в цепи ОС используется логарифмическая зависимость напряжения UБЭ от тока IК в диоде или транзисторе). Обратную связь можно использовать для формирования источника тока (выходной импеданс близок к бесконечности) или источника напряжения (выходной импеданс близок к нулю), с ее помощью можно получить очень большое или очень малое входное сопротивление. Вообще говоря, тот параметр, по которому вводится обратная связь, с ее помощью улучшается. Например, если для обратной связи использовать сигнал, пропорциональный выходному току, то получим хороший источник тока.
Обратная связь может быть и положительной; ее используют, например в генераторах. Как ни странно, она не столь полезна, как отрицательная ОС.
Скорее она связана с неприятностями, так как в схеме с отрицательной ОС на высокой частоте могут возникать достаточно большие сдвиги по фазе, приводящие к возникновению положительной ОС и нежелательным автоколебаниям.
Для того чтобы эти явления возникли, не нужно прикладывать большие усилия, а вот для предотвращения нежелательных автоколебаний прибегают к методам коррекции.
Операционные усилители
В большинстве случаев, рассматривая схемы с обратной связью, мы будем иметь дело с операционными усилителями. Операционный усилитель (ОУ) — это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления и несимметричным входом.
Прообразом ОУ может служить классический дифференциальный усилитель с двумя входами и несимметричным выходом; правда, следует отметить, что реальные операционные усилители обладают значительно более высокими коэффициентами усиления (обычно порядка 105 — 106) и меньшими выходными импедансами, а также допускают изменение выходного сигнала почти в полном диапазоне питающего напряжения (обычно используют расщепленные источники питания ±15 В).
Символы «+» и «-» не означают, что на одном входе потенциал всегда должен быть более положительным, чем на другом; эти символы просто указывают относительную фазу выходного сигнала (это важно, если в схеме используется отрицательная ОС). Во избежание путаницы лучше называть входы «инвертирующий» и «неинвертирующий», а не вход «плюс» и вход «минус».
На схемах часто не показывают подключение источников питания к ОУ и вывод, предназначенный для заземления. Операционные усилители обладают колоссальным коэффициентом усиления по напряжению и никогда (за редким исключением) не используются без обратной связи. Можно сказать, что операционные усилители созданы для работы с обратной связью.
Коэффициент усиления схемы без обратной связи так велик, что при наличии замкнутой петли ОС характеристики усилителя зависят только от схемы обратной связи. Конечно, при более подробном изучении должно оказаться, что такое обобщенное заключение справедливо не всегда.
Начнем мы с того, что просто рассмотрим, как работает операционный усилитель, а затем по мере необходимости будем изучать его более тщательно.
Промышленность выпускает буквально сотни типов операционных усилителей, которые обладают различными преимуществами друг перед другом.
Повсеместное распространение получила очень хорошая схема типа LF411 (или просто «411»), представленная на рынок фирмой National Semiconductor.
Как и все операционные усилители, она представляет собой крошечный элемент, размещенный в миниатюрном корпусе с двухрядным расположением выводов мини-DIP.
Эта схема недорога и удобна в обращении; промышленность выпускает улучшенный вариант этой схемы (LF411A), а также элемент, размещенный в миниатюрном корпусе и содержащий два независимых операционных усилителя (схема типа LF412, которую называют также «сдвоенный» операционный усилитель). Рекомендуем вам схему LF411 в качестве хорошей начальной ступени в разработке электронных схем.
Схема типа 411 — это кристалл кремния, содержащий 24 транзистора (21 биполярный транзистор, 3 полевых транзистора, 11 резисторов и 1 конденсатор). На рис. 2 показано соединение с выводами корпуса.
Точка на крышке корпуса и выемка на его торце служат для обозначения точки отсчета при нумерации выводов. В большинстве корпусов электронных схем нумерация выводов осуществляется в направлении против часовой стрелки со стороны крышки корпуса. Выводы «установка нуля» (или «баланс», «регулировка») служат для устранения небольшой асимметрии, возможной в операционном усилителе.
Важные правила
Сейчас мы познакомимся с важнейшими правилами, которые определяют поведение операционного усилителя, охваченного петлей обратной связи. Они справедливы почти для всех случаев жизни.
Во-первых, операционный усилитель обладает таким большим коэффициентом усиления по напряжению, что изменение напряжения между входами на несколько долей милливольта вызывает изменение выходного напряжения в пределах его полного диапазона, поэтому не будем рассматривать это небольшое напряжение, а сформулируем правило I:
I. Выход операционного усилителя стремится к тому, чтобы разность напряжений между его входами была равна нулю.
Во-вторых, операционный усилитель потребляет очень небольшой входной ток (ОУ типа LF411 потребляет 0,2 нА; ОУ со входами на полевых транзисторах — порядка пикоампер); не вдаваясь в более глубокие подробности, сформулируем правило II:
II. Входы операционного усилителя ток не потребляют.
Здесь необходимо дать пояснение: правило I не означает, что операционный усилитель действительно изменяет напряжение на своих входах. Это невозможно. (Это было бы не совместимо с правилом II.
) Операционный усилитель «оценивает» состояние входов и с помощью внешней схемы ОС передает напряжение с выхода на вход, так что в результате разность напряжений между входами становится равной нулю (если это возможно).
Эти правила создают достаточную основу для рассмотрения схем на операционных усилителях.
- Цветовая маркировка диодов
- Распределитель сигнала с антенны на TDA8725T.
- Зарубежные аналоги отечественных микросхем
Подробнее…
Этот распределитель позволяет с одной антенны вести сразу два приёма программ телевидения. К первому выходу подключен главный телевизор, а ко второму второстепенный. Со второго выхода изображение также может быть записано или показано в виде вставленной картинки. Коэффициент усиления 3,5-7dB. Подробнее…
При конструировании какой нибудь схемы или ремонте уже существующих у радиолюбителей часто возникает необходимость замены отечественной микросхемы на её полный или функциональный зарубежный аналог.Ниже, в таблице представлено почти 3000 зарубежных аналогов отечественных цифровых и аналоговых микросхем. Подробнее…
Источник: http://www.MasterVintik.ru/sxemy-vklyucheniya-operacionnyx-usilitelej/
Схемы включения операционных усилителей
Прошлая статья открыла цикл статей про строительные кирпичики современной аналоговой электроники – операционные усилители. Было дано определение ОУ и некоторые параметры, также приведена классификация операционных усилителей. Данная статья раскроет такое понятие как идеальный операционный усилитель, и будут приведены основные схемы включения операционного усилителя.
Идеальный операционный усилитель и его свойства
Так как наш мир не является идеальным, так и идеальных операционных усилителей не существует. Однако параметры современных ОУ находятся на достаточно высоком уровне, поэтому анализ схем с идеальными ОУ даёт результаты, очень близкие к реальным усилителям.
Для понимания работы схем с операционными усилителями вводится ряд допущений, которые приводят реальные операционные усилители к идеальным усилителям. Таких допущений всего пять:
- Ток, протекающий через входы ОУ, принимается равным нулю.
- Коэффициент усиления ОУ принимается бесконечно большим, то есть выходное напряжение усилителя может достичь любых значений, однако в реальность ограничено напряжением питания.
- Разность напряжений между входами идеального ОУ равна нулю, то есть если один из выводов соединён с землёй, то и второй вывод имеет такой же потенциал. Отсюда также следует, что входное сопротивление идеального усилителя бесконечно.
- Выходное сопротивление идеального ОУ равно нулю.
- Амплитудно-частотная характеристика идеального ОУ является плоской, то есть коэффициент усиления не зависит от частоты входного сигнала.
Близость параметров реального операционного усилителя к идеальным определяет точность, с которой может работать данный ОУ, а также выяснить ценность конкретного операционного усилителя, быстро и правильно сделать выбор подходящего ОУ.
Исходя из вышеописанных допущений, появляется возможность проанализировать и вывести соотношения для основных схем включения операционного усилителя.
Основные схемы включения операционного усилителя
Как указывалось в предыдущей статье, операционные усилители работают только с обратными связями, от вида которой зависит, работает ли операционный усилитель в линейном режиме или в режиме насыщения.
Обратная связь с выхода ОУ на его инвертирующий вход обычно приводит к работе ОУ в линейном режиме, а обратная связь с выхода ОУ на его неинвертирующий вход или работа без обратной связи приводит к насыщению усилителя.
Неинвертирующий усилитель
Неинвертирующий усилитель характеризуется тем, что входной сигнал поступает на неинвертирующий вход операционного усилителя. Данная схема включения изображена ниже
Схема включения неинвертирующего усилителя.
Работа данной схемы объясняется следующим образом, с учётом характеристик идеального ОУ. Сигнала поступает на усилитель с бесконечным входным сопротивлением, а напряжение на неинвертирующем входе имеет такое же значение, как и на инвертирующем входе. Ток на выходе операционного усилителя создает на резисторе R2 напряжение, равное входному напряжению.
Таким образом, основные параметры данной схемы описываются следующим соотношением
Отсюда выводится соотношение для коэффициента усиления неинвертирующего усилителя
Таким образом, можно сделать вывод, что на коэффициент усиления влияют только номиналы пассивных компонентов.
Необходимо отметить особый случай, когда сопротивление резистора R2 намного больше R1 (R2 >> R1), тогда коэффициент усиления будет стремиться к единице.
В этом случае схема неинвертирующего усилителя превращается в аналоговый буфер или операционный повторитель с единичным коэффициентом передачи, очень большим входным сопротивлением и практически нулевым выходным сопротивлением. Что обеспечивает эффективную развязку входа и выхода.
Инвертирующий усилитель
Инвертирующий усилитель характеризуется тем, что неинвертирующий вход операционного усилителя заземлён (то есть подключен к общему выводу питания). В идеальном ОУ разность напряжений между входами усилителя равна нулю. Поэтому цепь обратной связи должна обеспечивать напряжение на инвертирующем входе также равное нулю. Схема инвертирующего усилителя изображена ниже
Схема инвертирующего усилителя.
Работа схемы объясняется следующим образом. Ток протекающий через инвертирующий вывод в идеальном ОУ равен нулю, поэтому токи протекающие через резисторы R1 и R2 равны между собой и противоположны по направлению, тогда основное соотношение будет иметь вид
Тогда коэффициент усиление данной схемы будет равен
Знак минус в данной формуле указывает на то, что сигнал на выходе схемы инвертирован по отношению к входному сигналу.
Интегратор
Интегратор позволяет реализовать схему, в которой изменение выходного напряжения пропорционально входному сигналу. Схема простейшего интегратора на ОУ показана ниже
Интегратор на операционном усилителе.
Данная схема реализует операцию интегрирования над входным сигналом. Я уже рассматривал схемы интегрирования различных сигналов при помощи интегрирующих RC и RL цепочек.
Интегратор реализует аналогичное изменение входного сигнала, однако он имеет ряд преимуществ по сравнению с интегрирующими цепочками.
Во-первых, RC и RL цепочки значительно ослабляют входной сигнал, а во-вторых, имеют высокое выходное сопротивление.
Таким образом, основные расчётные соотношения интегратора аналогичны интегрирующим RC и RL цепочкам, а выходное напряжение составит
Интеграторы нашли широкое применение во многих аналоговых устройствах, таких как активные фильтры и системы автоматического регулирования
Дифференциатор
Дифференциатор по своему действию противоположен работе интегратора, то есть выходной сигнал пропорционален скорости изменения входного сигнала. Схема простейшего дифференциатора показана ниже
Дифференциатор на операционном усилителе.
Дифференциатор реализует операцию дифференцирование над входным сигналом и аналогичен действию дифференцирующих RC и RL цепочек, кроме того имеет лучшие параметры по сравнению с RC и RL цепочками: практически не ослабляет входной сигнал и обладает значительно меньшим выходным сопротивлением. Основные расчётные соотношения и реакция на различные импульсы аналогична дифференцирующим цепочкам.
Выходное напряжение составит
Логарифмирующий преобразователь
Одной из схем на операционном усилителе, которые нашли применение, является логарифмирующий преобразователь. В данном схеме используется свойство диода или биполярного транзистора. Схема простейшего логарифмического преобразователя представлена ниже
Логарифмирующий преобразователь.
Данная схема находит применение, прежде всего в качестве компрессора сигналов для увеличения динамического диапазона, а так же для выполнения математических функций.
Рассмотрим принцип работы логарифмического преобразователя. Как известно ток, протекающий через диод, описывается следующим выражением
где IO – обратный ток диода, е – число е, основание натурального логарифма, e ≈ 2,72, q – заряд электрона, U – напряжение на диоде, k – постоянная Больцмана,
T – температура в градусах Кельвина.
При расчётах можно принимать IO ≈ 10-9 А, kT/q = 25 мВ. Таким образом, входной ток данной схемы составит
тогда выходное напряжение
Простейший логарифмический преобразователь практически не используется, так как имеет ряд серьёзных недостатков:
- Высокая чувствительность к температуре.
- Диод не обеспечивает достаточной точности преобразования, так как зависимость между падением напряжения и током диода не совсем логарифмическая.
Вследствие этого вместо диодов применяют транзисторы в диодном включении или с заземлённой базой.
Экспоненциальный преобразователь
Схема экспоненциального преобразователь получается из логарифмического преобразователя путём перемены места диода и резистора в схеме. А работа такой схемы так же как и логарифмического преобразователя основана на логарифмической зависимости между падение напряжения на диоде и током протекающим через диод. Схема экспоненциального преобразователя показана ниже
Экспоненциальный преобразователь.
Работа схемы описывается известными выражениями
Таким образом, выходное напряжение составит
Также как и логарифмический преобразователь, простейший экспоненциальный преобразователь с диодом на входе применяют редко, вследствие вышеописанных причин, поэтому вместо диодов на входе используют биполярные транзисторы в диодном включении или с общей базой.
Схемы включения операционных усилителей, описанные выше, не являются исчерпывающими, а лишь только призваны дать основные понятия. Более подробно схемы включения операционных усилителей я рассмотрю в следующих статьях. Всем удачи.
Теория это хорошо, но теория без практики – это просто сотрясание воздуха. Перейдя по ссылке всё это можно сделать своими руками
Скажи спасибо автору нажми на кнопку социальной сети
Источник: http://www.electronicsblog.ru/nachinayushhim/sxemy-vklyucheniya-operacionnyr-usilitelej.html
Унч и звукотехника
Как много в этой аббревиатуре для сердца радиолюбителя слилось. Каждый, кто когда-нибудь занимался радиотехникой и электроникой, собирал различные усилители низкой частоты. Простые и сложные, маломощные и мощные.
Сейчас, с развитием интегральных микросхем, стало вообще всё намного проще. Усилители не содержат каких-то уникальных радиодеталей. Одна микросхема, которая, собственно, и представляет собой уже готовый усилитель мощности низкой частоты, и схема, практически, собрана.
Как правило, выходная мощность таких усилителей и качество воспроизведения на высоте. А если прикупить головку динамическую прямого излучения Ватт так на 1500 – 2000 и встроить в корпус с фазоинвертором, выполненный по рассчитанным размерам, то вообще замечательно.
Получится сабвуфер не хуже покупного. В большинстве случаев даже лучше.
Чистота и качество воспроизведения постоянно совершенствуются. Основные термины в данном разделе:
Бел (Б) – логарифмическая единица, соответствующая (при частоте 1000 Гц) десятикратному изменению силы звука. Логарифмическая единица, соответствующая 1/10 бела, называется децибелом (дБ).
Одному дБ соответствует изменение звукового давления в 1,12 раза.
Частота звуковых колебаний воспринимается на слух как высота тона. Самый низкий предел, воспринимаемый человеком, 20 Гц, а самый высокий – 20000 Гц.
Тембр – окраска звука, определяемая количеством, частотой и интенсивностью обертонов.
Уровень звукового давления – отношение данного звукового давления p к нулевому уровню p0, выраженное в дБ. Вычисляется как N=20 lg(p/p0).
Болевой порог – звуковое давление, которое вызывает болевое ощущение на коже. Уровень равен 120 дБ.
В радиолюбительской практике принято делить УНЧ на обычные и высокого качества (Hi-Fi класса). Максимальная выходная мощность всех звуковых усилителей определяется по простой формуле: Pвых=U2/Rн. Т.е.
замеряете напряжение на выходе УНЧ (обязательно под нагрузкой), возводите в квадрат и делите на сопротивление нагрузки (обычно сопротивление динамика 4-8 Ом). Можно ещё упомянуть о предварительном усилении.
К усилителям мощности обязательно нужны такие каскады, чтобы напряжение на его входе было достаточным.
Бывают ещё различные по сложности усилительные каскады. Однотактные, двухтактные, трансформаторные и бестрансформаторные, мостовые схемы включения усилительных элементов. Одна из возможных схем двухтактного трансформаторного каскада усилителя звуковой частоты приведена ниже. Номинальная выходная мощность 4 Вт, максимальная – 6 Вт.
Но такие, я думаю, уже никто не будет собирать. Слишком трудоёмко наматывать трансформатор, плюс ко всему нужно найти подходящий магнитопровод.
Приведу ещё пример двухтактного бестрансформаторного каскада УНЧ. Выходная мощность порядка 10 Вт.
У нас в наличии имеется более 850 схем УНЧ на интегральных микросхемах. По мере необходимости будем выкладывать их на сайт, особенно самые лучшие, на наш взгляд. Если Вам нужен какой-то усилитель и Вы не можете найти его схему, то пишите, пожалуйста, в комментариях или в форме обратной связи. Мы обязательно поможем.
Ниже приведены ссылки на различные материалы по данной теме.
Особо отметим, что среди них есть полностью опубликованные с полным описанием схемы, входящих радиоэлементов, различных настроек и замеров основных параметров (например, силы тока и напряжения) на разных участках цепи и между элементами.
Также есть с кратким описанием, содержащие ссылку на скачивание всего документа в одном архиве, где, в свою очередь, содержится уже полное описание конструкции, печатной платы и прочее. Архивы имеют расширение *.rar (распаковать можно, например, программой WinRAR версии 2.
9 и выше) и доступны для скачивания. Примечание: эта мера введена из-за того, что многие запакованные материалы являются целыми пособиями. Подразумевается, что Вам будет удобнее скачать на жесткий диск и просматривать уже локально, нежели листать страницу за страницей, расходуя трафик и время.
Источник: http://xn--80a3afg4cq.xn--p1ai/unch
Операционные усилители. Виды и принцип действия. Питание
Операционные усилители являются одними из основных компонентов в современных аналоговых электронных устройствах. Благодаря простоте расчетов и отличным параметрам, операционные усилители легки в применении. Их также называют дифференциальными усилителями, так как они способны усилить разность входных напряжений.
Особенно популярно использование операционных усилителей в звуковой технике, для усиления звучания музыкальных колонок.
Обозначение на схемах
Из корпуса усилителя обычно выходят пять выводов, из которых два вывода – входы, один – выход, остальные два – питание.
Принцип действия
Существуют два правила, помогающие понять принцип действия операционного усилителя:
- Выход операционного усилителя стремится к нулевой разности напряжений на входах.
- Входы усилителя не расходуют ток.
Первый вход обозначен «+», он называется неинвертирующим. Второй вход обозначен знаком «–», считается инвертирующим.
Входы усилителя имеют высокое сопротивление, называемое импедансом. Это позволяет расходовать ток на входах в несколько наноампер. На входе происходит оценка величины напряжений. В зависимости от этой оценки усилитель выдает на выход усиленный сигнал.
Большое значение имеет коэффициент усиления, который иногда достигает миллиона. Это означает, что если на вход подать хотя бы 1 милливольт, то на выходе напряжение будет равно величине напряжения источника питания усилителя. Поэтому операционники не применяют без обратной связи.
Входы усилителя действуют по следующему принципу: если напряжение на неинвертирующем входе будет выше напряжения инвертирующего входа, то на выходе окажется наибольшее положительное напряжение. При обратной ситуации на выходе будет наибольшее отрицательное значение.
Отрицательное и положительное напряжение на выходе операционного усилителя возможно из-за использования источника питания, обладающего расщепленным двуполярным напряжением.
Питание операционного усилителя
Если взять пальчиковую батарейку, то у нее два полюса: положительный и отрицательный. Если отрицательный полюс считать за нулевую точку отсчета, то положительный полюс покажет +1,5 В. Это видно по подключенному мультиметру.
Взять два элемента и подключить их последовательно, то получается следующая картина.
Если за нулевую точку принять отрицательный полюс нижней батарейки, а напряжение измерять на положительном полюсе верхней батарейки, то прибор покажет +10 вольта.
Если за ноль принять среднюю точку между батарейками, то получается источник двуполярного напряжения, так как имеется напряжение положительной и отрицательной полярности, равной соответственно +5 вольта и -5 вольта.
Существуют простые схемы блоков с расщепленным питанием, использующиеся в конструкциях радиолюбителей.
Питание на схему подается от бытовой сети. Трансформатор понижает ток до 30 вольт. Вторичная обмотка в середине имеет ответвление, с помощью которого на выходе получается +15 В и -15 В выпрямленного напряжения.
Разновидности
Существует несколько разных схем операционных усилителей, которые стоит рассмотреть подробно.
Инвертирующий усилитель
Такая схема является основной. Особенностью этой схемы является то, что операционники характеризуются кроме усиления, еще и изменением фазы. Буква «k» обозначает параметр усиления. На графике изображено влияние усилителя в данной схеме.
Синий цвет отображает входной сигнал, а красный цвет – выходной сигнал. Коэффициент усиления в этом случае равен: k = 2. Амплитуда сигнала на выходе в 2 раза больше, сигнала на входе. Выходной сигнал усилителя перевернут, отсюда и его название. Инвертирующие операционные усилители имеют простую схему:
Такие операционные усилители стали популярными из-за своей простой конструкции. Для вычисления усиления применяют формулу:
Отсюда видно, что усиление операционника не зависит от сопротивления R3, поэтому можно обойтись без него. Здесь он применяется для защиты.
Неинвертирующие операционные усилители
Эта схема подобна предыдущей, отличием является отсутствие инверсии (перевернутости) сигнала. Это означает сохранение фазы сигнала. На графике изображен усиленный сигнал.
Коэффициент усиления неинвертирующего усилителя также равен: k = 2. На вход подается сигнал в форме синусоиды, на выходе изменилась только ее амплитуда.
Эта схема не менее простая, чем предыдущая, в ней имеется два сопротивления. На входе сигнал подается на плюсовой вывод. Для расчета коэффициента усиления требуется использовать формулу:
Из нее видно, что коэффициент усиления не бывает меньше единицы, так как сигнал не подавляется.
Схема вычитания
Эта схема дает возможность создания разности двух сигналов на входе, которые могут быть усилены. На графике показан принцип действия дифференциальной схемы.
Такую схему усилителя еще называют схемой вычитания.
Она имеет более сложную конструкцию, в отличие от рассмотренных ранее схем. Для расчета выходного напряжения пользуются формулой:
Левая часть выражения (R3/R1) определяет коэффициент усиления, а правая часть (Ua – Ub) является разностью напряжений.
Схема сложения
Такую схему называют интегрированным усилителем. Она противоположна схеме вычитания. Особенностью ее является возможность обработки больше двух сигналов. На таком принципе действуют все звуковые микшеры.
Эта схема показывает возможность суммирования нескольких сигналов. Для расчета напряжения применяется формула:
Схема интегратора
Если в схему добавить конденсатор в обратную связь, то получится интегратор. Это еще одно устройство, в котором используются операционные усилители.
Схема интегратора подобна инвертирующему усилителю, с добавлением емкости в обратную связь. Это приводит к зависимости работы системы от частоты сигнала на входе.
Интегратор характеризуется интересной особенностью перехода между сигналами: сначала прямоугольный сигнал преобразуется в треугольный, далее он переходит в синусоидальный. Расчет коэффициента усиление проводится по формуле:
В этой формуле переменная ω = 2πf повышается с возрастанием частоты, следовательно, чем больше частота, тем коэффициент усиления меньше. Поэтому интегратор может действовать в качестве активного фильтра низких частот.
Схема дифференциатора
В этой схеме получается обратная ситуация. На входе подключена емкость, а в обратной связи подключено сопротивление.
Судя по названию схемы, ее принцип работы заключается в разнице. Чем больше скорость изменения сигнала, тем больше величина коэффициента усиления. Этот параметр дает возможность создавать активные фильтры для высокой частоты.
Коэффициент усиления для дифференциатора рассчитывается по формуле:
Это выражение обратно выражению интегратора. Коэффициент усиления повышается в отрицательную сторону с возрастанием частоты.
Аналоговый компаратор
Устройство компаратора сравнивает два значения напряжения и переводит сигнал в низкое или высокое значение на выходе, в зависимости от состояния напряжения. Эта система включает в себя цифровую и аналоговую электронику.
Особенностью этой системы является отсутствие в основной версии обратной связи. Это означает, что сопротивление петли очень велико.
На плюсовой вход подается сигнал, а на минусовой вход подается основное напряжение, которое задается потенциометром. Ввиду отсутствия обратной связи коэффициент усиления стремится к бесконечности.
При превышении напряжения на входе величины основного опорного напряжения, на выходе получается наибольшее напряжение, которое равно положительному питающему напряжению. Если на входе напряжение будет меньше опорного, то выходным значением будет отрицательное напряжение, равное напряжению источника питания.
В схеме аналогового компаратора имеется значительный недостаток. При приближении значений напряжения на двух входах друг к другу, возможно частое изменение выходного напряжения, что обычно приводит к пропускам и сбоям в работе реле. Это может привести к нарушению работы оборудования. Для решения этой задачи применяют схему с гистерезисом.
Аналоговый компаратор с гистерезисом
На рисунке показана схема действия схемы с гистерезисом, которая аналогична предыдущей схеме. Отличием является то, что выключение и включение не происходит при одном напряжении.
Направление стрелок на графике указывает направление перемещения гистерезиса. При рассмотрении графика слева направо видно, что переход к более низкому уровню осуществляется при напряжении Uph, а двигаясь справа налево, напряжение на выходе достигнет высшего уровня при напряжении Upl.
Такой принцип действия приводит к тому, что при равных значениях входных напряжений, состояние на выходе не изменяется, так как для изменения требуется разница напряжений на существенную величину.
Такая работа схемы приводит к некоторой инертности системы, однако это более безопасно, в отличие от схемы без гистерезиса. Обычно такой принцип действия применяется в нагревательных приборах с наличием термостата: плиты, утюги и т.д. На рисунке изображена схема усилителя с гистерезисом.
Напряжения рассчитываются по следующим зависимостям:
Повторители напряжения
Операционные усилители часто применяются в схемах повторителей напряжения. Основной особенностью этих устройств является то, что в них не происходит усиления или ослабления сигнала, то есть, коэффициент усиления в этом случае равен единице. Такая особенность связана с тем, что петля обратной связи имеет сопротивление, равное нулю.
Такие системы повторителей напряжения чаще всего используются в качестве буфера для увеличения нагрузочного тока и работоспособности устройства. Так как входной ток приближен к нулю, а ток на выходе зависит от вида усилителя, то есть возможность разгрузки слабых источников сигнала, например, некоторых датчиков.
Похожие темы:
Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/operatsionnye-usiliteli/
Шаг за шагом
Принципиальная и монтажная схемы усилителя НЧ, который будет использован во всех наших приемниках, приведена на чертеже 12. В усилителе имеется два каскада: усилитель напряжения на лампе 6Ж3П или 6Ж1П (Л3) и усилитель мощности на лампе 6П1П (Л4).
Входные гнезда усилителя обозначены на схеме буквами Т1 и Т2. Это обозначение перешло из схемы детекторного приемника, где имелись два гнезда для подключения телефонов. При воспроизведении грамзаписей к гнездам Т1, Т2 подключается звукосниматель (Зв), а при радиоприеме – нагрузка детектора.
Одно из гнезд (Т2) сразу же соединяется с общим («земляным») проводом, а второе с помощью экранированного провода подключается к регулятору громкости – потенциометру.
Экранировка проводов и деталей в сеточной цепи первой лампы необходима для того, чтобы защитить их от электромагнитных полей, которые создает переменный ток (частота 50 гц), проходя по осветительным проводам, по обмоткам силового трансформатора и т. п. Эти электромагнитные поля наводят в соединительных проводах усилителя переменные токи с частотой 50 гц, подобно тому как радиоволны наводят в приемной антенне токи высокой частоты (рис. 103).
В результате «наводок» в различных цепях усилителя появляются переменные напряжения с частотой 50 гц и величиной в несколько микровольт, а иногда и в несколько десятков милливольт.
Конечно, если такое напряжение появится в анодной цепи выходной лампы, то мы этого даже не заметим, так как напряжение полезного сигнала на анодной нагрузке выходного каскада обычно лежит в пределах от нескольких вольт (слабый сигнал) до 100-150 в.
По сравнению с этими величинами напряжение «наводок» настолько мало, что практически совершенно не влияет на работу усилителя.
Другое дело, если «наводки» появляются в цепях с низким уровнем сигнала и, в частности, в сеточной цепи первой лампы. Здесь напряжение полезного сигнала очень мало (именно поэтому мы и ввели усилитель напряжения) – оно обычно лежит в пределах от нескольких милливольт при слабом сигнале до 100-200 мв.
Совершенно ясно, что при слабых сигналах, а особенно во время паузы напряжение «наводок» уже становится сравнимым с самим полезным сигналом, а иногда даже может стать больше его. Попав на сетку первой лампы, «наводки» усиливаются вместе с полезным сигналом и создают в громкоговорителе очень сильный фон переменного тока.
Основной путь для борьбы с «наводками» – это экранирование.
Давайте попробуем между источником «наводок» и цепью, которую нужно защитить, поставить экран – тонкую металлическую пластинку (или сетку), соединенную с земляным проводом.
В этом случае электромагнитные волны будут наводить ток в самом экране, а за ним образуется своего рода тень – участок, где «наводок» практически не будет (рис. 104).
Если заранее неизвестно, с какой стороны появятся наводки, то защищаемую цепь окружают экранами со всех сторон.
Широкое распространение нашли цилиндрические алюминиевые экраны, внутрь которых помещают контурные катушки и другие детали; у переменных сопротивлений роль экрана выполняет металлический корпус; для того чтобы защитить от наводок обычные провода, их помещают в так называемый экранирующий чулок – сплетенную из тонких проволочек гибкую трубку. Если под руками нет такого чулка, то поверх изоляции защищаемого провода нужно намотать спираль из любого медного провода, например ПЭ-0,1 или ПЭ-0,5. Эта спираль будет играть роль экрана.
Любой экран, будь то экранирующий цилиндр, корпус переменного сопротивления или самодельный экранирующий чулок, обязательно должен быть заземлен, причем у самодельного экрана для проводов нужно заземлять оба конца спирали. На схемах детали, заключенные в экран, обводят пунктирной линией; экранированный провод на схемах пропускают сквозь заземленное кольцо.
Интересно отметить, что «наводками», создающими фон, можно пользоваться для проверки усилителей НЧ.
Прикоснувшись куском провода, отверткой или просто пальцем к какому-нибудь участку входной цепи первой лампы, например к ее управляющей сетке, мы фактически подадим на вход усилителя наведенное напряжение с частотой 50 гц, и если усилитель исправен, то громкоговоритель воспроизведет сильный фон (рис. 105).
Фон появится, но, конечно, очень и очень слабый, и при прикосновении к сетке выходной лампы. Совершенно очевидно, что при проверке батарейных приемников в условиях, где нет сети переменного тока, никакого фона обнаружить не удастся.
Если вы внимательно посмотрите на принципиальную схему нашего усилителя НЧ, то обнаружите, что почти все его элементы вам уже знакомы (листы 145, 146).
Возьмем, например, регулятор громкости – это обычный делитель напряжения – потенциометр, с помощью которого можно подавать на сетку лампы ту или иную часть напряжения входного сигнала.
Сопротивление R12 – это обычная «утечка» в цепи управляющей сетки, а конденсатор С27 предохраняет сеточную цепь от постоянного напряжения. Этот конденсатор введен в схему «авансом», так как он понадобится лишь тогда, когда усилитель будет подключен к приемнику.
На сопротивлении R15 создается постоянное напряжение, которое служит отрицательным смещением на сетку лампы Л3.
Конденсатор С30 проводит переменную составляющую анодного тока лампы помимо сопротивления R15.
В первом каскаде можно подать смещение на сетку и другим путем – исключить из схемы детали R15 и С30, заземлить катод лампы, а в ее сеточную цепь на место R12 включить сопротивление в 10 Мом (лист 138).
Сопротивление R14 – это не что иное, как гасящее сопротивление в цепи экранной сетки. Для переменного тока экранная сетка заземлена через конденсатор С29.
Анодной нагрузкой лампы Л3 является сопротивление R13. С анода лампы через переходной конденсатор С28 усиленный сигнал подается на сетку выходного каскада Л4, Здесь так же, как и в первом каскаде, R17 – сопротивление утечки, а R18C33 – цепь автоматического смещения.
В анодную цепь лампы включен выходной трансформатор Тр2, ко вторичной обмотке которого подключен громкоговоритель. Цепочка R16C31 – это простейший регулятор тембра.
Если под руками нет конденсатора на 0,025 мкф (С31) с достаточно высоким рабочим напряжением (не менее 500 в), то регулятор тембра можно включить и в сеточную цепь лампы Л4, уменьшив при этом емкость конденсатора С31 в десять – двадцать раз (уточняется опытным путем).
Единственной незнакомой нам пока деталью является конденсатор С32. Назначение его – шунтировать выходной трансформатор для токов высокой частоты и таким образом препятствовать паразитному самовозбуждению усилителя.
Выходной трансформатор Тр2 выполнен на сердечнике сечением 2,56 см2 – пластины Ш-16, толщина набора 16 мм. Его первичная обмотка содержит 2500 витков провода ПЭ-0,1, а вторичная – 81 виток провода ПЭ-0,51.
Сердечник выходного трансформатора, так же как и сердечник дросселя фильтра, собирается «встык» (лист 115).
В качестве Тр2 можно использовать выходные трансформаторы от приемников «Рекорд-53», «АРЗ-53», «Огонек» и многих других.
Заканчивая разбор нашей первой ламповой схемы, хочется обратить внимание на возможную замену деталей усилителя.
Начинающие радиолюбители часто задают такие вопросы: «Можно ли заменить сопротивление 50 ком сопротивлением 47 ком?» или «Что будет, если вместо конденсатора емкостью 10 мкф применить конденсатор на 20 мкф?» и т. п.
Для начала заметим, что отклонение данных той или иной детали на 5-10% в большую или меньшую сторону особого значения не имеет и в большинстве случаев остается незамеченным. Более того, данные многих деталей можно изменить в полтора – три раза, а усилитель по-прежнему будет работать. А теперь поговорим конкретно о деталях нашего усилителя.
Прежде всего несколько слов о допустимой мощности сопротивлений и рабочем напряжении конденсаторов. Величины эти можно изменять как угодно, но… только в сторону увеличения: если нужен конденсатор с рабочим напряжением 20 в (например, С33), то можно применить конденсатор на 30, 50, 100 в и т.д.
; вместо сопротивления, рассчитанного на мощность 0,25 вт, можно применить сопротивление на 0,5, 1, 2 вт и т. д. В то же время применять сопротивления с меньшей мощностью или конденсаторы с меньшим рабочим напряжением, чем это указано на схеме, ни в коем случае нельзя.
Мощность всех сопротивлений условно показана на схеме (см. условные обозначения, лист 36). Рабочее напряжение указывают только для электролитических конденсаторов. Конденсаторы бумажные, слюдяные, керамические и др.
, как правило, могут работать при напряжениях 250 в и более, а этого вполне достаточно почти для всех элементов схемы.
Возможность изменения данных той или иной детали зависит от того, в какой цепи стоит эта деталь и как она влияет на работу усилителя. Так, например, при увеличении или уменьшении сопротивления R12 и на 20-50% никаких особых изменений в работе усилителя не произойдет. Другое дело, если мы сильно изменим величину сопротивления R15.
При этом сразу же изменится отрицательное смещение на управляющую сетку – чем больше R15, тем больше отрицательное смещение. Изменится также анодный ток, падение напряжения на R13, а значит, и напряжение на аноде лампы. Все это может привести к ухудшению усилительных свойств каскада и появлению нелинейных искажений.
К уменьшению коэффициента усиления каскада приводит резкое уменьшение (а в ряде случаев и увеличение) сопротивления анодной нагрузки R13 или снижение напряжения на экранной сетке путем увеличения R14.
Емкость конденсаторов С29 и С30 и С33 можно увеличивать безболезненно, так как при этом лишь облегчается путь для переменных токов, которые проходят через эти конденсаторы.
Одним словом, данные, приведенные на принципиальных схемах, нельзя считать незыблемыми (рис. 106). В случае необходимости их можно изменять, и иногда весьма значительно. Но всякий раз при изменении данных какой-либо детали нужно думать о последствиях, к которым это изменение может привести.
Несколько слов о налаживании усилителя. Если усилитель собран в полном соответствии с принципиальной схемой и если в нем использованы исправные детали, то этот усилитель сразу же будет нормально работать без всякого налаживания. Две основные неприятности, которые вы можете обнаружить при включении усилителя, – это самовозбуждение и фон переменного тока.
Самовозбуждение возникает за счет паразитных обратных связей, и поэтому, обнаружив его, нужно прежде всего попробовать изменить монтаж, разнести входные и выходные цепи всего усилителя и отдельных каскадов.
Если это не даст эффекта, то попробуйте увеличить емкость конденсатора С32, включить в сеточную цепь Л4 сопротивление на 10-50 ком (непосредственно между сеточным лепестком и проводом, идущим к сетке от R17) и, наконец, отключить конденсатор С30 или С32.
При отключении этих конденсаторов в усилителе возникает отрицательная связь, с которой мы подробнее познакомимся позже. В качестве крайней меры можно снизить усиление первого каскада, уменьшив в два-три раза сопротивление R18 и в полтора-два раза сопротивление R14.
В случае сильного фона нужно прежде всего выяснить его причину. Для этого можно соединить кратчайшим путем сетку первой лампы с ее катодом: если фон не прекратится, то его источником, по-видимому, является выпрямитель.
Наиболее часто источником фона являются наводки.
В этом случае нужно прежде всего проверить, хорошо ли соединены с земляным проводом экраны проводов, ось и корпус переменного сопротивления, сердечники выходного и силового трансформаторов, корпус громкоговорителя, один из проводов накала ламп.
Иногда источником фона может оказаться даже небольшой проводничок во входной цепи усилителя, не помещенный в экран. В заключение заметим, что устранение самовозбуждения и фона, как, впрочем, и другие работы по наладке радиоаппаратуры, требуют большого внимания, терпения и аккуратности.
Построенный нами усилитель можно сразу же использовать для воспроизведения грамзаписей. Что же касается подключения усилителя к детекторному приемнику, то с этим вопросом мы познакомимся в следующем разделе.
Читать дальше – Приемник прямого усиления
Источник: http://oldradiogid.ru/usilitel-nizkoj-chastoty/prakticheskaya-sxema-unch/