Программатор для pic-контроллеров

Универсальный программатор PIC-контроллеров

Источник: http://www.qrz.ru/schemes/contribute/constr/extra-pic/

Extra-PIC программатор PIC микроконтроллеров – рабочий вариант!

24.07.2012

В статье рассматривается программатор Extra-PIC, данные о котором получены из открытых источников (DOC Rev.1.03.00). Программатор рабочий, если все собрать как указано ниже то все работает при первом включении. Лично я взял эту схему с сайта Тимофея Носова

Список поддерживаемых микросхем, при использовании с программой IC-PROG v1.

05D:
PIC-контроллеры фирмы Microchip: PIC12C508, PIC12C508A, PIC12C509, PIC12C509A, PIC12CE518, PIC12CE519, PIC12C671, PIC12C672, PIC12CE673, PIC12CE674, PIC12F629, PIC12F675, PIC16C433, PIC16C61, PIC16C62A, PIC16C62B, PIC16C63, PIC16C63A, PIC16C64A, PIC16C65A, PIC16C65B, PIC16C66, PIC16C67, PIC16C71, PIC16C72, PIC16C72A, PIC16C73A, PIC16C73B, PIC16C74A, PIC16C74B, PIC16C76, PIC16C77, PIC16F72, PIC16F73, PIC16F74, PIC16F76, PIC16F77, PIC16C84, PIC16F83, PIC16F84, PIC16F84A, PIC16F88, PIC16C505*, PIC16C620, PIC16C620A, PIC16C621, PIC16C621A, PIC16C622, PIC16C622A, PIC16CE623, PIC16CE624, PIC16CE625, PIC16F627, PIC16F628, PIC16F628A, PIC16F630*, PIC16F648A, PIC16F676*, PIC16C710, PIC16C711, PIC16C712, PIC16C715, PIC16C716, PIC16C717, PIC16C745, PIC16C765, PIC16C770*, PIC16C771*, PIC16C773, PIC16C774, PIC16C781*, PIC16C782*, PIC16F818, PIC16F819, PIC16F870, PIC16F871, PIC16F872, PIC16F873, PIC16F873A, PIC16F874, PIC16F874A, PIC16F876, PIC16F876A, PIC16F877, PIC16F877A, PIC16C923*, PIC16C924*, PIC18F242, PIC18F248, PIC18F252, PIC18F258, PIC18F442, PIC18F448, PIC18F452, PIC18F458, PIC18F1220, PIC18F1320, PIC18F2320, PIC18F4320, PIC18F4539, PIC18F6620*, PIC18F6720*, PIC18F8620*, PIC18F8720*

Примечание: микроконтроллеры, помеченные звездочкой (*) подключаются к программатору только через разъем ICSP.

Последовательная память EEPROM I2C (IIC): X24C01, 24C01A, 24C02, 24C04, 24C08, 24C16, 24C32, 24C64, AT24C128, M24C128, AT24C256, M24C256, AT24C512.

Схема программатора. На стороне программатора используется разъем DB9 типа «гнездо» («мама», «дырки»).

Очень часто ошибаются и ставят «вилку» («папу», «штырьки»), т.е. такое же как и на стороне ПК!

Расположение выводов ICSP у PIC-контроллеров.

Внимание! Материал только для общей справки. Обязательно убедитесь, что указанное расположение выводов соответствует выбранному вами микроконтроллеру. Для этого, обратитесь к Data Sheets и Programming Specifications на соответствующий микроконтроллер (обычно всё совпадает).

Пояснение: Вывод PGM рекомендуется «притягивать» к общему проводу (GND), через резистор, номиналом 1К.
Для справки: микроконтроллеры с 14-контактным корпусом вставляется частью ножек в соответствующую 8-контактную панель.

Рисунок печатной платы (облегченный вариант).

Полный вариант:

Далее мы приводим монтажную схему (хотя по рисунку печатной платы и так всё понятно)

Фото готовой платы:

Пошаговая инструкция или «Как прошить PIC-контроллер»

1. Соберите программатор Extra-PIC, отмойте растворителем или спиртом с зубной щеткой, просушите феном. Осмотрите на просвет на предмет волосковых замыканий и непропаев.

Подготовьте блок питания на напряжение не менее 15В и не более 18 вольт.

РАСПАЯЙТЕ УДЛЕНИТЕЛЬНЫЙ ШНУР мама-папа для COM-порта (не путать с нуль-модемными и кабелями для модемов; прозвоните шнур — первая вилка, должен идти к первому гнезду и т.д.

; нумерация вилок и гнезд  нарисована на самом разъеме 1-1, 2-2, 3-3 и т. д до 9-9.). Обязательно сделайте все самостоятельно. У меня была проблема именно с кабелем, а я грешил на программатор =)

2. Скачайте программу IC-PROG с нашего сайта или с сайта разработчиков. 3. Распакуйте программу в отдельный каталог. В образовавшемся каталоге должны находиться три файла: icprog.exe – файл оболочки программатора; icprog.sys – драйвер, необходимый для работы под Windows NT, 2000, XP. Этот файл всегда должен находиться в каталоге программы; icprog.chm – файл помощи (Help file).

4. Настройте программу.

По данной статье нам поступило большое количество писем с вопросами, замечаниями, благодарностями. Всем авторам выражаем большую признательность за теплые слова и бесценные материалы. Если вы решите самостоятельно повторить программатор EXTRA-PIC, мы надеемся, что эта статья поможет вам убедиться в правильности решения и отбросить все сомнения.

В статье рассматривается программатор EXTRA-PIC, данные о котором получены из открытых источников на www.5v.ru (DOC Rev.1.03.00). Список поддерживаемых микросхем, при использовании с программой IC-PROG v1.05D:

PIC-контроллеры фирмы Microchip: PIC12C508, PIC12C508A, PIC12C509, PIC12C509A, PIC12CE518, PIC12CE519, PIC12C671, PIC12C672, PIC12CE673, PIC12CE674, PIC12F629, PIC12F675, PIC16C433, PIC16C61, PIC16C62A, PIC16C62B, PIC16C63, PIC16C63A, PIC16C64A, PIC16C65A, PIC16C65B, PIC16C66, PIC16C67, PIC16C71, PIC16C72, PIC16C72A, PIC16C73A, PIC16C73B, PIC16C74A, PIC16C74B, PIC16C76, PIC16C77, PIC16F72, PIC16F73, PIC16F74, PIC16F76, PIC16F77, PIC16C84, PIC16F83, PIC16F84, PIC16F84A, PIC16F88, PIC16C505*, PIC16C620, PIC16C620A, PIC16C621, PIC16C621A, PIC16C622, PIC16C622A, PIC16CE623, PIC16CE624, PIC16CE625, PIC16F627, PIC16F628, PIC16F628A, PIC16F630*, PIC16F648A, PIC16F676*, PIC16C710, PIC16C711, PIC16C712, PIC16C715, PIC16C716, PIC16C717, PIC16C745, PIC16C765, PIC16C770*, PIC16C771*, PIC16C773, PIC16C774, PIC16C781*, PIC16C782*, PIC16F818, PIC16F819, PIC16F870, PIC16F871, PIC16F872, PIC16F873, PIC16F873A, PIC16F874, PIC16F874A, PIC16F876, PIC16F876A, PIC16F877, PIC16F877A, PIC16C923*, PIC16C924*, PIC18F242, PIC18F248, PIC18F252, PIC18F258, PIC18F442, PIC18F448, PIC18F452, PIC18F458, PIC18F1220, PIC18F1320, PIC18F2320, PIC18F4320, PIC18F4539, PIC18F6620*, PIC18F6720*, PIC18F8620*, PIC18F8720*

Примечание: микроконтроллеры, помеченные звездочкой (*) подключаются к программатору только через разъем ICSP.

Последовательная память EEPROM I2C (IIC): X24C01, 24C01A, 24C02, 24C04, 24C08, 24C16, 24C32, 24C64, AT24C128, M24C128, AT24C256, M24C256, AT24C512.

Схема программатора:

Расположение выводов ICSP у PIC-контроллеров.

Внимание! Материал только для общей справки. Обязательно убедитесь, что указанное расположение выводов соответствует выбранному вами микроконтроллеру. Для этого, обратитесь к Data Sheets и Programming Specifications на соответствующий микроконтроллер.

Пояснение: Вывод PGM рекомендуется “притягивать” к общему проводу (GND), через резистор номиналом 1К. 
Для справки: микроконтроллеры с 14-контактным корпусом вставляется частью ножек в соответствующую 8-контактную панель.

Рисунок печатной платы (облегченный вариант) (скачать в Sprint Layout).

Рисунок печатной платы (полная версия) (скачать в Sprint Layout).

Фотография собранного программатора (облегченный вариант)

Далее мы приводим альтернативные рисунки печатных плат программатора EXTRA-PIC (авторство установить не удалось)

Вариант 1 (скачать в Sprint Layout).

Вариант 2 (скачать в Sprint Layout).

Отдельного внимания заслуживает печатная плата разработанная нашим другом markomar2005 (at) yandex.ru , которая разведена под “маркер”.

Вариант от MARKO (скачать в Sprint Layout).

Считаем необходимым разместить здесь фотографии программаторов наших благодарных читателей. Если вы достигли результатов, не стесняйтесь – высылайте фотографии, мы с радостью их здесь разместим.

Автор il86md (at) mail.ru

Автор sound65 (at) rambler.ru он же greeze (at) inbox.ru

Альтернативный вариант (+ сменные модули) от markomar2005 (at) yandex.ru

Вариант от alex_vw (at) mail.ru

Пошаговая инструкция или “Как прошить PIC-контроллер”

Введение. Данная инструкция составлена на примере прошивки микросхемы PIC16F876A для сборки универсального многоканального АЦП.

  1. Соберите программатор (в т.ч. распаяйте удлинительный шнур мама-папа для COM-порта и подготовьте блок питания на напряжение не менее 15В).
  2. Скачайте программу IC-PROG отсюда или с http://www.ic-prog.com/ (733 кб).
  3. Распакуйте программу в отдельный каталог. В образовавшемся каталоге должны находиться три файла:
  • icprog.exe – файл оболочки программатора;
  • icprog.sys – драйвер, необходимый для работы под Windows NT, 2000, XP. Этот файл всегда должен находиться в каталоге программы;
  • icprog.chm – файл помощи (Help file).

4. Настройте программу.

Для Windows95, 98, ME Для Windows NT, 2000, XP
(Только для Windows XP): Правой кнопкой щёлкните на файле icprog.exe.”Свойства” >> вкладка “Совместимость” >>Установите “галочку” на “Запустить программу в режиме совместимости с:” >> выберите “Windows 2000“.
  1. Запустите файл icprog.exe.
  2. Выберите “Settings” >> “Options” >> вкладку “Language” >> установите язык “Russian” и нажмите “Ok“.
  3. Согласитесь с утверждением “You need to restart IC-Prog now” (нажмите “Ok“).
  4. Оболочка программатора перезапустится.
Настройки” >> “Программатор“.Проверьте установки, выберите используемый вами COM-порт, нажмите “Ok“.
Далее, “Настройки” >> “Опции” >> выберите вкладку “Общие” >> установите “галочку” на пункте “Вкл. NT/2000/XP драйвер” >> Нажмите “Ok” >>если драйвер до этого не был установлен в системе, в появившемся окне “Confirm” нажмите “Ok“. Драйвер установится, и оболочка программатора перезапустится.
Для очень “быстрых” компьютеров возможно потребуется увеличить параметр “Задержка Ввода/Вывода“. Увеличение этого параметра увеличивает надёжность программирования, однако, увеличивается и время, затрачиваемое на программирование микросхемы.
Настройки” >> “Опции” >> выберите вкладку “I2C” >> установите “галочки” на пунктах:”Включить MCLR как VCC” и “Включить запись блоками“. Нажмите “Ok“.
Программа готова к работе.
  1. Установите микросхему в панель программатора, соблюдая положение ключа.
  2. Подключите шнур удлинителя, включите питание.
  3. Запустите программу IC-PROG.
  4. В выпадающем списке выберите контроллер PIC16F876A.
  5. Если у вас нет файла с прошивкой – подготовьте его:
    • откройте стандартную программу “Блокнот”;
    • вставьте в документ текст прошивки (со странички УМ-АЦП1);
    • сохраните под любым именем, например, prohivka.txt (расширение *.txt или *.hex).
  6. Далее в IC-PROG Файл >> Открыть файл (! не путать с Открыть файл данных) >> найти наш файл с прошивкой (если у нас файл с расширением *.txt , то в типе файлов выберите Any File *.*). Окошко “Программного кода” должно заполнится информацией.
  7. Нажимаем кнопку “Программировать микросхему” –   (загорается красный светодиод).
  8. Ожидаем завершения программирования (около 30 сек.).
  9. Для контроля нажимаем “Сравнить микросхему с буфером” – .

Вот и всё. Я тоже думал, что это что-то невероятное. Попробуйте – и у вас получится.

Если будут какие-то вопросы – пишите

Редакция 20 ноября 2007 г.

Для Windows95, 98, ME Для Windows NT, 2000, XP
(Только для Windows XP):Правой кнопкой щёлкните на файле icprog.exe.«Свойства» >> вкладка «Совместимость» >>Установите «галочку» на«Запустить программу в режиме совместимости с:» >>выберите «Windows 2000«.
Запустите файл icprog.exe.Выберите «Settings» >> «Options» >> вкладку «Language» >> установите язык «Russian» и нажмите «Ok«.Согласитесь с утверждением «You need to restart IC-Prog now» (нажмите «Ok«).Оболочка программатора перезапустится.
«Настройки» >> «Программатор«.Проверьте установки, выберите используемый вами COM-порт, нажмите «Ok«.
Далее, «Настройки» >> «Опции» >> выберите вкладку «Общие» >> установите «галочку» на пункте«Вкл. NT/2000/XP драйвер» >> Нажмите «Ok» >>если драйвер до этого не был установлен в системе, в появившемся окне «Confirm» нажмите «Ok«. Драйвер установится, и оболочка программатора перезапустится.
Примечание:Для очень «быстрых» компьютеров возможно потребуется увеличить параметр «Задержка Ввода/Вывода«. Увеличение этого параметра увеличивает надёжность программирования, однако, увеличивается и время, затрачиваемое на программирование микросхемы.
«Настройки» >> «Опции» >> выберите вкладку «I2C» >> установите «галочки» на пунктах:«Включить MCLR как VCC» и «Включить запись блоками«. Нажмите «Ok«.
Программа готова к работе.
Читайте также:  Фэйзер для электрогитары из доступных деталей

5. Установите микросхему в панель программатора, соблюдая положение ключа. 6. Подключите шнур удлинителя, включите питание. 7. Запустите программу IC-Prog.

8. В выпадающем списке выберите контроллер PIC16F876A.

9. Если у вас нет файла с прошивкой – подготовьте его: – откройте стандартную программу «Блокнот»; – вставьте в документ текст прошивки (со странички УМ-АЦП1); – сохраните под любым именем, например, prohivka.txt (расширение *.txt или *.hex).

10. Далее в IC-PROG Файл >> Открыть файл (! не путать с Открыть файл данных) >> найти наш файл с прошивкой (если у нас файл с расширением *.txt , то в типе файлов выберите Any File *.*). Окошко «Программного кода» должно заполнится информацией.

11 Нажимаем кнопку «Программировать микросхему»  –(загорается красный светодиод).

12. Ожидаем завершения программирования (около 30 сек.).

13. Для контроля нажимаем «Сравнить микросхему с буфером» – .

Вот и всё. Я тоже думал, что это что-то невероятное. Попробуйте – и у вас получится.

Видео работы программатора:

Файлы:
Печатные платы (облегченная и полная версии)
IC-Prog и альтернативная программа WinPic800
DOC Rev.1.03.00 (первоисточник)
Методика тестирования программатора EXTRAPIC
Внутрисхемное программирование PIC-контроллеров (ICSP)
Плата программатора для ICSP на базе Extra-PIC (без комметариев)

Обсудить статью на форуме

Extra-PIC программатор PIC микроконтроллеров — рабочий вариант! Ссылка на основную публикацию

Источник: http://www.radioingener.ru/extra-pic-programmator-pic-mikrokontrollerov-rabochij-variant/

USB программатор PIC контроллеров

USB программатор PIC контроллеров – 3.8 out of 5 based on 11 votes

Фотогорафии программатора предоставленны Ансаганом Хасеновым

    В данной статье рассматриваются практические аспекты сборки несложного USB программатора PIC микроконтроллеров, который имеет оригинальное название GTP-USB (Grabador TodoPic-USB).

Существует старшая модель этого программатора GTP-USB plus который поддерживает и AVR микроконтроллеры, но предлагается за деньги. Однозначных сведений по схемам и прошивкам к GTP-USB plus обнаружить не удалось.

Если у вас есть информация по GTP-USB plus, прошу связаться со мной. 

Итак, GTP-USB. Данный программатор собран на микроконтроллере PIC18F2550. GTP-USB нельзя рекомендовать начинающим, т.к. для сборки требуется прошить PIC18F2550 и для этого требуется программатор. Замкнутый круг, но не настолько замкнутый, чтобы это стало препятствием для сборки. 

Из оригинальной схемы GTP-USB исключены элементы индикации для упрощения рисунка печатной платы. Основной индикатор – это монитор вашего компьютера, на котором из программы WinPic800 версий 3.55G или 3.55B вы можете наблюдать за процессом программирования. 

Облегченная схема GTP-USB.

Сигнальные линии Vpp1 и Vpp2 определены под микроконтроллеры в корпусах с различным количеством выводов. Линия Vpp/ICSP определена для внутрисхемного программирования. Остальные линии типовые. 

Программатор собран на односторонней печатной плате.

Адаптер можно безболезненно подключать к любому другому программатору PIC-микроконтроллеров, что, безусловно, удобно. 

После сборки производим первое включение. По факту первого подключения GTP-USB к ПК появляется сообщение

Затем следует традиционный запрос на установку драйвера. Драйвер расположен в управляющей программе WinPic800 по примерному пути WinPic800 3.55GGTP-USBDriver GTP-USB.

Соглашаемся с предупреждениями и продолжаем установку. 

Обращаю внимание. Данная схема программатора и прошивка к нему проверены на практике и работают с управляющей программой WinPic800 версий 3.55G и 3.55B. Более старшие версии, например, 3.63C не работают с этим программатором. Производим настройку управляющей программы: в меню Settings – Hardware (Установки – Оборудование) выбираем GTP-USB-#0 или GTP-USB-#F1 и нажимаем Apply (Применить).

Нажимаем на панели кнопку  и производим тест оборудования. В результате успешного тестирования появляется сообщение (см. ниже), которое не может нас не радовать.

Данный программатор отлично работал со следующими контроллерами (из того что было в наличии): PIC12F675, PIC16F84A, PIC16F628A, PIC16F874A, PIC16F876A, PIC18F252. Тест контроллеров, запись и чтение данных – выполнены успешно. Скорость работы впечатляет. Чтение 1-2 сек. Запись 3-5 сек. Глюков не замечено. Часть зашитых МК протестировано в железе – работает.

Источник

Обсудить на форуме.

Источник: http://shemu.ru/cifrovueshemu/389-usb-programmator-pic

Программатор PIC микроконтроллеров

На днях возникла необходимость запрограммировать PIC микроконтроллер. В интернете большое обилие схем программаторов, есть простые и навороченные универсальные.

Собирать простейший для прошивки одного конкретного микроконтроллера не захотел, так как в планах прошивать разные. Собирать универсальные, с множеством панелек под разные пики тоже не захотел.

Есть простые в сборке, компактные и универсальные программаторы, но они в себе содержат управляющий микроконтроллер, который тоже требует программирования. Поискав в интернете на зарубежных сайтах я нашёл то, что хотел собрать.

Это простой программатор, но в тоже время довольно универсальный, поддерживающий практически весь ряд PIC контроллеров. Нашёл его у японцев на сайте http://feng3.cool.ne.jp. Multi PIC Programmer 5 Ver.2.

Схема его проста

Он способен запрограммировать от 8 до 40 контактных микроконтроллеров.  Программатор имеет режим программирования пониженным напряжением, что полезно для программирования некоторых микроконтроллеров, а так же их разлочки после неудачного программирования.

Поддерживаемые и проверенные микроконтроллеры:

  • PIC12C508,PIC12C509
  • PIC12C508A,PIC12C509A
  • PIC12CE518,PIC12CE519
  • PIC12C671,PIC12C672,PIC12CE673,PIC12CE674
  • PIC12F508,PIC12F509 
  • PIC12F629,PIC12F635,PIC12F675,PIC12F683
  • PIC16C505
  • PIC16C61,PIC16C62A,16C62B(3),PIC16C63,PIC16C63A
  • PIC16C64A,PIC16C65A,PIC16C65B,PIC16C66,PIC16C67
  • PIC16C620,PIC16C620A,PIC16C621,PIC16C621A,PIC16C622,PIC16C622A
  • PIC16CE623,PIC16CE624,PIC16C625
  • PIC16F627,PIC16F628
  • PIC16F627A(2),PIC16F628A,PIC16F648A
  • PIC16F630,PIC16F636,PIC16F676,PIC16F684,PIC16F688
  • PIC16C710,PIC16C711,PIC16C715
  • PIC16C712,PIC16C716
  • PICPIC16C71,PIC16C72,PIC16C72A,PIC16C73A,PIC16C73B,PIC16C74A,PIC16C74B,PIC16C76,PIC16C77
  • PIC16F72,PIC16F73,PIC16F74,PIC16F76,PIC16F77
  • PIC16C745,PIC16C765
  • PIC16C717,PIC16C770,PIC16C771
  • PIC16C773,PIC16C774
  • PIC16C781,PIC16C782
  • PIC16C923,PIC16C924
  • PIC16F818,PIC16F819
  • PIC16F83
  • PIC16C84
  • PIC16F84
  • PIC16F84A
  • PIC16F87,PIC16F88
  • PIC16F870,PIC16F871,PIC16F872,PIC16F873,PIC16F874,PIC16F876,PIC16F877
  • PIC16F873A,PIC16F874A,PIC16F876A,PIC16F877A
  • PIC18F1320,PIC18F2320,PIC18F4320
  • PIC18F242,PIC18F252,PIC18F442,PIC18F452
  • PIC18F248,PIC18F258,PIC18F448,PIC18F458
  • PIC18F4539

Для программирования я использую программу IC- Prog, настройки программатора выставляю как JDM programmer.

В программаторе пойдут практически любые транзисторы и диоды. Вместо переключателей на плате я установил перемычки выпаянные из сгоревшей материнсой платы компьютера. Для удобства программирования я спаял удлинитель COM порта, длинной 50см, спаянный без перехлестов, один к одному.

В архиве вложена плата в формате ley и дополнительные материалы автора программатора.

Источник: http://vip-cxema.org/index.php/home/mikrokontrollery/101-

Программатор PIC-контроллеров :

Микроконтроллеры PIC заслужили славу благодаря своей неприхотливости и качеству работы, а также универсальности в использовании. Но что может дать микроконтроллер без возможности записывать новые программы на него? Без программатора это не больше чем кусочек удивительного по форме исполнения железа. Сам программатор PIC может быть двух типов: или самодельный, или заводской.

Различие заводского и самодельного программаторов

В первую очередь отличаются они надежностью и функциональностью, которую предоставляют владельцам микроконтроллеров. Так, если делается самодельный, то он, как правило, рассчитывается только на одну модель PIC-микроконтроллера, тогда как программатор от Microchip предоставляет возможность работы с различными типами, модификациями и моделями микроконтроллеров.

Заводской программатор от Microchip

Самый известный и популярный – простой программатор PIC, который использует множество людей и известный для многих под названием PICkit 2. Его популярность объясняется явными и неявными достоинствами.

Явные достоинства, которые имеет этот USB программатор для PIC, можно перечислять долго, среди них: относительно небольшая стоимость, простота эксплуатации и универсальность относительно всего семейства микроконтроллеров, начиная от 6-выводных и заканчивая 20-выводными.

Использование программатора от Microchip

По его использованию можно найти много обучающих уроков, которые помогут разобраться с всевозможными аспектами использования. Если рассматривать не только программатор PIC, купленный «с рук», а приобретенный у официального представителя, то можно ещё подметить качество поддержки, предоставляемое вместе с ним.

Так, в дополнение идут обучающие материалы по использованию, лицензионные среды разработки, а также демонстрационная плата, которая предназначена для работы с маловыводными микроконтроллерами. Кроме всего этого, присутствуют утилиты, которые сделают работу с механизмом более приятной, помогут отслеживать процесс программирования и отладки работы микроконтроллера.

Также поставляется утилита для стимулирования работы МК.

Другие программаторы

Кроме официального программатора, есть и другие, которые позволяют программировать микроконтроллеры. При их приобретении рассчитывать на дополнительное ПО не приходится, но тем, кому большего и не надо, этого хватает. Довольно явным минусом можно назвать то, что для некоторых программаторов сложно бывает найти необходимое обеспечение, чтобы иметь возможность качественно работать.

Программаторы, собранные вручную

А теперь, пожалуй, самое интересное – программаторы PIC-контроллеров, которые собираются вручную. Этим вариантом пользуются те, у кого нет денег или просто нет желания их тратить.

В случае покупки у официального представителя можно рассчитывать на то, что если устройство окажется некачественным, то его можно вернуть и получить новое взамен.

А при покупке «с рук» или с помощью досок объявлений в случае некачественной пайки или механических повреждений рассчитывать на возмещение расходов и получение качественного программатора не приходится. А теперь перейдём к собранной вручную электронике.

Программатор PIC может быть рассчитан на определённые модели или быть универсальным (для всех или почти всех моделей). Собираются они на микросхемах, которые смогут преобразовать сигналы с порта RS-232 в сигнал, который позволит программировать МК.

Нужно помнить, что, когда собираешь данную кем-то конструкцию, программатор PIC, схема и результат должны подходить один к одному. Даже небольшие отклонения нежелательны.

Это замечание относится к новичкам в электронике, люди с опытом и практикой могут улучшить практически любую схему, если есть куда улучшать.

Отдельно стоит молвить слово и про программный комплекс, которым обеспечивают USB-программатор для PIC, своими рукамисобранный. Дело в том, что собрать сам программатор по одной из множества схем, представленных в мировой сети, – мало. Необходимо ещё и программное обеспечение, которое позволит компьютеру с его помощью прошить микроконтроллер.

В качестве такового довольно часто используются Icprog, WinPic800 и много других программ. Если сам автор схемы программатора не указал ПО, с которым его творение сможет выполнять свою работу, то придется методом перебора узнавать самому. Это же относится и к тем, кто собирает свои собственные схемы.

Можно и самому написать программу для МК, но это уже настоящий высший пилотаж.

Универсальные программаторы, которые подойдут не только к РІС

Если человек увлекается программированием микроконтроллеров, то вряд ли он постоянно будет пользоваться только одним типом.

Для тех, кто не желает покупать отдельно программаторы для различных типов микроконтроллеров, от различных производителей, были разработаны универсальные устройства, которые смогут запрограммировать МК нескольких компаний.

Так как компаний, выпускающих их, довольно много, то стоит избрать пару и рассказать про программаторы для них. Выбор пал на гигантов рынка микроконтроллеров: PIC и AVR.

Универсальный программатор PIC и AVR – это аппаратура, особенность которой заключается в её универсальности и возможности изменять работу благодаря программе, не внося изменений в аппаратную составляющую.

Благодаря этому свойству такие приборы легко работают с МК, которые были выпущены в продажу уже после выхода программатора. Учитывая, что значительным образом архитектура в ближайшее время меняться не будет, они будут пригодны к использованию ещё длительное время.

К дополнительным приятным свойствам заводских программаторов стоит отнести:

  1. Значительные аппаратные ограничения по количеству программируемых микросхем, что позволит программировать не одну, а сразу несколько единиц электроники.
  2. Возможность программирования микроконтроллеров и схем, в основе которых лежат различные технологии (NVRAM, NAND Flash и другие).
  3. Относительно небольшое время программирования. В зависимости от модели программатора и сложности программируемого кода может понадобиться от 20 до 400 секунд.

Особенности практического использования

Отдельно стоит затронуть тему практического использования. Как правило, программаторы подключаются к портам USB, но есть и такие вариации, что работают с помощью тех же проводов, что и винчестер.

И для их использования придется снимать крышку компьютера, перебирать провода, да и сам процесс подключения не очень-то и удобный. Но второй тип является более универсальным и мощным, благодаря ему скорость прошивки больше, нежели при подключении через USB.

Использование второго варианта не всегда представляется таким удобным и комфортным решением, как с USB, ведь до его использования необходимо проделать ряд операций: достать корпус, открыть его, найти необходимый провод.

Про возможные проблемы от перегревания или скачков напряжения при работе с заводскими моделями можно не волноваться, так как у них, как правило, есть специальная защита.

Работа с микроконтроллерами

Что же необходимо для работы всех программаторов с микроконтроллерами? Дело в том, что, хотя сами программаторы и являются самостоятельными схемами, они передают сигналы компьютера в определённой последовательности. И задача относительно того, как компьютеру объяснить, что именно необходимо послать, решается программным обеспечением для программатора.

В свободном доступе находится довольно много различных программ, которые нацелены на работу с программаторами, как самодельными, так и заводскими.

Но если он изготавливается малоизвестным предприятием, был сделан по схеме другого любителя электроники или самим человеком, читающим эти строки, то программного обеспечения можно и не найти.

В таком случае можно использовать перебор всех доступных утилит для программирования, и если ни одна не подошла (при уверенности, что программатор качественно работает), то необходимо или взять/сделать другой программатор PIC, или написать собственную программу, что является весьма высоким пилотажем.

Возможные проблемы

Увы, даже самая идеальная техника не лишена возможных проблем, которые нет-нет, да и возникнут. Для улучшенного понимания необходимо составить список.

Часть из этих проблем можно исправить вручную при детальном осмотре программатора, часть – только проверить при наличии необходимой проверочной аппаратуры.

В таком случае, если программатор PIC-микроконтроллеров заводской, то вряд ли починить представляется возможным. Хотя можно попробовать найти возможные причины сбоев:

  1. Некачественная пайка элементов программатора.
  2. Отсутствие драйверов для работы с устройством.
  3. Повреждения внутри программатора или проводов внутри компьютера/USB.

Эксперименты с микроконтроллерами

Итак, всё есть. Как же начать работу с техникой, как начать прошивать микроконтроллер программатором?

  1. Подключить внешнее питание, присоединить всю аппаратуру.
  2. Первоначально необходима среда, с помощью которой всё будет делаться.
  3. Создать необходимый проект, выбрать конфигурацию микроконтроллера.
  4. Подготовить файл, в котором находится весь необходимый код.
  5. Подключиться к программатору.
  6. Когда всё готово, можно уже прошивать микроконтроллер.

Выше была написана только общая схема, которая позволяет понять, как происходит процесс. Для отдельных сред разработки она может незначительно отличаться, а более детальную информацию о них можно найти в инструкции.

Хочется отдельно написать обращение к тем, кто только начинает пользоваться программаторами. Помните, что, какими бы элементарными ни казались некоторые шаги, всегда необходимо их придерживаться, чтобы техника нормально и адекватно могла работать и выполнять поставленные вами задачи. Успехов в электронике!

Источник: https://www.syl.ru/article/203981/new_programmator-pic-kontrollerov

Программатор PIC-контроллеров “PROGOPIC”

Посидел, подумал, посмотрел какой радиохлам есть в наличии и решил разработать и собрать собственный вариант программатора PIC-контроллеров.

Получилось довольно неплохо и абсолютно бесплатно (всё необходимое было выпаяно со старой материнской платы). Получившийся программатор позволяет успешно программировать контроллеры PIC12, PIC16 через последовательный порт компьютера.

Для работы ему требуется внешнее питание +12..+14 В. Схему и описание смотрите ниже.

Наличие внешнего питания обеспечивает этому программатору следующие преимущества:

1) возможность очень точно задавать требуемое напряжение программирования (важно для некоторых моделей PIC);

2) программатор не перегружает COM-порт и может работать даже с теми портами, напряжение на которых сильно занижено вследствие некоторой прожаренности или которые изначально не соответствуют спецификации RS-232 (на большинстве ноутбуков и вообще на многих современных компьютерах напряжение на COM-порту менее 10 Вольт).

3) программатор может работать с PCI-ными платами расширения COM-портов и с преобразователями интерфейсов USB to COM (у многих из них вообще со стороны COM-порта TTL уровни).

Схема:

Детали и описание работы:

R1, R2, R3=1,5 кОм, D1 — светодиод для индикации питания.
C1, C2 — обвязка стабилизатора, 0,1 и 47 мкФ соответственно.

Основной частью программатора является микросхема GD75232, выпаянная из старой материнской платы. Она занимается развязкой линий порта и преобразованием уровней RS-232 TTL. Остановимся на этой микрухе по-подробнее. Микруха имеет 5 приемников (преобразуют уровни RS232 в TTL) и 3 драйвера (преобразуют TTL в RS232).

Для работы ей требуется аж 3 напряжения: +12В, +5В и -12В. Однако, вся фишка заключается в том, что схемы драйверов и схемы приёмников у этой микрухи абсолютно никак между собой не связаны.

Поэтому смело можно заземлить те ноги, которые отвечают за драйверы (+12В, -12В, входы и выходы драйверов) и использовать только приёмники. Для работы схемы приёмников нам достаточно однополярного питания +5В. Можно использовать любой клон этой микросхемы (всё, что с маркировкой 75232).

Вероятнее всего, можно также использовать микросхемы 75185. Схемы их внутреннего устройства я не нашёл, но, судя по описанию, они с 75232 братья близнецы.

Правильный алгоритм подачи напряжений обеспечивается микросхемой стандартной логики 74HCT00 (2И-НЕ), которых также полно на старых материнках. Один вентиль используется для формирования напряжения питания.

У других вентилей одна нога соединена с выходом, на котором формируется напряжение питания, а на вторую ногу подаётся сигнал Clock или Data. Таким образом вентили начинают пропускать сигналы Clock и Data только после того, как появится питание +5В.

Вместо 74HCT00 можно взять 74ACT00.

Напряжение +12,5 В подаётся на программируемую микросхему постоянно с момента включения программатора. Для питания GD75232 и 74HCT00 используется линейный стабилизатор LS7805. Схема нарисована для стабилизатора в 8-ми ногом корпусе SOIC, но можно взять и обычный 3-х ногий стабилизатор.

Для питания этого программатора от батареек был разработан преобразователь напряжения 4..10В/14В, 100 мА.

Я успешно программирую этим программатором контроллеры PIC12F629, PIC16F628A.

В принципе, этот программатор (в представленном варианте) должен программировать любые контроллеры, для которых подходит алгоритм перевода в режим программирования «Vpp-first» (только надо обратить внимание, где расположены используемые для программирования ноги). Справочные данные о том, какие контроллеры какой алгоритм поддерживают, можно найти здесь.

Плата состоит из двух модулей: на одном реализована схема программатора, а на другом разведены дороги под разные контроллеры.

Скачать печатную плату (DipTrace2.0)

Готовый девайс:

Программы для прошивки контроллеров, можно скачать в разделе “Полезные программы для ПК”. При прошивке выбрать тип программатора JDM.

Поскольку один из моих товарищей сказал, что программатор обязательно должен как-нибудь называться, то (по его же предложению) программатор был назван “PROGOPIC”.

Можно ли этот программатор улучшить? Да конечно можно, но поскольку пока я не работал с контроллерами, которые бы не получилось им запрограммировать, то зачем это нужно. Как только придётся столкнуться с другими контроллерами, появится “PROGOPIC II”, а пока я и этим доволен.

Как сделать свой вариант JDM-программатора для PIC-контроллеров

Слегка модернизированный вариант PROGOPIC (схема чуть посложнее, зато, благодаря встроенному импульсному преобразователю, имеет довольно широкий диапазон напряжения питания + есть возможность программировать микросхемы памяти)

Если лень или некогда собирать — Вы можете заказать недорогой универсальный программатор (PIC, AVR, EEPROM) прямо у нас на сайте

Источник: http://radiohlam.ru/?p=955

Программатор pic-контроллеров Extra-pic

Довольно большую популярность в интернете набирают схемы с использованием микроконтроллеров.

Микроконтроллер – это такая специальная микросхема, которая, по сути своей, является маленьким компьютером, со своими портами ввода-вывода, памятью.

Благодаря микроконтроллером можно создавать весьма функциональные схемы с минимумом пассивных компонентов, например, электронные часы, плееры, различные светодиодные эффекты, устройства автоматизации.

Для того, чтобы микросхема начала исполнять какие-либо функции, нужно её прошить, т.е. загрузить в её память код прошивки. Сделать это можно с помощью специального устройства, называемого программатором. Программатор связывает компьютер, на котором находится файл прошивки с прошиваемым микроконтроллером.

Стоит упомянуть, что существуют микроконтроллеры семейства AVR, например такие, как Atmega8, Attiny13, и серии pic, например PIC12F675, PIC16F676. Pic-серия принадлежит компании Microchip, а AVR компании Atmel, поэтому способы прошивки pic и AVR отличаются.

В этой статье рассмотрим процесс создания программатора Extra-pic, с помощью которого можно прошить микроконтроллер серии pic.
К достоинствам именно этого программатора можно отнести простоту его схемы, надёжность работы, универсальность, ведь поддерживает он все распространённые микроконтроллеры.

На компьютере поддерживается также самыми распространёнными программами для прошивки, такими как Ic-prog, WinPic800, PonyProg, PICPgm.

Схема программатора

Она содержит в себе две микросхемы, импортную MAX232 и отечественную КР1533ЛА3, которую можно заменить на КР155ЛА3. Два транзистора, КТ502, который можно заменить на КТ345, КТ3107 или любой другой маломощный PNP транзистор.

КТ3102 также можно менять, например, на BC457, КТ315. Зелёный светодиод служит индикатором наличия питания, красный загорается во время процесса прошивки микроконтроллера.

Диод 1N4007 служит для защиты схемы от подачи напряжения неправильной полярности.

Материалы

Список необходимых для сборки программатора деталей:

  • Стабилизатор 78L05 – 2 шт.
  • Стабилизатор 78L12 – 1 шт.
  • Светодиод на 3 в. зелёный – 1 шт.
  • Светодиод на 3 в. красный – 1 шт.
  • Диод 1N4007 – 1 шт.
  • Диод 1N4148 – 2 шт.
  • Резистор 0,125 Вт 4,7 кОм – 2 шт.
  • Резистор 0,125 Вт 1 кОм – 6 шт.
  • Конденсатор 10 мкФ 16В – 4 шт.
  • Конденсатор 220 мкФ 25В – 1 шт.
  • Конденсатор 100 нФ – 3 шт.
  • Транзистор КТ3102 – 1 шт.
  • Транзистор КТ502 – 1 шт.
  • Микросхема MAX232 – 1 шт.
  • Микросхема КР1533ЛА3 – 1 шт.
  • Разъём питания – 1 шт
  • Разъём COM порта «мама» — 1 шт.
  • Панелька DIP40 – 1 шт.
  • Панелька DIP8 – 2 шт.
  • Панелька DIP14 – 1 шт.
  • Панелька DIP16 – 1 шт.
  • Панелька DIP18 – 1 шт.
  • Панелька DIP28 – 1 шт.

Кроме того, необходим паяльник и умение им пользоваться.

Изготовление печатной платы

Программатор собирается на печатной плате размерами 100х70 мм. Печатная плата выполняется методом ЛУТ, файл к статье прилагается. Отзеркаливать изображение перед печатью не нужно.

Скачать плату:

Сборка программатора

Первым делом на печатную плату впаиваются перемычки, затем резисторы, диоды. В последнюю очередь нужно впаять панельки и разъёмы питания и СОМ порта.

Т.к. на печатное плате много панелек под прошиваемые микроконтроллеры, а используются у них не все выводы, можно пойти на такую хитрость и вынуть неиспользуемые контакты из панелек. При этом меньше времени уйдёт на пайку и вставить микросхему в такую панельку будет уже куда проще.

Разъём СОМ порта (он называется DB-9) имеет два штырька, которые должны «втыкаться» в плату. Чтобы не сверлить под них лишние отверстия на плате, можно открутить два винтика под бокам разъёма, при этом штырьки отпадут, как и металлическая окантовка разъёма.

После впайки всех деталей плату нужно отмыть от флюса, прозвонить соседние контакты, нет ли замыканий.

Убедиться в том, что в панельках нет микросхем (вынуть нужно в том числе и МАХ232, и КР1533ЛА3), подключить питание. Проверить, присутствует ли напряжение 5 вольт на выходах стабилизаторов.

Если всё хорошо, можно устанавливать микросхемы МАХ232 и КР1533ЛА3, программатор готов к работе. Напряжение питания схемы 15-24 вольта.

Плата программатора содержит 4 панельки для микроконтроллеров и одну для прошивки микросхем памяти. Перед установкой на плату прошиваемого микроконтроллера нужно посмотреть, совпадает ли его распиновка с распиновкой на плате программатора. Программатор можно подключать к СОМ-порту компьютера напрямую, либо же через удлинительный кабель. Успешной сборки!

Источник: https://labuda.blog/43675

Программатор extra pic

Источник: http://el-shema.ru/publ/kontroller/programmator_extra_pic/9-1-0-99

Ссылка на основную публикацию
Adblock
detector
",css:{backgroundColor:"#000",opacity:.6}},container:{block:void 0,tpl:"
"},wrap:void 0,body:void 0,errors:{tpl:"
",autoclose_delay:2e3,ajax_unsuccessful_load:"Error"},openEffect:{type:"fade",speed:400},closeEffect:{type:"fade",speed:400},beforeOpen:n.noop,afterOpen:n.noop,beforeClose:n.noop,afterClose:n.noop,afterLoading:n.noop,afterLoadingOnShow:n.noop,errorLoading:n.noop},o=0,p=n([]),h={isEventOut:function(a,b){var c=!0;return n(a).each(function(){n(b.target).get(0)==n(this).get(0)&&(c=!1),0==n(b.target).closest("HTML",n(this).get(0)).length&&(c=!1)}),c}},q={getParentEl:function(a){var b=n(a);return b.data("arcticmodal")?b:(b=n(a).closest(".arcticmodal-container").data("arcticmodalParentEl"),!!b&&b)},transition:function(a,b,c,d){switch(d=null==d?n.noop:d,c.type){case"fade":"show"==b?a.fadeIn(c.speed,d):a.fadeOut(c.speed,d);break;case"none":"show"==b?a.show():a.hide(),d();}},prepare_body:function(a,b){n(".arcticmodal-close",a.body).unbind("click.arcticmodal").bind("click.arcticmodal",function(){return b.arcticmodal("close"),!1})},init_el:function(d,a){var b=d.data("arcticmodal");if(!b){if(b=a,o++,b.modalID=o,b.overlay.block=n(b.overlay.tpl),b.overlay.block.css(b.overlay.css),b.container.block=n(b.container.tpl),b.body=n(".arcticmodal-container_i2",b.container.block),a.clone?b.body.html(d.clone(!0)):(d.before("
"),b.body.html(d)),q.prepare_body(b,d),b.closeOnOverlayClick&&b.overlay.block.add(b.container.block).click(function(a){h.isEventOut(n(">*",b.body),a)&&d.arcticmodal("close")}),b.container.block.data("arcticmodalParentEl",d),d.data("arcticmodal",b),p=n.merge(p,d),n.proxy(e.show,d)(),"html"==b.type)return d;if(null!=b.ajax.beforeSend){var c=b.ajax.beforeSend;delete b.ajax.beforeSend}if(null!=b.ajax.success){var f=b.ajax.success;delete b.ajax.success}if(null!=b.ajax.error){var g=b.ajax.error;delete b.ajax.error}var j=n.extend(!0,{url:b.url,beforeSend:function(){null==c?b.body.html("
"):c(b,d)},success:function(c){d.trigger("afterLoading"),b.afterLoading(b,d,c),null==f?b.body.html(c):f(b,d,c),q.prepare_body(b,d),d.trigger("afterLoadingOnShow"),b.afterLoadingOnShow(b,d,c)},error:function(){d.trigger("errorLoading"),b.errorLoading(b,d),null==g?(b.body.html(b.errors.tpl),n(".arcticmodal-error",b.body).html(b.errors.ajax_unsuccessful_load),n(".arcticmodal-close",b.body).click(function(){return d.arcticmodal("close"),!1}),b.errors.autoclose_delay&&setTimeout(function(){d.arcticmodal("close")},b.errors.autoclose_delay)):g(b,d)}},b.ajax);b.ajax_request=n.ajax(j),d.data("arcticmodal",b)}},init:function(b){if(b=n.extend(!0,{},a,b),!n.isFunction(this))return this.each(function(){q.init_el(n(this),n.extend(!0,{},b))});if(null==b)return void n.error("jquery.arcticmodal: Uncorrect parameters");if(""==b.type)return void n.error("jquery.arcticmodal: Don't set parameter \"type\"");switch(b.type){case"html":if(""==b.content)return void n.error("jquery.arcticmodal: Don't set parameter \"content\"");var e=b.content;return b.content="",q.init_el(n(e),b);case"ajax":return""==b.url?void n.error("jquery.arcticmodal: Don't set parameter \"url\""):q.init_el(n("
"),b);}}},e={show:function(){var a=q.getParentEl(this);if(!1===a)return void n.error("jquery.arcticmodal: Uncorrect call");var b=a.data("arcticmodal");if(b.overlay.block.hide(),b.container.block.hide(),n("BODY").append(b.overlay.block),n("BODY").append(b.container.block),b.beforeOpen(b,a),a.trigger("beforeOpen"),"hidden"!=b.wrap.css("overflow")){b.wrap.data("arcticmodalOverflow",b.wrap.css("overflow"));var c=b.wrap.outerWidth(!0);b.wrap.css("overflow","hidden");var d=b.wrap.outerWidth(!0);d!=c&&b.wrap.css("marginRight",d-c+"px")}return p.not(a).each(function(){var a=n(this).data("arcticmodal");a.overlay.block.hide()}),q.transition(b.overlay.block,"show",1*")),b.overlay.block.remove(),b.container.block.remove(),a.data("arcticmodal",null),n(".arcticmodal-container").length||(b.wrap.data("arcticmodalOverflow")&&b.wrap.css("overflow",b.wrap.data("arcticmodalOverflow")),b.wrap.css("marginRight",0))}),"ajax"==b.type&&b.ajax_request.abort(),p=p.not(a))})},setDefault:function(b){n.extend(!0,a,b)}};n(function(){a.wrap=n(document.all&&!document.querySelector?"html":"body")}),n(document).bind("keyup.arcticmodal",function(d){var a=p.last();if(a.length){var b=a.data("arcticmodal");b.closeOnEsc&&27===d.keyCode&&a.arcticmodal("close")}}),n.arcticmodal=n.fn.arcticmodal=function(a){return e[a]?e[a].apply(this,Array.prototype.slice.call(arguments,1)):"object"!=typeof a&&a?void n.error("jquery.arcticmodal: Method "+a+" does not exist"):q.init.apply(this,arguments)}}(jQuery)}var debugMode="undefined"!=typeof debugFlatPM&&debugFlatPM,duplicateMode="undefined"!=typeof duplicateFlatPM&&duplicateFlatPM,countMode="undefined"!=typeof countFlatPM&&countFlatPM;document["wri"+"te"]=function(a){let b=document.createElement("div");jQuery(document.currentScript).after(b),flatPM_setHTML(b,a),jQuery(b).contents().unwrap()};function flatPM_sticky(c,d,e=0){function f(){if(null==a){let b=getComputedStyle(g,""),c="";for(let a=0;a=b.top-h?b.top-h{const d=c.split("=");return d[0]===a?decodeURIComponent(d[1]):b},""),c=""==b?void 0:b;return c}function flatPM_testCookie(){let a="test_56445";try{return localStorage.setItem(a,a),localStorage.removeItem(a),!0}catch(a){return!1}}function flatPM_grep(a,b,c){return jQuery.grep(a,(a,d)=>c?d==b:0==(d+1)%b)}function flatPM_random(a,b){return Math.floor(Math.random()*(b-a+1))+a}
");let k=document.querySelector(".flat_pm_modal[data-id-modal=\""+a.ID+"\"]");if(-1===d.indexOf("go"+"oglesyndication")?flatPM_setHTML(k,d):jQuery(k).html(b+d),"px"==a.how.popup.px_s)e.bind(h,()=>{e.scrollTop()>a.how.popup.after&&(e.unbind(h),f.unbind(i),j())}),void 0!==a.how.popup.close_window&&"true"==a.how.popup.close_window&&f.bind(i,()=>{e.unbind(h),f.unbind(i),j()});else{let b=setTimeout(()=>{f.unbind(i),j()},1e3*a.how.popup.after);void 0!==a.how.popup.close_window&&"true"==a.how.popup.close_window&&f.bind(i,()=>{clearTimeout(b),f.unbind(i),j()})}f.on("click",".flat_pm_modal .flat_pm_crs",()=>{jQuery.arcticmodal("close")})}if(void 0!==a.how.outgoing){let b,c="0"==a.how.outgoing.indent?"":" style=\"bottom:"+a.how.outgoing.indent+"px\"",e="true"==a.how.outgoing.cross?"":"",f=jQuery(window),g="scroll.out"+a.ID,h=void 0===flatPM_getCookie("flat_out_"+a.ID+"_mb")||"false"!=flatPM_getCookie("flat_out_"+a.ID+"_mb"),i=document.createElement("div"),j=jQuery("body"),k=()=>{void 0!==a.how.outgoing.cookie&&"false"==a.how.outgoing.cookie&&h&&(jQuery(".flat_pm_out[data-id-out=\""+a.ID+"\"]").addClass("show"),j.on("click",".flat_pm_out[data-id-out=\""+a.ID+"\"] .flat_pm_crs",function(){flatPM_setCookie("flat_out_"+a.ID+"_mb",!1)})),(void 0===a.how.outgoing.cookie||"false"!=a.how.outgoing.cookie)&&jQuery(".flat_pm_out[data-id-out=\""+a.ID+"\"]").addClass("show")};switch(a.how.outgoing.whence){case"1":b="top";break;case"2":b="bottom";break;case"3":b="left";break;case"4":b="right";}jQuery("body > *").eq(0).before("
"+e+"
");let m=document.querySelector(".flat_pm_out[data-id-out=\""+a.ID+"\"]");-1===d.indexOf("go"+"oglesyndication")?flatPM_setHTML(m,d):jQuery(m).html(e+d),"px"==a.how.outgoing.px_s?f.bind(g,()=>{f.scrollTop()>a.how.outgoing.after&&(f.unbind(g),k())}):setTimeout(()=>{k()},1e3*a.how.outgoing.after),j.on("click",".flat_pm_out .flat_pm_crs",function(){jQuery(this).parent().removeClass("show").addClass("closed")})}countMode&&(flat_count["block_"+a.ID]={},flat_count["block_"+a.ID].count=1,flat_count["block_"+a.ID].click=0,flat_count["block_"+a.ID].id=a.ID)}catch(a){console.warn(a)}}function flatPM_start(){let a=flat_pm_arr.length;if(0==a)return flat_pm_arr=[],void jQuery(".flat_pm_start, .flat_pm_end").remove();flat_body=flat_body||jQuery("body"),!flat_counter&&countMode&&(flat_counter=!0,flat_body.on("click","[data-flat-id]",function(){let a=jQuery(this),b=a.attr("data-flat-id");flat_count["block_"+b].click++}),flat_body.on("mouseenter","[data-flat-id] iframe",function(){let a=jQuery(this),b=a.closest("[data-flat-id]").attr("data-flat-id");flat_iframe=b}).on("mouseleave","[data-flat-id] iframe",function(){flat_iframe=-1}),jQuery(window).on("beforeunload",()=>{jQuery.isEmptyObject(flat_count)||jQuery.ajax({async:!1,type:"POST",url:ajaxUrlFlatPM,dataType:"json",data:{action:"flat_pm_ajax",data_me:{method:"flat_pm_block_counter",arr:flat_count}}})}).on("blur",()=>{-1!=flat_iframe&&flat_count["block_"+flat_iframe].click++})),flat_userVars.init();for(let b=0;bflat_userVars.textlen||void 0!==a.chapter_sub&&a.chapter_subflat_userVars.titlelen||void 0!==a.title_sub&&a.title_subc&&cc&&c>d&&(b=flatPM_addDays(b,-1)),b>e||cd||c-1!=flat_userVars.referer.indexOf(a))||void 0!==a.referer.referer_disabled&&-1!=a.referer.referer_disabled.findIndex(a=>-1!=flat_userVars.referer.indexOf(a)))&&(c=!0),c||void 0===a.browser||(void 0===a.browser.browser_enabled||-1!=a.browser.browser_enabled.indexOf(flat_userVars.browser))&&(void 0===a.browser.browser_disabled||-1==a.browser.browser_disabled.indexOf(flat_userVars.browser)))){if(c&&void 0!==a.browser&&void 0!==a.browser.browser_enabled&&-1!=a.browser.browser_enabled.indexOf(flat_userVars.browser)&&(c=!1),!c&&(void 0!==a.geo||void 0!==a.role)&&(""==flat_userVars.ccode||""==flat_userVars.country||""==flat_userVars.city||""==flat_userVars.role)){flat_pm_then.push(a),flatPM_setWrap(a),flat_body.hasClass("flat_pm_block_geo_role")||(flat_body.addClass("flat_pm_block_geo_role"),flatPM_ajax("flat_pm_block_geo_role")),c=!0}c||(flatPM_setWrap(a),flatPM_next(a))}}}let b=jQuery(".flatPM_sticky");b.each(function(){let a=jQuery(this),b=a.data("height")||350,c=a.data("top");a.wrap("
");let d=a.parent()[0];flatPM_sticky(this,d,c)}),debugMode||countMode||jQuery("[data-flat-id]:not([data-id-out]):not([data-id-modal])").contents().unwrap(),flat_pm_arr=[],jQuery(".flat_pm_start, .flat_pm_end").remove()}

   Для программирования микроконтроллеров серии pic, есть немало различных радиосхем. А недавно нашёл схему ещё одного программатора EXTRAPIC и сразу же им заинтересовался. В ней всё очень просто и грамотно.

На входе стоит MAX 232 преобразующая сигналы последовательного порта RS-232 в сигналы, пригодные для использования в цифровых схемах с уровнями ТТЛ или КМОП , не перегружает по току COM-порт компьютера, так как использует стандарт эксплуатации не представляет опасности для COM-порта. Этот девайс работает с любыми COM-портами, как стандартными (+/-12v; +/-10v) так и с нестандартными COM-портами некоторых моделей современных ноутбуков, имеющих пониженные напряжения сигнальных линий, вплоть до +/-5v! Поддерживается распространёнными программами IC-PROG, PonyProg , WinPic 800

Список поддерживаемых микросхем, при использовании с программой IC-PROG v1.05D:

    Контроллеры фирмы Microchip: PIC12C508, PIC12C508A, PIC12C509, PIC12C509A, PIC12CE518, PIC12CE519, PIC12C671, PIC12C672, PIC12CE673, PIC12CE674, PIC12F629, PIC12F675, PIC16C433, PIC16C61, PIC16C62A, PIC16C62B, PIC16C63, PIC16C63A, PIC16C64A, PIC16C65A, PIC16C65B, PIC16C66, PIC16C67, PIC16C71, PIC16C72, PIC16C72A, PIC16C73A, PIC16C73B, PIC16C74A, PIC16C74B, PIC16C76, PIC16C77, PIC16F72, PIC16F73, PIC16F74, PIC16F76, PIC16F77, PIC16C84, PIC16F83, PIC16F84, PIC16F84A, PIC16F88, PIC16C505*, PIC16C620, PIC16C620A, PIC16C621, PIC16C621A, PIC16C622, PIC16C622A, PIC16CE623, PIC16CE624, PIC16CE625, PIC16F627, PIC16F628, PIC16F628A, PIC16F630*, PIC16F648A, PIC16F676*, PIC16C710, PIC16C711, PIC16C712, PIC16C715, PIC16C716, PIC16C717, PIC16C745, PIC16C765, PIC16C770*, PIC16C771*, PIC16C773, PIC16C774, PIC16C781*, PIC16C782*, PIC16F818, PIC16F819, PIC16F870, PIC16F871, PIC16F872, PIC16F873, PIC16F873A, PIC16F874, PIC16F874A, PIC16F876, PIC16F876A, PIC16F877, PIC16F877A, PIC16C923*, PIC16C924*, PIC18F242, PIC18F248, PIC18F252, PIC18F258, PIC18F442, PIC18F448, PIC18F452, PIC18F458, PIC18F1220, PIC18F1320, PIC18F2320, PIC18F4320, PIC18F4539, PIC18F6620*, PIC18F6720*, PIC18F8620*, PIC18F8720*

   Примечание: микроконтроллеры, помеченные звездочкой (*) подключаются к программатору только через разъем ICSP.

   Последовательная память EEPROM I2C (IIC): X24C01, 24C01A, 24C02, 24C04, 24C08, 24C16, 24C32, 24C64, AT24C128, M24C128, AT24C256, M24C256, AT24C512.

Схема программатора

    На стороне программатора используется разъем DB9 типа “гнездо” (“мама”, “дырки”). Очень часто ошибаются и ставят “вилку” (“папу”, “штырьки”), т.е. такое же как и на стороне ПК!

Расположение выводов ICSP у PIC-контроллеров


   Материал только для общей справки. Обязательно убедитесь, что указанное расположение выводов соответствует выбранному вами микроконтроллеру. Для этого, обратитесь к Data Sheets и Programming Specifications на соответствующий микроконтроллер (обычно всё совпадает). Вывод PGM рекомендуется “притягивать” к общему проводу (GND), через резистор, номиналом 1К.

   Микроконтроллеры с 14-контактным корпусом вставляется частью ножек в соответствующую 8-контактную панель.

Рисунок печатной платы:


Работа с программатором

   Сперва устанавливаем программу IC-prog. Скачайте и распакуйте программу в отдельный каталог. В образовавшемся каталое должны находиться три файла: 

icprog.exe – файл оболочки программатора.

icprog.sys – драйвер, необходимый для работы под Windows NT, 2000, XP. Этот файл всегда должен находиться в каталоге программы.
icprog.chm – файл помощи (Help file).

   Установили, теперь надо ее настроить.  Для этого: 

  • (Только для Windows XP): Правой кнопкой щёлкните на файле icprog.exe. “Свойства” >> вкладка “Совместимость” >> Установите “галочку” на “Запустить программу в режиме совместимости с:” >>
    выберите “Windows 2000“.
  • Запустите файл icprog.exe. Выберите “Settings” >> “Options” >> вкладку “Language” >> установите язык “Russian” и нажмите “Ok“.
    Согласитесь с утверждением “You need to restart IC-Prog now” (нажмите “Ok“). Оболочка программатора перезапустится.

Настройки” >> “Программатор


  • Проверьте установки, выберите используемый вами COM-порт, нажмите “Ok“.
  • Далее, “Настройки” >> “Опции” >> выберите вкладку “Общие” >> установите “галочку” на пункте “Вкл. NT/2000/XP драйвер” >> Нажмите “Ok” >> если драйвер до этого не был устновлен на вашей системе, в появившемся окне “Confirm” нажмите “Ok” . Драйвер установится, и оболочка программатора перезапустится.
  • Примечание:
    Для очень “быстрых” компьютеров возможно потребуется увеличить параметр “Задержка Ввода/Вывода“. Увеличение этого параметра увеличивает надёжность программирования, однако, увеличивается и время, затрачиваемое на программирование микросхемы.
  • Настройки” >> “Опции” >> выберите вкладку “I2C” >> установите “галочки” на пунктах: “Включить MCLR как VCC” и “Включить запись блоками“. Нажмите “Ok“.
  • Настройки” >> “Опции” >> выберите вкладку “Программирование” >> снимите “галочку” с пункта: “Проверка после программирования” и установите “галочку” на пункте “Проверка при программировании“. Нажмите “Ok“.

   Теперь надо протестировать программатор в месте с IC-prog.  Далее, в программе IC-PROG, в меню, запустите: Настройки >> Тест Программатора


   Перед выполнением каждого пункта методики тестирвания, не забывайте устанавливать все “поля” в исходное положение (все “галки” сняты), как показано на рисунке выше. 

  1. Установите “галочку” в поле “Вкл. Выход Данных”, при этом, в поле “Вход Данных” должна появляться “галочка”, а на контакте (DATA) разъёма X2, должен установиться уровень лог. “1” (не менее +3,0 вольт). Теперь, замкните между собой контакт (DATA) и контакт (GND) разъёма X2, при этом, отметка в поле “Вход Данных” должна пропадать, пока контакты замкнуты.
  2. При установке “галочки” в поле “Вкл. Тактирования”, на контакте (CLOCK) разъёма X2, должен устанавливаться уровень лог. “1”. (не менее +3,0 вольт).
  3. При установке “галочки” в поле “Вкл. Сброс (MCLR)”, на контакте (VPP) разъёма X3, должен устанавливаться уровень +13,0… +14,0 вольт, и светиться светодиод D4 (обычно красного цвета).
  4. Если переключатель режимов поставить в положение 1 то будет светится светодиод HL3

   Если при тестировании, какой-либо сигнал не проходит, следует тщательно проверить весь путь прохождения этого сигнала, включая кабель соединения с COM-портом компьютера. 

Тестирование канала данных программатора EXTRAPIC:

  1. 13 вывод микросхемы DA1: напряжение от -5 до -12 вольт. При установке “галочки”: от +5 до +12 вольт.
  2. 12 вывод микросхемы Da1: напряжение +5 вольт. При установке “галочки”: 0 вольт.
  3. 6 вывод микросхемы DD1: напряжение 0 вольт. При установке “галочки”: +5 вольт.

  4. 1 и 2 вывод микросхемы DD1: напряжение 0 вольт. При установке “галочки”: +5 вольт.
  5. 3 вывод микросхемы DD1: напряжение +5 вольт. При установке “галочки”: 0 вольт.
  6. 14 вывод микросхемы DA1: напряжение от -5 до -12 вольт. При установке “галочки”: от +5 до +12 вольт.

   Если все тестирование прошло успешно, то программатор готов к эксплуатации. 

Детали для сборки EXTRA-PIC

DRB9F, разъём COM-порта (“female”, “мама”), (1шт).
Разъём питания, диаметр внутр. штыря 2,1мм. (1шт).
SCL-40, панель DIP40. (1 шт).
SCS-28, панель DIP28, узкая. (1шт).
SCS-18, панель DIP18. (1шт).
SCS-08, панель DIP8. (1шт).
78L05, стабилизатор +5v, корпус ТО-92. (2шт).
78L12, стабилизатор +12v, корпус TO-92.

(1шт).
MAX232, ST232, SP232, ADM232, или аналог. (1шт).
КР1533ЛА3, КР15xxЛА3, 74xx00, или аналог. (1шт).
1N4007, диод. (1шт).
1N4148, диод. (2шт).
АЛ307 или GNL-5013, светодиод зелёного цвета. (1шт).
АЛ307 или GNL-5013, светодиод красного цвета. (1шт).
КТ502Е, транзистор p-n-p, корпус TO-92. (1шт).

КТ3102, транзистор n-p-n, корпус TO-92. (1шт).
220,0x25v, электролитический / Оксидный конденсатор. (1шт).
10,0x16v, электролитический / Оксидный конденсатор. (4шт).
0,1 мкФ, керамический дисковый конденсатор. (2шт).
1k0, Резистор. (Цвета: “коричн.,чёрн.,красн.,золот.”). (6шт).
4k7, Резистор. (Цвета: “жёлт.,фиол.,красн.

,золот.”). (2шт).

   При написании статьи использовался данный источник. Печатную плату для EXTRA PIC и другие файлы, полезные при повторении схемы и прошивки скачайте в архиве. Схему собрал и испытал: -igRoman-