Ветрогенератор 2 вт на основе шагового двигателя

Самодельный ветрогенератор на основе шагового двигателя

Ветрогенератор 2 Вт на основе шагового двигателя

В качестве генератора на ветряк подойдет шаговый двигатель (ШД) для принтера. Даже при небольшой скорости вращения он вырабатывает мощность около 3 Вт. Напряжение может подниматься выше 12 В, что дает возможность заряжать небольшой аккумулятор.

к содержанию ↑

Принципы использования

Характерная для российского климата турбулентность ветра в приземных слоях приводит к постоянным изменениям его направления и интенсивности. Ветрогенераторы больших размеров, мощность которых превышает 1 Квт будут инерционными.

В результате они не успеют полностью раскрутиться при смене направления ветра. Этому также мешает момент инерции в плоскости вращения.

Когда боковой ветер действует на работающий ветряк, он испытывает огромные нагрузки, которые могут привести к его быстрому выходу из строя.

Целесообразно применять ветрогенератор малой мощности, изготовленный своими руками, имеющий незначительную инерционность. С их помощью можно заряжать маломощные аккумуляторы мобильных телефонов или использовать для освещения дачи светодиодами.

В дальнейшем лучше ориентироваться на потребителей, нетребующих преобразования вырабатываемой энергии, например, для подогрева воды. Нескольких десятков ватт энергии вполне может хватить для поддерживания температуры горячей воды или для дополнительного подогрева системы отопления, чтобы она не перемерзала зимой.

к содержанию ↑

Электрическая часть

Генератором в ветряк можно устанавливать шаговый двигатель (ШД) для принтера.

Даже при небольшой скорости вращения он вырабатывает мощность около 3 Вт. Напряжение может подниматься выше 12 В, что дает возможность заряжать небольшой аккумулятор.

Остальные генераторы эффективно работают при скорости вращения более 1000 об./мин, но они не подойдут, поскольку ветряк вращается со скоростью 200-300 об./мин.

Здесь необходим редуктор, но он создает дополнительное сопротивление и к тому же имеет высокую стоимость.

В генераторном режиме у шагового двигателя вырабатывается переменный ток, который легко преобразовать в постоянный, используя пару диодных мостов и конденсаторы. Схему легко собрать своими руками.

Установив за мостами стабилизатор, получим постоянное выходное напряжение. Для визуального контроля можно еще подключить светодиод. Чтобы уменьшить потери напряжения для его выпрямления применяются диоды Шоттки.

В дальнейшем можно будет создать ветряк с более мощным ШД. Такой ветрогенератор будет обладать большим моментом трогания. Проблему можно устранить, отключая нагрузку во время пуска и при малых оборотах.

к содержанию ↑

Как сделать ветрогенератор

Лопасти можно изготовить своими руками из трубы ПВХ. Нужная кривизна подбирается, если взять ее с определенным диаметром. Заготовку лопасти рисуют на трубе, а затем вырезают отрезным диском. Размах винта составляет около 50 см, а ширина лопастей — 10 см. После следует выточить втулку с фланцем под размер вала ШД.

Она насаживается на вал двигателя и крепится дополнительно винтами, а к фланцам крепятся пластиковые лопасти. На фото изображено две лопасти, но можно сделать четыре, прикрутив еще две аналогичные под углом 90º. Для большей жесткости под головки винтов следует установить общую пластину. Она плотней прижмет лопасти к фланцу.

Изделия из пластика долго не служат. Продолжительный ветер со скоростью более 20 м/с такие лопасти не выдержат.

Далее нужно произвести балансировку. Это делается своими руками: от концов лопастей отрезаются кусочки пластика. Угол их наклона можно изменить посредством нагрева и изгиба.

Генератор вставляется в кусок трубы, к которому он крепится болтами.

К трубе с торца крепится флюгер, представляющий собой ажурную и легкую конструкцию из дюралюминия. Ветрогенератор держится на приваренной вертикальной оси, которая вставляется в трубу мачты с возможностью вращения. Под фланец можно установить упорный подшипник или полимерные шайбы, снижающие трение.

У большей части конструкций ветряк содержит выпрямитель, который крепится к подвижной части. Это делать нецелесообразно из-за увеличения инерционности. Электрическую плату вполне можно разместить внизу, а к ней вывести вниз провода от генератора.

Обычно с шагового двигателя выходит до 6 проводов, соответствующих двум катушкам. Для них нужны токосъемные кольца для передачи электроэнергии от подвижной части. На них довольно сложно установить щетки. Механизм токосъема может оказаться сложней, чем сам ветрогенератор.

Еще было бы лучше разместить ветряк так, чтобы вал генератора располагался вертикально. Тогда провода не будут заплетаться вокруг мачты. Такие ветрогенераторы сложней, но зато уменьшается инерционность. Коническая передача здесь будет в самый раз.

При этом можно увеличить обороты вала генератора, подобрав необходимые шестерни своими руками.

Закрепив ветряк на высоте 5-8 м, можно начинать проводить испытания и собирать данные о его возможностях, чтобы в дальнейшем установить более совершенную конструкцию.

В настоящее время становятся популярными вертикально-осевые ветрогенераторы.

Некоторые конструкции хорошо выдерживают даже ураганы. Хорошо себя зарекомендовали комбинированные конструкции, работающие при любом ветре.

к содержанию ↑

Заключение

Маломощный ветрогенератор надежно работает из-за малой инерционности. Его легко изготавливают в домашних условиях и используют преимущественно для подзарядки небольших аккумуляторов. Он может пригодиться в загородном доме, на даче, в походе, когда возникают проблемы с электричеством.

Источник: https://mirenergii.ru/energiyavetra/samodelnyj-vetrogenerator-na-osnove-shagovogo-dvigatelya.html

Простой самодельный ветроэлектрогенератор на основе шагового двигателя. Ветряк, энергия ветра. | ДелайСам.Ру

Я уже писал в начале лета о самодельном ветряке – анемометре.

Его целью было организовать сбор статистики о ветре и принятие на ее основе решения о постройке большого серьезного ветряка.

К сожалению, не нашлось ни программиста, желающего написать программу обработки данных с анемометра, ни специалиста по микроконтроллерам, для создания соответствующего прибора.

Поэтому, увы пришлось наблюдать за ветром визуально, благо флюгер был всегда на виду. И к сожалению, наблюдения эти крайне удручающие…

Дело в том, что ветер в средней полосе европейской части России обладает крайней турбулентностью в своих приземных слоях. Буквально в течении 3-5 минут ветряк многократно и останавливается (или сильно замедляется) и раскручивается так, что лопастей не видно.

При этом и направление ветра меняется в секторе до 90-120 градусов. Крайне редко бывают дни когда дует относительно сильный и ровный ветер. За все лето в моей местности таких дней было всего 4. Было несколько штилевых дней.

А в остальные — ветер был очень турбулентный, и по скорости, и по направлению.

В таких условиях делать «глобальный» ветроэлектрогенератор (на 1-2 КВт или более) совершенно бессмысленно. Он не только себя никогда не окупит, но вообще будет плохо работать.

Поскольку мощный генератор потребует больших лопастей, а они будут обладать большой инерцией и следовательно — «пропускать» порывы сильного ветра. Т.е. попросту не будут успевать раскручиваться.

Порой такие порывы, несущие в себе основную мощность «среднего» ветрового потока длятся всего 15-30 секунд.

Кроме того, любой вращающийся предмет обладает значительным моментом инерции в плоскости вращения и представляет собой, по сути, гироскоп. Надеюсь, читатель помнит простой школьный опыт по демонстрации гироскопического эффекта с велосипедным колесом.

Будучи раскрученным, оно легко удерживается буквально «двумя пальцами» за один из торчащих концов своей оси. И его чрезвычайно трудно повернуть в бок и заставить крутиться в другой плоскости. Примерно тоже самое будет происходить и с пропеллером ветряка при изменении направления ветра.

И ось, и лопасти пропеллера будут испытывать чудовищные боковые знакопеременные нагрузки.

Эти обстоятельства фактически ставят жирный крест на надеждах обойтись одним большим ветряком. Работать он, конечно же будет. Но редко и бестолково.

При слабых турбулентных ветрах он будет все равно выдавать мизерную мощность, а при сильных – вы не будете знать куда девать излишек. И уж конечно, следует забыть про его окупаемости.

Он будет просто дорогой и красивой игрушкой, самым бестолковым вложением средств и труда, которое только можно представить.

Перспективными же конструкции ветряков – это небольшие маломощные ветрогенераторы, имеющие практически нулевую инерционность. Именно они способны взять от ветра практически всю энергию, которую он несет. Таких, что бы успевали быстро раскручиваться и отрабатывать смену галса.

А для получения большой мощности потребуется устройство своеобразного ветропарка ветряных генераторов, расположенных на разновысоких мачтах (что бы не экранировать друг друга от ветра).

Это же, кстати, значительно повысит буреустойчивость, решение проблем с мощными тяжелыми мачтами и растяжками (мачты будут держать друг друга), с надежностью «электростанции» — ведь все сразу генераторы сломаться не могут и плановый ремонт и обслуживание не приведут к полной остановке генерирующих мощностей.

Придя к таким неутешительным выводам, я решил переделать свой анемометр в рабочую модель ветрогенератора. Т.е. вместо бестолкового созерцания флюгера начать получать от него практическую пользу. Тем более, что генератор ветряка представляет собой шаговый двигатель с 200 «шагами» на оборот и довольно шустро генерит электричество даже на малых оборотах. Мощность генератора примерно Ватт 7-8

Прежде всего потребовалась замена лопастей на менее инерционные. Лопухи от вентилятора все же довольно тяжелы. Новые лопасти ветряка я сделал их из остатков дюралюминиевого отлива для пластиковых окон. Диаметр пропеллера — примерно сантиметров 50.

Что сулит выход на максимальную мощность для генератора уже при ветре 4 м/с. Вырезал из толстой фанеры треугольник. Вклеил в него (эпоксидной смолой) втулку, внутренний диаметр которой совпадал в диаметром оси шагового моторчика.

Тщательно разметив, сделал пропилы в фанерном «кокпите» и вклеил в прорези лопасти. Дополнительно зафиксировал их небольшими винтами. Пока эпоксидка не застыла, постарался максимально отбалансировать винт, что он не вибрировал при вращении.

После застывания эпоксидной смолы еще раз проверил балансировку и довел ее до совершенства путем срезания тончайших полосок дюраля с краев лопастей.

Вообще говоря, маломерные ветрогенераторы обладают приятным свойством. Практически нет смысла заморачиваться сложнейшими расчетами КИЭВ, профилей лопасти и их изготовлением. Будут прекрасно работать и простейшие, плоские. А нужную мощность можно получить простым их удлинением (следовательно, увеличением площади ометания).

Все это чрезвычайно удешевляет ветрогенератор, появляется смысл его изготовления и использования. В частности, на свой я потратил примерно 3-4 часа времени (включая флюгер) и без учета времени полимеризации эпоксидной смолы. Затраты составили «ноль», так как делалось все «из мусора», т.е. подручных материалов.

Казалось бы, где можно использовать такой маломощный генератор? В перспективе, я собираюсь использовать его на… нагреве воды. Вернее, для компенсации теплопотерь воды, нагретой солнцем. Простейший расчет показывает абсолютную состоятельность моих надежд.

Допустим, есть некий бак – термос, литров на 50, куда вечером сливается нагретая до 50 градусов вода из солнечного коллектора. Размер бака примерно 40 х 40 х 40 см. Соответственно площадь поверхности будет равна 1 кв. метру. Бак окружен теплоизоляцией с Ктеплопроводности 0,15 Вт/м*град и толщиной 30 см.

и теплопотери будут составлять примерно 0,5 Вт/град. Т.е. для того, что бы поддерживать разность температур в 20-25 градусов между горячей водой в баке-термосе и окружающим воздухом, достаточно генератора мощностью всего 10-15 Вт! Он будет компенсировать теплопотери и однажды нагретая вода уже никогда не остынет.

А случись крепкий ветерок — так еще и подогреется.

Сейчас мой генератор крутится пока без нагрузки, проходит «ходовые испытания». Но в ближайшее время я его заставлю заряжать аккумуляторы в освещении дачного туалета и подсветки дорожки к нему. А то тащить сетевой провод туда и лень и затруднительно, а менять батарейки в китайском фонаре уже надоело.

Источник: https://www.delaysam.ru/sadtech/sadtech32.html

Мой самодельный ветрогенератор на шаговом двигателе

Проезжая на велосипеде мимо дачных участков, я увидел работающий ветрогенератор:
Большие лопасти медленно, но верно вращались, флюгер ориентировал устройство по направлению ветра.

Мне захотелось реализовать подобную конструкцию, пусть и не способную вырабатывать мощность, достаточную для обеспечения “серьезных”потребителей, но все-таки работающую и, например, заряжающую аккумуляторы или питающую светодиоды.

Читайте также:  Радиаторы и охлаждение

Шаговые двигатели

Одним из наиболее эффективных вариантов небольшого самодельного ветроэлектрогенератора является использование шагового двигателя (ШД) (англ. stepping (stepper, step) motor) – в таком моторе вращение вала состоит из небольших шагов. Обмотки шагового двигателя объединены в фазы.

При подаче тока в одну из фаз происходит перемещение вала на один шаг.
Эти двигатели являются низкооборотными и генератор с таким двигателем может быть без редуктора подключен к ветряной турбине, двигателю Стирлинга или другому низкооборотному источнику мощности.

При использовании в качестве генератора обычного (коллекторного) двигателя постоянного тока для достижения таких же результатов потребовалась бы в 10-15 раз более высокая частота вращения.

Особенностью шаговика является достаточно высокий момент трогания (даже без подключенной к генератору электрической нагрузки), достигающий 40 грамм силы на сантиметр.

Коэффициент полезного действия генератора с ШД достигает 40 %.

Для проверки работоспособности шагового двигателя можно подключить, например, красный светодиод. Вращая вал двигателя, можно наблюдать свечение светодиода. Полярность подключения светодиода не имеет значения, так как двигатель вырабатывает переменный ток.

Кладезем таких достаточно мощных двигателей являются пятидюймовые дисководы гибких дисков, а также старые принтеры и сканеры.

Двигатель 1

Например, я располагаю ШД из старого 5.25″ дисковода, работавшего еще в составе ZX Spectrum – совместимого компьютера “Байт”.

Такой дисковод содержит две обмотки, от концов и середины которых сделаны выводы – итого из двигателя выведено шесть проводов:

первая обмотка (англ. coil 1) – синий (англ. blue) и желтый (англ. yellow);
вторая обмотка (англ.

coil 2) – красный (англ. red) и белый (англ. white);
коричневые (англ. brown) провода – выводы от средних точек каждой обмотки (англ. center taps).

разобранный шаговый мотор

Слева виден ротор двигателя, на котором видны “полосатые” магнитные полюсы – северный и южный. Правее видна обмотка статора, состоящая из восьми катушек.
Сопротивление половины обмотки составляет ~ 70 Ом.

Я использовал этот двигатель в первоначальной конструкции моего ветрогенератора.

Двигатель 2

Находящийся в моем распоряжении менее мощный шаговый двигатель T1319635 фирмы Epoch Electronics Corp. из сканера HP Scanjet 2400 имеет пять выводов (униполярный мотор):

первая обмотка (англ. coil 1) – оранжевый (англ.

orange) и черный (англ. black);
вторая обмотка (англ. coil 2) – коричневый (англ. brown) и желтый (англ. yellow);
красный (англ. red) провод – соединенные вместе выводы от средней точки каждой обмотки (англ. center taps).

Сопротивление половины обмотки составляет 58 Ом, которое указано на корпусе двигателя.

Двигатель 3

В улучшенном варианте ветрогенератора я использовал шаговый двигатель Robotron SPA 42/100-558, произведенный в ГДР и рассчитанный на напряжение 12 В:

Ветротурбина

Возможны два варианта расположения оси крыльчатки (турбины) ветрогенератора – горизонтальное и вертикальное.

Преимуществом горизонтального (наиболее популярного) расположения оси, располагающейся по направлению ветра, является более эффективное использование энергии ветра, недостаток – усложнение конструкции.

Я выбрал вертикальное расположение оси – VAWT (vertical axis wind turbine), что существенно упрощает конструкцию и не требует ориентации по ветру. Такой вариант более пригоден для монтирования на крышу, он намного эффективнее в условиях быстрого и частого изменения направления ветра.

ветротурбина Савониуса

Я использовал тип ветротурбины, называемый ветротурбина Савониуса (англ.Savonius wind turbine). Она была изобретена в 1922 году Сигурдом Йоханнесом Савониусом (Sigurd Johannes Savonius) из Финляндии.

Сигурд Йоханнес Савониус

Работа  ветротурбины Савониуса основана на том, что сопротивление (англ. drag) набегающему потоку воздуха – ветру вогнутой поверхности цилиндра (лопасти) больше, чем выпуклой.

Коэффициенты аэродинамического сопротивления (англ. drag coefficients) $C_D$

двумерные тела: вогнутая половина цилиндра (1) – 2,30 выпуклая половина цилиндра (2) – 1,20 плоская квадратная пластина – 1,17

трехмерные тела:

вогнутая полая полусфера (3) – 1,42 выпуклая полая полусфера (4) – 0,38 сфера – 0,5

Указанные значения приведены для чисел Рейнольдса (англ. Reynolds numbers) в диапазоне $10^4 – 10^6$. Число Рейнольдса характеризует поведение тела в среде.

Сила сопротивления тела воздушному потоку ${F_D} = {{1 over 2} {C_D} S 
ho {v^2} } $, где $
ho$ – плотность воздуха, $v$ – скорость воздушного потока, $S$ – площадь сечения тела.

Такая ветротурбина вращается в одну и ту же сторону, независимо от направления ветра:

Подобный принцип работы используется в чашечном анемометре (англ. cup anemometer) – приборе для измерения скорости ветра:

Такой анемометр был изобретен в 1846 году ирландским астрономом Джоном Томасом Ромни Робинсоном (John Thomas Romney Robinson):

Робинсон полагал, что чашки в его четырехчашечном анемометре перемещаются со скоростью, равной одной трети скорости ветра. В реальности это значение колеблется от двух до немногим более трех.

В настоящее время для измерения скорости ветра используются трехчашечные анемометры, разработанные канадским метеорологом Джоном Паттерсоном (John Patterson) в 1926 году:

Генераторы на коллекторных двигателях постоянного тока с вертикальной микротурбиной продаются на eBay по цене около $5:

Такая турбина содержит четыре лопасти, расположенные вдоль двух перпендикулярных осей, с диаметром крыльчатки 100 мм, высотой лопасти 60 мм, длиной хорды 30 мм и высотой сегмента 11 мм.

Крыльчатка насажена на вал коллекторного микродвигателя постоянного тока с маркировкой JQ24-125H670. Номинальное напряжение питания такого двигателя составляет 3 … 12 В.

Энергии, вырабатываемой таким генератором, хватает для свечения “белого” светодиода.

Скорость вращения ветротурбины Савониуса не может превышать скорость ветра, но при этом такая конструкция характеризуется высоким крутящим моментом (англ. torque).

Эффективность ветротурбины можно оценить, сравнив вырабатываемую ветрогенератором мощность с мощностью, заключенной в ветре, обдувающем турбину:
$P = {1over 2}
ho S {v^3}$ , где $
ho$ – плотность воздуха (около 1,225 кг/м3 на уровне моря), $S$ – ометаемая площадь турбины (англ. swept area), $v$ – скорость ветра.

Моя ветротурбина

Вариант 1

Первоначально в крыльчатке моего генератора использованы четыре лопасти в виде сегментов (половинок) цилиндров, вырезанных из пластиковых труб:
Размеры сегментов – длина сегмента – 14 см; высота сегмента – 2 см; длина хорды сегмента – 4 см;

расстояние от начала сегмента до центра оси вращения – 3 см.

Я установил собранную конструкцию на достаточно высокой (6 м 70 см) деревянной мачте из бруса, прикрепленную саморезами к металлическому каркасу:

Вариант 2

Недостатком генератора была достаточно высокая скорость ветра, требуемая для раскрутки лопастей. Для увеличения площади поверхности я использовал лопасти, вырезанные из пластиковых бутылок:

Размеры сегментов – длина сегмента – 18 см; высота сегмента – 5 см; длина хорды сегмента – 7 см;

расстояние от начала сегмента до центра оси вращения – 3 см.

Вариант 3

Проблемой оказалась прочность держателей лопастей. Сначала я использовал перфорированные алюминиевые планки от советского детского конструктора толщиной 1 мм. Через несколько суток эксплуатации сильные порывы ветра привели к излому планок (1).

После этой неудачи я решил вырезать держатели лопастей из фольгированного текстолита (2) толщиной 1,8 мм:
Прочность текстолита на изгиб перпендикулярно пластине составляет 204 МПа и сравним с прочностью на изгиб алюминия – 275 МПа.

Но модуль упругости алюминия  $E$ (70000 МПа) намного больше, чем у текстолита (10000 МПа), т.е. тексолит намного эластичнее алюминия.

Это, по моему мнению, с учетом большей толщины текстолитовых держателей, обеспечит гораздо большую надежность крепления лопастей ветрогенератора. Ветрогенератор смонтирован на мачте:

Опытная эксплуатация нового варианта ветрогенератора показала его надежность даже при сильных порывах ветра.

ветротурбина Дарье

Недостатком турбины Савониуса является невысокая эффективность – только около 15 % энергии ветра преобразуется в энергию вращения вала (это намного меньше, чем может быть достигнуто с ветротурбиной Дарье (англ.

Darrieus wind turbine)), использующей подъемную силу (англ. lift). Этот вид ветротурбины был изобретен французским авиаконструктором Жоржем Дарье (Georges Jean Marie Darrieus) – патент США от 1931 года № 1,835,018.

Жорж Дарье
 

Недостатком турбины Дарье является то, что у нее очень плохой самозапуск (для выработки крутящего момента от ветра турбины уже должна быть раскручена).

Преобразование электроэнергии, вырабатываемой шаговым двигателем

Выводы шагового двигателя могут быть подключены к двум мостовым выпрямителям, собранным из диодов Шоттки для снижения падения напряжения на диодах.
Можно применить популярные диоды Шоттки 1N5817 с максимальным обратным напряжением 20 В, 1N5819 – 40 В и максимальным прямым средним выпрямленным током 1 А.

Я соединил выходы выпрямителей последовательно с целью увеличения выходного напряжения. Также можно использовать два выпрямителя со средней точкой. Такой выпрямитель требует в два раза меньше диодов, но при этом и выходное напряжение снижается в два раза. Затем пульсирующее напряжение сглаживается с помощью емкостного фильтра – конденсатора 1000 мкФ на 25 В.

  Для защиты от повышенного генерируемого напряжения параллельно конденсатору включен стабилитрон на 25 В.

схема моего ветрогенератора

электронный блок моего ветрогенератора

Применение ветрогенератора

Вырабатываемое ветрогенератором напряжение зависит от величины и постоянства скорости ветра.

При ветре, колышущем тонкие ветви деревьев, напряжение достигает 2 … 3 В.

При ветре, колышущем толстые ветви деревьев, напряжение достигает 4 … 5 В (при сильных порывах – до 7 В).

ПОДКЛЮЧЕНИЕ К JOULE THIEF

Сглаженное напряжение с конденсатора ветрогенератора может подаваться на Joule Thief – низковольтный DC-DC преобразователь

Значение сопротивления резистора R подбирается экспериментально (в зависимости от типа транзистора) – целесообразно использовать переменный резистор на 4,7 кОм и постепенно уменьшать его сопротивление, добиваясь стабильной работы преобразователя.
Я собрал такой преобразователь на базе германиевого pnp-транзистора ГТ308В (VT) и импульсного трансформатора МИТ-4В (катушка L1 – выводы 2-3, L2 – выводы 5-6) :

ЗАРЯД ИОНИСТОРОВ (СУПЕРКОНДЕНСАТОРОВ)

Ионистор (суперконденсатор, англ. supercapacitor) представляет собой гибрид конденсатора и химического источника тока.

Ионистор – неполярный элемент, но один из выводов может быть помечен “стрелкой” – для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе.

Для первоначальных исследований я использовал ионистор 5R5D11F22H емкостью 0,22 Ф на напряжение 5,5 В (диаметр 11,5 мм, высота 3,5 мм):

Я подключил его через диод к выходу Joule Thief через германиевый диод Д310.

Для ограничения максимального напряжения зарядки ионистора можно использовать стабилитрон или цепочку светодиодов – я использую цепочку из двух красных светодиодов:

Для предотвращения разряда уже заряженного ионистора через ограничительные светодиоды HL1 и HL2 я добавил еще один диод – VD2.

Продолжение следует

Источник: https://acdc.foxylab.com/windgen

Ветряк из шагового моторчика

Главная → Электричество → Самодельные небольшие ветрогенераторы →Обычно дует лёгенький ветерок но мой мини ветрячёк периодически раскручивается до очень больших оборотов, винт вращается с такой скоростью, что его практически не видно, правда при таких оборотах доносится едва слышное рокатание лопастей.

Сёйчас этот ветрячёк поддерживатет в рабочем состоянии старенький, но рабочий аккумулятор, чтобы тот не разряжался. Максимальная мощность ветрячка всего до 100мА, возможно он может выдать и больше, но у нас обычно дует небольшой ветер, и замерял на обычном ветерке.

Конструкцию подобных ветрячков подсмотрел на одном заморском сайте и решил повторить, так и родился этот малышь. В качестве генератора использовал шаговый моторчик от давно нерабочего и пылившегося у меня струйного принтера. Разобрав его выкрутил маторчик.

Далее посмотрел, повертел, покрутил руками, померил сколько даёт, давал очень мало, но вольты поднимались выше 12-ти, а значит он теоретически мог заряжать аккумулятор.

Далее из транзистора сделал крепление для лопастей. Транзистор просверлил по диаметру вала на котором стаяла зубчатая насадка, в общем под её размеры.

Надел на вал транзистор, капнул клея и покрутил убедившись что всё ровно. Потом окончательно зафиксировал с помощъю эпоксидки.

Развёл немного и залил отверстие транзистора, дополнительно защитил моторчик от непогоды замазав дырочки в моторчике. Ниже фотография сего генератора.

Читайте также:  Аппаратный радио кейлоггер

Далее из отрезка ПВХ трубы, диаметром 110мм, вырезал лопасти, на трубе нарисовал заготовку, которую вырезал отрезной машинкой. Размеры взял примерные ширина получилась 9см, а размах винта 48см. Просверлил отверстия и прикрутил винт к моторчику-генератору с помощъю маленьких болтиков.

Зо основу использовал отрезок 55-той ПВХ трубы, далее вырезал хвост из фанерки, и добавил кусочек от 110-той.Мторчик вклеел внуть трубы. После сборки получилась вот такая ветроэлектростанция. Сразу собрал выпрямитель.

Так как этот мотор не хотел давать много вольт на малых оборотах, то собрал по схеме удвоения и включил последовательно.

Диоды взял HER307, конденсаторы – 3300мкф Схему укутал в полиэтилен и вставил в трубу выпрямитель, потом мотор и привязал его проволкой сквозь просверленные дырдочки, пространство замазал силиконом.

Так-же силиконом потом замазал все дырдочки сверху, а снизу просверлил одно отверстие на всякий случай, чтобы если что вода стекла, и испарялся конденсат. Хвост закрепил насквозь болтом, полукруглый хвост вставил и привязал проволкой, он и так прочно держиться.

Нашёл центр тяжести, просверлил (диам. 9мм.) Ещё просверлил диам. 6мм два болта М10, насквозь, под ось. (Болты М10 здесь служат “подшипником” оси) Ввернул сверху и снизу болты М10 в трубу, смазал длинный болт М6 солидолом и всё скрутил, получилось довольно жёстко.

Болт-ось (М6) прикрутил к уголку, а его к палке. Сверху на болт М10 одел на силиконе пробку, теперь ось воды не боиться. Всё ветрогенератор изготовлен.

Для мачты взял несколько брусочков. которые скрутил саморезами, закрепил ветряк и поднял на верер. Подключил к аккумулятору, зарядка идёт, но очень слабенькая, поддерживает аккумулятор от естественного разряда. Так как верячок крутиться, то остался доволен, по крайней мере буду знать откуда ветер дует.

Этот вариант – как сказано на том сайте – little weekend project, то-есть маленький проект для выходных, для удовольствия что-нить поковырять, тем более я не потратил ни копейки… клей не в счёт .

Так по идее может пару маленьких светодиодов зажечь, или мобильный телефон за пару суток зарядить, но скорее всего такой слабый ток телефон примет за плохой контакт и отключит, написав на дисплее плохое соединение.

В будещем если будет время и желание может сделаю на освещение двора, вот только второй такой-же соберу и аккумулятор небольшой поставлю, или несколько аккумуляторных батареек.

Для этого остался ещё один шаговый, только этот выдаёт под 2х20вольт от прокручивания рукой, но ток маленький. А второй – на щётках, сразу постоянка. От руки 10 вольт, КЗ – 0,5 Ампера.

А ещё всё-же буду мучить автогенератор, вот только магниты дождусь.

Источник: http://otchelniki.e-veterok.ru/chagovii_motorcik.html

Ветрогенератор Exmork 2 кВт, 48 вольт

Производство: Zonhan Windpower Co, Ltd (Китай), подробнее о компании…

Данные изделия производятся для эксплуатации в быту: частные коттеджи, личные строения, небольшие потребители электричества: 220В 50 Гц.

Ветрогенератор при вращении генерирует электричество, которое используется для заряда аккумуляторов. Накопленный в аккумуляторах ток с помощью инвертора преобразуется в 220В 50 Гц.

При покупке ветрогенераторов с контроллерами «Ветрогрей» ветрогенератор может работать с ТЭНами отопления.

Цена указана за базовую комплектацию, базовая комплектация включает в себя:
Лопасти (3 штуки); Электрический генератор; Лопасти хвоста; Носовой обтекатель; Держатель лопастей; Хомут для крепления ветрогенератора на мачту с токосъёмным подшипником; Хвостовая балка.

Базовая комплектация:

Бытовой ветрогенератор 2 кВт 48В поставляется в базовой комплектации:

1. Лопасти (3 штуки);

2. Электрический генератор;

3. Лопасти хвоста;

4. Носовой обтекатель;

5. Держатель лопастей;

6. Хомут для крепления ветрогенератора на мачту (89 мм) с токосъёмным подшипником;

7. Хвостовая балка.

Основные характеристики ветрогенератора 2 кВт 48В

Номинальная мощность  2000 ватт
Максимальная мощность  2800 ватт
Номинальная скорость ветра 10м/с
Страгивание начало вращения – с 2,5 м/с
Дипазон ветра генерации 3-25 м/с, свыше 20 м/с включается защитное торможение
Количество лопастей 3 штуки
Материал лопастей армированное стекловолокно с защитным покрытием 3М, США
Диаметр ротора 3,2 м.
Вес ветрогенератора С лопастями, хвостовой частью: 88 кг.
Подшипник вертикальный токосъёмный
Срок службы не менее 10 лет.
Гарантийный срок 1 год
Способ крепления на мачту «труба в трубу» (внешний диаметр мачты под фланец ветряка – 89 мм.)

СМОТРЕТЬ ПАСПОРТ ИЗДЕЛИЯ

Обратите пожалуйста внимание: отсутствие ветра не является гарантийным случаем.
Ветрогенератор – бытовое изделие, не создаёт излучений вредных для здоровья людей и животных, а также не создаёт помех для электроприборов. Разрешений на установку и эксплуатацию – не требуется.Монтаж оборудования:Стоимость монтажа рассчитывается по смете – индивидуально: в зависимости от объёма проводимых работ и места установки. Примерная стоимость шеф-монтажа – от 15 000 руб.

Для точной стоимости монтажа обратитесь пожалуйста в нашу службу технической поддержки: https://invertory.ru/teh

или Вы Можете обратиться к любому из наших партнёров по России для получение предложения по цене комплекта

и стоимости монтажа: https://invertory.ru/prodazhi-v-vashem-gorode

Про отопление на ветрогенераторах:

Если Вы планируете подключать ТЭНы отопления то необходимо комплектовать ветрогенератор специальным контроллером “Ветрогрей”.

Обслуживание ветрогенератора:

Необходим контроль аккумуляторов – при потери ёмкости – необходима их периодическая замена (примерно 1 раз в 1,5-3 года). Первые 2 года – ветрогенератор не требует обслуживания (кроме проверки натяжения тросов). Один раз в полтора года проверять, очищать и смазывать вращающиеся части установки, а также подшипники. В прибрежных и климатических зонах с высокой влажностью – 1 раз в год.

Один раз в 3 года удалять налет ржавчины, а также подкрашивать поврежденные места на металлических деталях.

Мачта:

Мачты производятся в России. Запас прочности – до 30 м/с (102 км/час).

Материал корпусов ветрогенератора из литого алюминия, это действительно высококачественное изделие:

В генераторах используются оцинкованные магниты, что защищает их от коррозии, это действительно дорогие магниты:

Магниты крепятся на валу винтами, что очень удобно при сервисных работах:

При скорости ветра свыше 25 м/с хвост ветрогенератора прижимается к корпусу, что является дополнительной механической защитой (помимо электрической) от ураганных порывов ветра, данный конструктив защищает от выхода ветрогенератора в режим “разнос” и разрушения лопастей.

Каждый ветрогенератор “Exmork” имеет индивидуальный номер (на корпусе рядом с токосъёмным подшипником), что позволяет при обращении в сервисную службу, идентифицировать ветрогенератор.

Для дополнительной безопасности гайка на валу генератора фиксируется шплинтом:

Материал корпусов ветрогенератора из литого алюминия, болты из нержавеющей стали,
подшипники NSK (пр-во Япония):

Ветрогенератор комплектуется дополнительно или контроллером Hefei, или контроллером Ветрогрей (для работы с ТЭНами отопления).Если Вам требуется грамотная и подробная консультация по ветрогенератору (комплектование системы, как работает, как монтировать и т.д.) у нас есть техническая поддержка, с опытным инженером по ветрогенераторам:

https://invertory.ru/teh

Транспортные данные (для расчёта стоимости перевозки в транспортной компании):

Все узлы упакованы в один ящик:Вес – 140кг с контроллером HefeiВес – 135 кг без контроллера Hefei

Длина ящика – 190 см, ширина ящика – 70 см, высота ящика – 38 см.

* Производитель оставляет за собой право вносить изменения в конструкцию, комплектацию и внешний вид изделия, не ухудшающие его технические свойства.

Источник: https://invertory.ru/product/vetrogenerator-exmork-2-kvt-48-volt/

Ветрогенератор из шагового двигателя

Р/л технология

Главная  Радиолюбителю  Р/л технология

Существует множество конструкций генераторов ветра. Это дает использовать энергию ветра не только, для незначительных нужд, но и для промышленных потребностей. Чтобы самому понять принцип действия такого устройства на практике, предлагается к сборке следующая конструкция.

Будет состоять ветрогенератор из шагового двигателя, корпуса мачты, ветряка и более мелких комплектующих. Самый простой шаговый двигатель можно извлечь из старых моделей сканеров или принтеров, либо купить их у знакомых. Его мощности хватит для демонстрации наглядной энергии, которую можно получить при помощи ветра.

Также потребуется собрать электронную схему, которая позволит полученное напряжение выпрямить и стабилизировать для своих нужд. Один из вариантов схемы представлен ниже.

Выводы двигателя подключают к диодным мостам, которые служат для выпрямления напряжения. Эти диодные мосты целесообразно собрать самостоятельно из диодов Шоттки, рассчитанными на так не менее 1 А.

Конденсатор и стабилизатор напряжения служат для получения стабилизированного постоянного напряжения 5 В, чего вполне достаточно для зарядки аккумулятора мобильного телефона или свечения небольшого светодиодного ночника.

Следует отметить, что эта конструкция не единственная возможная. Скорее демонстративная. Вместо диодных мостов можно подключить сначала повышающий трансформатор, а потом поставить диодный мост и конденсатор, что будет более практично. Также можно стабилизатор напряжения заменить умножителем напряжения или преобразователем напряжения, что даст возможность получить нужное напряжение.

Но, не стоит забывать и об ураганах, которые раскручивают лопасти генератора до значительных величин оборотов в секунду, что будет производить ток большей силы и напряжения. Это может вывести всю электронную схему из строя. Поэтому, для начинающих радиолюбителей данная конструкция лишь первый шаг к размышлениям о том, как же можно приручить силу ветра в своих нуждах.

Конструкция лопастей и мачты

Остальную часть генератора проще всего изготовить из труб ПВХ. Для лопастей берется канализационная труба, с которой вырезаются лопасти, от 2 до 5. Более опытные самодельщики утверждают, что количество лопастей должно быть обязательно нечетным. Крепятся они к шайбе или пластине, которая садится на вал двигателя.

Также нужен генератору и флюгер, который позволит ему самостоятельно поворачиваться в направлении ветра.

Далее нужно придумать мачту. В её качестве может выступать надежный шест, который позволит ветрогенератору быть постоянно в обдуве ветром без препятствий. Самым простым примером будет длинный деревянный брусок или пластиковая труба, если высота не большая.

Вот, собственно, и всё. Самый примитивный ветрогенератор готов. На продуктивность устройства влияет абсолютно всё, начиная от конструкции двигателя и заканчивая формой лопастей.

Возможно эта статья поможет сделать шаг к более серьезным устройствам и стать в один ряд с таким ученым, как Алексей Федорович Анипко, который придумал и воплотил в реальности уникальную конструкцию генератора энергии от силы ветра.

Применять же полученную энергию можно не обязательно для освещения или зарядки небольших батарей. К примеру, если сконструировать несколько ветрогенераторов, то с их помощью уже можно греть воду, тем самым, например, обогревать помещение. И это только один из вариантов.

Источник: http://www.radioradar.net/radiofan/radiofan_technology/wind_generator_stepper_motor.html

Ветрогенератор из шагового двигателя

Ветрогенератор в домашних условиях может стать дополнительным источником электроэнергии. Особенно он будет полезен в тех случаях, когда отключили свет, а вам необходимо зарядить какое-либо устройство.

Можно такой ветрогенератор подключить и к фонарю уличного освещения во дворе, при этом экономить на электроэнергии. Вообще, найти применение в хозяйстве этому устройству всегда можно.

Тем более что сделать его можно практически из подручных материалов.

В этой статье мы расскажем, как сделать простой ветрогенератор из шагового двигателя.

Что понадобится для сборки ветрогенератора?

Для того чтобы собрать ветрогенератор из шагового двигателя, понадобятся следующие детали:

  • собственно мотор;
  • листовой металл;
  • алюминиевая трубка;
  • фланец (1/4″);
  • квадратная труба;
  • диск от пилы;
  • штифт;
  • хомуты (можно использовать от автомобиля);
  • трубы ПВХ разных размеров (например, 8×4, 30×8);
  • шайбы, болты и прочее для крепления деталей;
  • диоды.

Из инструментов пригодятся ножовка, разводной и газовый ключ, наждачка, рулетка, дрель, транспортир и рулетка.

Принцип работы ветрогенератора

Детально останавливается на том, как же работает ветрогенератор из шагового двигателя, не стоит. Ведь все такие генераторы имеют одинаковый принцип работы: ветер заставляет вращаться лопасти ветряка, в результате чего начинает работать генератор, который и вырабатывает электричество.

Читайте также:  Фототранзистор-индикатор дыма

Изготовление ветрогенератора

Первое с чего следует начать – это вырезать лопасти. Для этого мы будем использовать ПВХ-трубы.

Что нужно учесть, вырезая лопасти?

  • Длину каждой лопасти – чем она больше, тем легче они будут крутиться при слабом ветре, но при этом они будут иметь довольно низкую скорость вращения.
  • Вращение будет больше на концах лопастей генератора – этот момент необходимо учесть заранее и рассчитать отношение скорости ветра к скорости вращения лопастей.
  • Помните, что мощность, получаемая из ветра, будет приравниваться к скорости ветра в третьей степени. Хотя не забывайте и о законе Беца, который говорит, что от энергии ветра можно получить приблизительно 59,3 процентов энергии.
  • Чем выше поднять ветряк от земли, тем более эффективен он будет (энергии будет вырабатываться больше).

Изготовить лопасти не составит больших проблем. Для этого нужно будет разрезать трубу из ПВХ на три части: две по 150 градусов и одна 60, как показано на рисунках.

Заметим, что два отрезка трубы (1500) подойдут для широких лопастей. При желании вы сможете их подрезать до нужной ширины.

Далее необходимо будет скруглить края лопастей, как показано на фотографии.

Следующая задача изготовить хаб – узел крепления лопастей. Для этих целей подойдет диск для пилы со сточенными зубьями. В нем нужно будет сделать шесть отверстий (три группы по 2 в каждой). Отверстия делаются со смещением в 1200, а расстояние между ними в одной группе должно быть около дюйма. Размещение отверстий на диске показано на рисунке:

В данном случае мы используем три лопасти, хотя можно установить и шесть: тогда группы отверстий будут смещаться на 600. К заготовленному диску с отверстиями прикручиваем лопасти – крепим их посредством болтов и гаек.

Следующий этап работ – это шарнир для поворота и флюгер. Потребуется и поворотная платформа, на которую мы закрепим генератор. Выглядеть все это будет так:

Для изготовления этой конструкции нужна квадратная труба из ПВХ, кусок листового металла и фланец. «Хвост» ветрогенератора вырезаем из железа. В квадратной трубе делаем разрез 20-25 сантиметровдлиной и вставляем туда наш флюгер – закрепляем эту конструкцию болтами.

Кстати, не мешало бы продумать и защиту генератору от осадков. Например, ее можно сделать из трубы так, как показано на фотографии:

Дальше окрашиваем все детали нашего ветряка и даем им высохнуть. После этого собираем все в одно целое, крепим двигатель, чехол к трубе посредством автомобильных хомутов. Также необходимо установить фланец (его располагают ближе к двигателю) с помощью саморезов.

Теперь остается только сделать матчу для ветрогенератора. Для этих целей подойдет труба из ПВХ и фурнитура, которая используется с пластиковыми трубами. Сделать мачту можно так:

Последним этапом будет непосредственное крепление ветрогенератора к мачте и его установка. Перед этим на вал мотора насаживаем ранее изготовленный хаб с лопастями. Вот и все.

В заключение несколько слов о батарейном отсеке ветряка. Для него могут быть использованы два аккумулятора (например, автомобильные). Между генератором и аккумуляторами нужно будет припаять диоды, чтобы ток поступал именно в аккумуляторы, а не шел в генератор.

Такой домашний ветрогенератор подойдет для зарядки аккумуляторов и других целей. Вы также можете поэкспериментировать и сделать более мощный ветряк: например, добавить лопасти, изменить их размер и пр.

Источник: http://semidelov.ru/mar/vetrogenerator-iz-shagovogo-dvigatelya/

Самодельный ветрогенератор

Главная → Электричество → Самодельные небольшие ветрогенераторы →Часть 1
Часть 2- перейти на страницу
Часть3 – перейти на страницу
Часть 4 – перейти на страницу
Из-за специфики своей профессии я решил приобрести кусочек земли в отдалённом от городов глухом уголке Аризоны. Я астроном, и нуждался в таком месте, где ночные огни городов не мешали бы моему занятию. Но место было настолько диким, что в эти места не вили ни какие линии электропередач, а тянуть сюда электричество нереально и-за стоимости работ.

Но это и хорошо, если нет электричества, значит по ночам не горят фонари и не засвечивают ночное небо. Но всё-же в современной жизни мы уже не можем обходится без электричества, вот и мне надо было чем-то питать свой ноутбук, включать свет и другие не энергоёмкие приборы, которыми мы так привыкли пользоваться в повседневности.

Та местность где я занимался мониторингом небесных тел, довольно открытая и ветра здесь дуют постоянно, и однажды мне пришла идея использовать этот ветер для выработки энергии. Вынашивая план будущей ветроэлектростанции я стал бороздить интернет в поисках нужной информации. Первое с чем мне надо было определится, это с генератором. После непродолжительных поисков пришел к некоторым выводам.

В основном для построения микро турбин многие предпочитают использовать моторы от накопителей на магнитной ленте от старых компьютеров.Эти моторчики на постоянных магнитах, достаточно тихоходны для применения в ветряках. Лучшими, по видимому, были несколько моторов, выпускавшиеся фирмой Ametek. А наиболее подходящим из них, для использования в качестве генератора, был мотор 99 В DC.

К сожалению, достать такие моторы в наши дни практически невозможно. Хотя есть много других моторов Ametek, некоторые из которых все еще можно приобрести, скажем, на Ebay.Или купить б/у, возможно они ещё у кого-то есть. Вероятно, еще есть немало моторов с постоянными магнитами, разных изготовителей и моделей, которые можно было бы использовать в качестве генераторов.

Но, при выборе мотора помните, что двигатель постоянного тока с постоянными магнитами может работать генератором, но его никогда не конструировали как генератор. Поэтому генераторы из них неважные.

Некоторые моторы совсем не годятся. В основном для этих целей пригодны низко-оборотистые моторы.

Хотя всё равно при выборе надо тестировать на месте или узнавать подробное описание конструкции данного мотора и по ней судить о его возможности.

Используемые в качестве генераторов, моторы, как правило, вынуждены вращаться со скоростью намного большей, чем та, для которой их рассчитывали.

Мотор, который необходимо выбрать, должен быть рассчитан на максимальное напряжение питания, максимальный ток, и иметь минимальную скорость вращения для достижения нужных параметров.

Мотор должен выдавать более 12-ти вольт уже при 150-200 об/м, если мотор на это не способен, то лучше его не использовать, так как большую часть времени он будет крутиться в холостую и не сможет заряжать аккумулятор.

В поисках электромотора я прочитал множество информации о подобных ветрогенераторах на основе моторов постоянного тока, с возбуждением на постоянных магнитах, и я поступил как другие.

На Ebay мне удалось купить подобный мотор всего лишь за $26, купить, этот мотор один из хороших 30-вольтовых низкооборотных моторов фирмы Ametek.

Эти моторы пользуются у любителей конструирования стабильным спросом, в основном для построения портативных ветроустановок. Тык-же подходят подобные моторы и других фирм.

После покупки я сразу-же решил его покрутить и посмотреть на что он способен. При кручении от руки я смог зажечь автомобильную лампочку на 12 вольт, и она достаточно ярко светилась.

Далее я решил покрутить мотор дрелью и посмотреть на каких оборотах какой ток он выдаёт.

После некоторых экспериментов я убедился в работоспособности данного мотора и принялся за обдумывание и построение самой ветроустановки.

На фото сам электромотор, по размерам достаточно компактен, надёжен, и имеет приемлемый вес для данной мощности.Примечательно и то, что мотор в режиме генератора выдаёт постоянное напряжение, а не переменное.

Далее я принялся за поиск информации по построению лопастей. Для больших ветряков в основном используют деревянные лопасти, но этот вариант я исключил ввиду трудоёмкости и сложности процесса изготовления и последующей балансировки таких лопастей.

Я пошел простым путём и решил повторить простое и приемлемое для меня решение, это изготовление лопастей из труб ПВХ, но я не стал использовать ПВХ, и нашел более лучшее решение.

Я приобрёл кусок угле-пластиковой трубы диаметром 150мм, она такая-же ка ПВХ, но более лёгкая и прочная.

Посмотрел в сети подобные конструкции, в которых применяются подобные лопасти и сделал примерно то-же, но немного увеличил длину лопастей.

Трубу я разрезал на 4 одинаковые части, сделал одну лопасть, и уже по ней изготовил ещё три лопасти. Ставить на мотор-генератор я буду три лопасти, и одна про-запас на случай поломки основных.

Лопасти после вырезания по краям отшлифовал для придания более гладкой и красивой формы.

Теперь лопасти надо было как-то закрепить на валу мотор-генератора.

Для этого я решил покататься у себя в закромах, под руки попался вот такой зубчатый диск, который идеально садился на вал, но его диаметр был маловат и продолжив поиски наткнулся на алюминиевый диск, который хорошо подходил для крепления лопастей.

Долго не думая я решил объединить два эти диска, чтобы один садился на вал генератора, а другой держал лопасти. Просверлив отверстия с помощью болтиков я соеденил две детальки в единое крепление для лопастей.

В магазине мне попались вот такие чашечки из ПВХ, идеально подходящие для того чтобы закрыть болтики и быть обтекателем. Но на форумах писали что обтекатели снижают мощность пропуская поток ветра , а открытый механизм крепления лопастей вроде-бы задерживает ветровой поток и он дополнительно давит на лопасти добавляя мощность, что-ж проверим это утверждение.

Продолжение – читать далее…

Источник: http://www.otchelniki.ru/dsds_motor.html

Ветрогенератор 2 кВт Condor Home

Ветрогенератор, ветряк, Condor Home, мощностью 2 кВт – это серийный и полностью готовый к работе продукт российского производства, не требующий специальных технических навыков от покупателя.

Система адаптирована для низких температур, предназначена для длительной бесперебойной работы и позволит вам не зависеть от центральных сетей электроснабжения, повысить мощность сети или создать полностью автономную систему на удаленном объекте.

Особенности

  • Вы приобретете ветряк для дома по цене, которая уже включает в себя мачту высотой 8-12 м и контроллер заряда.

  • Ветровая электростанция Condor Home, устанавливается на расстоянии от 15 до 150 метров от дома, для установки необходим только фундамент (бетонный или свайный) на строительство которого мы высылаем всю подробную документацию.

  • Данный тип ветряного генератора предназначен для электрификации отдельно стоящих строений и целых поселков в составе ветряных парков.

Основные характеристики

  • Трубчатая составная мачта на растяжках от 8 до 12 м
  • Корпус генератора из литого алюминия либо пластика (в зависимости от модели)
  • Ротор диаметром от 2,5 до 5,2 м.

    , стекло пластиковые лопасти

  • Тихоходный генератор на постоянных магнитах (неодим-железо-бор)
  • Двойная система торможения, аэродинамическая и электромагнитная.

    (Активная система безопасности ветряка для дома)

  • Контроллеры заряда на 24, 48 В.

Технические характеристики

Параметр

Значение

Мощность при 9 м/с

2000 Вт

Напряжение

24/48 В

Стартовая скорость ветра

2 м/с

Диапазон работы

3-25 м/с (от 20 м/с срабатывает защитное торможение)

Количество лопастей

3 шт.

Материал лопастей

Композит (полиэфирная смола + стекловолокно)

Диаметр ротора

3,7 м.

Вес (без мачты)

98 кг.

Срок службы

не менее 20 лет.

Базовая комплектация

Мачта

1 шт

Тросы мачты (растяжки)

1 комплект

Генератор

1 шт

Ротор

1 шт

Лопасти

1 комплект

Крепёж (монтажный комплект)

1 шт

Контроллер

1 шт

Технический паспорт

1 шт

Примерная схема подключения

Заполните опросный лист ВЭУ, отправьте нам на почту и мы обязательно свяжемся с вами.

Источник: https://solarforhome.ru/p193656703-vetrogenerator-kvt-condor.html

Ссылка на основную публикацию
Adblock
detector