Малогабаритная антенна св диапазона

Простые антенны СВ-диапазона

Петлевой диполь на диапазон 27 МГц можно выполнить из двухжильного провода типа ТРП для прокладки телефонов и известном под названием «лапша».

Волно­вое сопротивление «лапши» лежит в пре­делах 400-600 Ом, что вполне подойдет для выполнения антенны и линии ее пита­ния.

Его единственным недостатком явля­ется то, что через 2-3 года нахождения на открытом воздухе под солнцем, изоляция трескается, провод постепенно окисляется и приходит в негодность.

Петлевой диполь, выполненный из «лап­ши» показан на рис. 1. Антенна изготовлена из цельного куска линии, посередине к ней под­ключается линия передачи. На концах антен­ны присоединены короткозамкнутые отрезки этой же линии, они необходимы для настройки антенны в резонанс на диапазон 27 МГц.

Согласование антенны с трансивером проис­ходит с помощью полуволнового кольцевого шлейфа,выполненного на коаксиальном кабеле волновым сопротивлением 75 Ом и длиной 3,6 метра, с помощью такого же куска кабеля длиной 1,76м антенна подключается к трансиверу.

Сопротивление коаксиального кабеля 75 Ом было выбрано из условий оптималь­ного согласования антенны с выходом транси-вера, который может быть как 50-ти, так и 75- ти омным. Был измерен КСВ антенны 50- омным КСВ-метром включенным между тран­сивером, имеющим 50-омный выход и согласу­ющим устройством антенны.

КСВ находился в пределах 1,8 в диапазоне частот 26,5-27,5 МГц и увеличивался до 2,5 на 26 и 28 МГц.

Длина шлейфа и четвертьволнового трансформатора приведена для наиболее распространенного коаксиального кабеля с полиэтиленовой изоляцией, имеющего коэф­фициент укорочения 0,66. Цепи согласования можно выполнить, используя кабель с волно­вым сопротивлением 50 Ом.

В этом случае длина кабеля от шлейфового трансформатора до трансивера должна быть в пределах 0,8-1 м, КСВ антенны несколько увеличится. Антенна может быть подвешена вертикально, горизонтально, наклонно.

Длина линии переда­чи от антенны до трансивера не критична и может быть любой длины. Желательно, чтобы хотя бы на длине 5 метров линия питания была перпендикулярна полотну антенны.

При испытании ее совместно с СВ-трансивером «promed 72», антенна показала хорошие результаты при работе на прием и на передачу, с помощью нее были проведены как местные так и dx связи.

Дпя начинающего радиолюбителя, недавно приобретшего СВ-радиостанцию, установка наружной антенны может представлять серьезную проблему: это связано с отсутствием антенных изоляторов в хозяйстве начинающего радиолюбителя, к тому же один метр антенного кабеля 50 Ом стоит в пределах 0,5 – 1$, все это делает установку антенны дорогостоящим делом, особенно если антенна расположена далеко от радиостанции.

На первом этапе эти проблемы можно решить, если антенну и её снижение выполнить из обычного электротехнического медного провода предназначенного для работы в сети питания 220 вольт.

Импеданс многих типов сетевых линий питания, измеренный мной, находился в пределах 36-60 Ом. Более низкоомный импеданс имели провода с толстыми жилами, а высокоомный импеданс был в сетевых проводах с тонкими жилами.

При измерении потерь в этих линиях было выяснено, что они имеют весьма малую величину на диапазоне 27 МГц.

Антенна была выполнена как показано на рис. 2. 

Сетевой провод был разрезан на длину 2,7 метра, затем завязан узлом на линии питания для предотвращения дальнейшего его расползания, на концах полотна диполя провод был связан узлом с капроновым шнуром, служившим растяжкой антенны . Общая длина антенны была равна 5,4 метр: Провод, завязанный узлом на конце антенны служил своеобразной емкостной нагрузкой, расширяющей полосу пропускания антенны делающий не нужной ее настройку.

Таким образом, для построения этой антенны не использовались дорогостоящие и дефицитные материалы, не нужна настройка антенны, что все вместе оптимально подходит дл начинающих радиолюбителей.

Разместить антенну можно на крыш вертикально, горизонтально, наклонно, зависимости от местных условий. На конц сетевой линии, служащей кабелем питани антенны, ВЧ разъем не ставился.

Один коне провода был залужен до диаметра, которы мог туго вставляться в антенное гнездо, друге конец провода был защищен и петлей крепился к «земле» антенного разъема радиостанции.

Использование такого подключения к антенному гнезду радиостанции позволил еще более упростить и удешевил конструкцию СВ-антенны.

3.ГОРОДСКАЯ СВ-АНТЕННА

В городских условиях не всегда возможн установить хорошую наружную антенну дл СВ-радиостанции. Но вполне возможн успешно работать, используя суррогатную дипольную антенну, установленную на окне.

Стандартное окно имеет размеры 140×15 или 140×210 см, что позволяет установить н нем согнутый диполь (рис. 3).

 Антенна была выполнена из медного гибкого многожильного провода в белой пластиковой изоляции.

Первоначальная длина каждого плеча антенны была равна 2,70 см, в процес­се настройки длина плеч антенны была немного уменьшена из- за влияния емкости металлического под­оконника и батарей отопления на работу антенны.

Антенна име­ла сопротивление, из­меренное с помощью высокочастотного мо­ста, 55 Ом, ширина резонансного участка составляла 600 кГц, что позволяло использовать ее во всем СВ- диапазоне, разрешенном в России.

Антенна была установлена с внутренней стороны комнаты, провод полотна распола­гался на деревянной раме.

После покраски рамы антенна стала практически невидима в комнате, что позволяет отнести эту СВ-антенну к разряду «невидимых», позволяющих избе­жать лишних трений между владельцами СВ-радиостанций и остальными гражданами.

Коаксиальный кабель, питающий антенну дол­жен быть сопротивлением 50 Ом, это хорошо согласуется с выходным каскадом усилителя мощности промышленных СВ-радиостанций.

Несколько повысить КПД антенны можно, разместив ее полотно не на раме, а отступив от нее на 15-30 сантиметров. В этом случае дестабилизирующее влияние батарей и арматуры здания будет меньше, но антенна станет видимой. Возрастет и ее сопротивление примерно до 60 Ом.

При сравнительном испытании этой антенны совместно с антеннами из Л1 и Л2 было замечено явное преимущество свернутого диполя над этими антеннами, к тому ще он значительно проще и более легок в наладке.

Испытания антенн, описанных в Л1 и Л2 были проведены на месте установки свернутого диполя.

В результате того, что антенна содержит вертикальную и горизонтальную части, она излучает электромагнитную волну, содержа­щую вертикальную и горизонтальную составля­ющие. Это позволяет одинаково хорошо ра­ботать со станциями, использующими антенны с любым типом поляризации – вертикальной или горизонтальной.

Данное обстоятельство, особенно важно при расположении антенны на верхних этажах многоэтажного дома, при проведении dx-связей. Недостатком этой антенны является то, что она не излучает в направлении закрытом комнатой. Кроме того возможны сильные наводки на бытовую радиоэлектронную аппаратуру, особенно при работе с самодельными неотлаженными усилителями мощности.

Таким же образом можно сделать невидимую оконную антенну и на любительские диапазоны 10 и 12 метров.

4. НЕВИДИМАЯ СВ-АНТЕННА 

Простую и эффективную невидимую суррогатную антенну для диапазона 27 МГц можно выполнить в проеме окна согласно рис. 4. Для установки антенны было использовано окно размерами 140 х 150 см.

Антенна представляет собой полуволновый диполь, длиной чуть больше половины длины волны. На частоту 27МГц антенна настраивается конденсатором С1. Согласование с коаксиальным кабелем обеспечивается конденсатором С2.

Такое построение позволило выполнить антенну фиксированной длины, без учета влияния на полотно антенны дестабилизирующей емкости подоконника и батарей отопления.

Питание антенны через гамма-согласование дало возможность работы с коаксиальным кабелем любого волновогс сопротивления – 50 и 75 Ом, а значит работать с любыми СВ- радиостанциями, выходной каскад которых рассчитан на 50 или 75-омную нагрузку.

Антенна была сделана из медного гибкого многожильного провода толщиной 1 мм в пластиковой изоляции. Провод был проложен на раме под открываемым окном, что сделало антенну практически невидимой со стороны комнаты.

Конденсаторы С1 и С2 были использованы типа КПВ-1, они были расположены внутри коробки, выполненной из фольгированного стеклотекстолита, коробка располагалась под подоконником. Антенну желательно питать, используя простое симметричное устройство. Для этого на коаксиальный кабель со стороны, его подключения к антенне были надеты пять ферритовых колец укрепленных на кабеле с помощью изоленты.

Антенна излучает вертикально и горизонтально поляризованную электро­магнитную волну и может быть использована для проведения как ближних, так и дальних связей.

При изменении длины полотна антенны и гамма-согласующего устройства антенна может быть настроена и на любительские диапазоны 12 и 15 метров.

При работе на передачу возможны помехи радиоаппаратуре, установленной в комнате, на окне которой расположена антенна. Антенна практически не излучает в сторону, закрытую комнатой.

Оптимально расположение этой антенны на окнах верхних этажей здания.

Гоигоров И.Н. (rk3zk, ua-0113)

Литература :

1. Паньков В. “Малогабаритная рамочная антенна диапазона 27 МГц” ж. Радиолюбиттель №8-1998 с. 38-39.

2. Заугольный С. “Малогабаритная приемо­передающая антенна диапазона 27 МГц” ж: Радиолюбитель №2-1994 с. 59.

Раздел: [Антенны и усилители к ним]

Источник: http://www.cavr.ru/article/5228-prostye-antenny-sv-diapazona

Трассовые испытания малогабаритных вибраторных антенн СВ диапазона

В течение 2010 г. и первой половины 2011 г. проводились испытания малогабаритных вибраторных антенн СВ диапазона, разработанных учеными Омского государственного технического университета. Испытания проводились с участием специалистов ОАО «ОНИИП», ОмГТУ и НПООО «КВ-Связь».

Разработка антенн была ориентирована на их последующее использование в портативных и мобильных радиостанциях СВ диапазона радиоволн. В целом испытания показали высокую эффективность разработанных антенн по сравнению с короткими штыревыми антеннами, которыми комплектуются портативные и мобильные радиостанции указанных диапазонов.

Кратко приведём основные результаты испытаний.

Были проведены измерения основных параметров малогабаритной вибраторной антенны. В протоколе № 4 [125] представлены результаты проведенных измерений действующей длины (Lд ср = 0,618 м) и коэффициента усиления антенны (KУср = – 34,6 дБи).

Измерения проводились по утвержденной методике, представленной в протоколе, с использованием измерительного комплекса напряженности поля FMA 11. В протоколе № 11 [126] представлены результаты проведенных измерений добротности антенны.

На частоте 3750 кГц измеренная добротность составила 25 (полоса пропускания 150 кГц), на частоте 1850 кГц добротность составила 75 (полоса пропускания 24 кГц).

В протоколе 3 [1244] представлены результаты трассовых испытаний трех вариантов малогабаритной вибраторной антенны, настроенных на частоты 1850 кГц, 4028 кГц и 8398 кГц соответственно.

В процессе испытаний аппаратура располагалась в двух точках – «Север» и «Юг». 1-ая точка «Юг» – стационарная, на северной границе города. 2-ая точка «Север» – мобильная, передвигалась на север относительно 1-ой точки с остановками на расстояниях 10, 20, 40 и 50 км от 1-ой точки (расстояние контролировалось по GPS навигатору).

Па остановках проводились сеансы связи на частотах 1853 кГц, 4028 кГц и 8398 кГц, в процессе которых оценивалось качество передачи речевого и тонального сигналов. При проведении сеансов связи на обоих концах радиолинии телескопические удлинители выдвигались на максимальную длину (1,5 м). Связь осуществлялась в режиме J3E в верхней боковой полосе и в режиме А1A (амплитудной телеграфии).

Оценка качества речевой связи проводилась по 6-ти бальной системе:

«5+» – обеспечивается 100% разборчивость и шум не слышен,

«5» – 100% разборчивость речи, прослушиваются слабые шумы,

«4» – близкая к 100% разборчивость, голос слышен па фоне шума,

«3» – разборчивость фраз при переспросе отдельных слов,

«2» – сигнал слышен, но попять собеседника невозможно,

«1» – в режиме телефонии сигнал не слышен.

На рис. 4.1 и рис. 4.2 представлены результаты трассовых испытаний – оценки качества проведенных телефонных сеансов связи на дальностях (10 – 50) км, для мощностей передатчика – 0.5 Вт и 5 Вт. На рис. 4.1 – результаты проведенных сеансов на частоте 1850 кГц, на рис. 4.2 – результаты проведенных сеансов на частотах 4028 кГц и 8398 кГц..

В протоколе № 12 представлены результаты измерений дальности связи, обеспечиваемой мобильными радиостанциями мощностью 5 и 10 Вт с малогабаритными вибраторными антеннами, установленными на крышах двух леговых автомобилей, один из которых стоит на месте, а второй перемещается.

Результаты проведенных сеансов связи представлены на рис. 4.3.

На рис. 4.4 представлены оценки качества речи в сеансах проведенных на частоте 1850 кГц, при различных дальностях трассы и для мощностей передатчика от 0,5 Вт до 100 Вт.

Рис. 4.4. Результаты натурных экспериментов по определению максимальной дальнос-ти связи, при использовании малогабаритных СВ антенн. Рабочая частота – 1,85 МГц. 1 – расчетная кривая зависимости дальности связи от мощности передатчика.



Источник: https://infopedia.su/18x134e5.html

Простые самодельные приёмные антенны диапазонов ДВ, СВ, КВ волн

 – Берлин?!   Брал!

Старое радио.

                              Париж?!   Брал!

                                                          Вашингтон?!   Брал!

 А после того как ты там полазил, приёмник перестал принимать отдалённые радиостанции, – говорил мне отец ещё в детстве.

С тех пор прошло несколько десятков лет, а приемник, как ни в чём не бывало, продолжает брать города. Честно скажу, что с приёмником я ничего не делал. Эти советские ламповые агрегаты будут работать и после апокалипсиса. Просто всё дело в антенне.

Шкала приёмника.

 Поздним вечером, в отблесках пламени камина, не включая электричества, жму клавишу старого лампового радиоприёмника, светящаяся шкала с городами уютно насытила полумрак комнаты, вращая верньер, настраиваюсь на радиостанции.  Длинноволновый диапазон безмолвствует. Правда, ровно в прямоугольнике шкалы светящегося окошка города Варшава на частоте около 1300  метров была взята радиостанция «Польское Радио», а это составляет дальность по прямой более 1150 км.  Средние волны берут местные и отдалённые радиостанции.  А здесь взята дальность более 2000 км.
 Вот уже почти 2 года в Москве и области на этих волнах (ДВ, СВ) прекратили работу центральные радиовещательные каналы.

Читайте также:  Стабилизатор напряжения на микросхеме кр142ен19 с защитой
Рис. 1. Журнал “Радиолюбитель” 1927 № 02.

 Особенно живы короткие волны, здесь полный аншлаг. На коротких волнах радиоволны способны обойти вокруг Земли и радиостанции реально принимать из любой точки земного шара, но условия распространения радиоволн здесь зависят от времени и состояния ионосферы, от которой они способны отражаться.  Включаю настольную лампу и на всех диапазонах (кроме УКВ) вместо радиостанций сплошной шум, переходящий в рокот. Теперь настольная лампа, включая сетевые провода – передатчик помех, который мешает нормальному радиоприёму. Модные, в настоящее время, энергосберегающие лампы и другие бытовые приборы (телевизоры, компьютеры) превратили сетевые провода в антенны передатчиков помех. Стоило только сетевой провод от лампы отодвинуть на пару метров от провода снижения антенны, как приём радиостанций возобновился.

  Проблема помехоустойчивости была и в прошлом веке, и в диапазоне метровых волн её решали различными конструкциями антенн, которые так и назывались как «антишумовые».

                                                       Антишумовые антенны.

 Описание антишумовых антенн я впервые прочитал в журнале «Радиофронт» за 1938 год (23, 24).

Статья написана в журнале “Радиофронт” 1938 г.  В стаье даётся полное описание конструкции такой антенны.
Рис. 2.
Рис. 3.

  Аналогичное описание конструкции антишумовой антенны в журнале «Радиофронт» за 1939 год (06). Но здесь хорошие результаты получились в диапазоне длинных волн. Величина ослабления помех составила 60 дБ.  Данная статья может представлять интерес для любительской радиосвязи на  ДВ (136 кГц).

 Правда, в настоящее время лучшие результаты получаются при использовании согласующего усилителя непосредственно в антенне, который по коаксиальному кабелю подключён к согласующему усилителю на входе самого приёмника.

                                                                   Антенна метёлка.

Рис. 4. г) антенна метёлка.

 Это была моя первая самодельная антенна, которую я делал для детекторного приёмника. Первая антенна, об которую я обжёгся, залуживая каждый проводок, строго по чертежу с помощью транспортира выставляя углы наклона прутиков. Как я не старался, но детекторный приёмник с ней не работал.

Поставь я тогда вместо метелки крышку от кастрюльки, эффект был бы аналогичный. Тогда, в детстве, спасла приёмник сетевая проводка, один провод которой через разделительный конденсатор был подсоединён к входу детектора.

Вот тогда я понял, что для нормальной работы приёмника длина антенного провода должна быть хотя бы 20 метров, а всякие там электронные облачка, проводящие слои воздуха над метёлкой пусть останутся в теории. Старожилы будут ещё вспоминать, что метёлка, прикреплённая к печной трубе, исключительно хорошо ловила, когда дым шёл вертикально вверх.

В деревнях обычно топили печь к вечеру и в чугунках готовили ужин. К вечеру обычно стихает ветер, и идёт столбом дым. В тоже время к вечеру происходит преломление волн от ионизационного слоя поверхности земли и приём в этих диапазонах волн улучшается.  Лучшие результаты можно получить с представленными ниже картинками антенн (рис 5 – 6).

Это тоже антенны с сосредоточенной ёмкостью. Здесь проволочная рамка и спираль включает в себя 15 –  20 метров провода. Если крыша достаточно высокая и не из металла и свободно пропускает радиоволны, то такие композиции (рис. 5, 6) можно разместить на чердаке.

Рис. 5. “Радио всем” 1929 № 11
Рис. 6. “Радио всем” 1929 № 11

Журнал “Радиолюбитель” 1928 № 03-04.

Антенна – рулетка.

 Я использовал обычную строительную рулетку с длиной стального полотна 5 метров.

Такая рулетка очень удобна в качестве антенны КВ диапазона, так как имеет металлическую клипсу, электрически связанную через вал с полотном ленты. Карманные приёмники с диапазоном КВ имеют чисто символическую штыревую антенну, в противном случае они бы не поместились в карман.

Стоило мне только закрепить рулетку на штыревой антенне приёмника, как коротковолновые диапазоны в районе 13 метров стали захлёбываться от большого количества принимаемых радиостанций.  Так называется статья в Журнале “Радиолюбитель” за 1924 год № 03.

Теперь эти антенны вошли в историю, но при необходимости сетевыми проводами ещё можно воспользоваться в какой-нибудь затерянной деревушке, предварительно отключив все современные бытовые приборы.

Рис. 7.  Конденсатор С 1 имеет номинал 200 пФ 400 В. Один из проводов осветительной сети и есть антенна (рис. 1). На рисунке 1 и 4 изображены конструкция и схема детекторного приёмника. На рисунке 2 – антенный провод наматывался на баллон осветительной лампы, обеспечивая, таким образом, емкостную связь с сетевыми проводами. на рисунке 3 антенный провод проложен вокруг сетевой проводки.

                     

Журнал “Радио всем” 1925 г. № 05. Антенна подключена к сетевой розетке с помощью двух конденсаторов номиналом 200 пФ. 1 – розетка; 2, 3 – конденсаторы; 4 – антенный провод.

                         Самодельная Г – образная антенна.


Эти антенны представлены на рисунке 4. а, б).  Горизонтальная часть антенны не должна превышать 20 метров, обычно рекомендуют 8 – 12 метров. Расстояние от земли не менее 10 метров. Дальнейшее увеличение высоты подвеса антенны приводит к росту атмосферных помех.

Рис 8. Детекторный приёмник из сетевой переноски и тазика для варенья.

 Эту антенну я сделал из сетевой переноски на бобине. Такую антенну (рис. 8) очень легко развернуть в полевых условиях. Кстати детекторный приёмник с ней неплохо работал.

На рисунке, где изображён детекторный приёмник, из одной сетевой бобины (2) сделан колебательный контур, а второй сетевой удлинитель (1) используется в качестве Г- образной антенны.

                    Детекторный приёмник из сетевой переноски и тазика для варенья.    Антенна может быть выполнена в виде рамки, и является входным перестраиваемым колебательным контуром, который обладает направленными свойствами, что значительно ослабляет помехи радиоприёму.

Рис. 9. Журнал “Радиолюбитель” 1925 № 03.  Статья называется “Как устроить приём на рамку”. Рамка имеет диагональ 1,5 метра. Настройка осуществляется конденсатором переменной емкости и переключением отвода к виткам рамки. 

Приёмная складная рамка в виде зонтика. Журнал “Радиолюбитель” 1929 г. 06.

 При её изготовлении используется ферритовый цилиндрический стержень, а также прямоугольный стержень, занимающий меньше места в карманном радиоприёмнике. На стержне помещается входной перестраиваемый контур.

Достоинством магнитных антенн – маленькие габариты, а высокая добротность контура, и, как следствие высокая селективность (отстройка от соседних станций), которая в совокупности с направленным свойством антенны только добавят ещё одно преимущество, такое, как  лучшая  помехоустойчивость приёма в городе.

Применение магнитных антенн в большей степени предназначено для приёма местных радиовещательных станций, однако высокая чувствительность современных приёмников ДВ, СВ и КВ диапазонов и перечисленные выше положительные свойства антенны обеспечивают неплохую дальность радиоприёма.

 Так, например, я смог на магнитную антенну поймать отдалённую радиостанцию, но стоило только подключить дополнительно громоздкую внешнюю антенну, как станция затерялась в шуме атмосферных помех.

Магнитная антенна в стационарном приёмнике имеет поворотное устройство.

  На плоском ферритовом (аналогичным по длине цилиндрическом) стержне размером 3 Х 20 Х 115 мм  марки 400НН  для ДВ и СВ диапазонов на подвижном бумажном каркасе наматываются катушки проводом марки ПЭЛШО, ПЭЛ 0,1 – 0,14 , по 190 и 65 витков.

 Для КВ диапазона контурная катушка размещается на диэлектрическом каркасе толщиной 1,5 – 2 мм и содержит 6 витков, намотанных с шагом (с расстоянием между витками) с длиной контура 10 мм.  Диаметр провода 0,3 – 0,4 мм. Каркас с витками крепится на самом конце стержня. 

Телевизионная и радио антенны.

 Давно использую чердак для телевизионных и радиоприёмных антенн. Здесь, в дали от электропроводки, хорошо работает и антенна СВ и КВ диапазонов. Крыша из мягкой кровли, ондулина, шифера является прозрачной для радиоволн. В журнале «Радио всем» за 1927 (04) год даётся описание таких антенн. Автор С. Н.

Бронштейн статьи «Чердачные антенны» рекомендует: «Форма может быть самой разнообразной, в зависимости от размеров помещения. Общая длина проводки должна быть не менее 40 – 50 метров. Материалом служит антенный канатик или звонковая проволока, укрепляемые на изоляторах.

Грозовой переключатель при такой антенне отпадает».

Рис. 10.  Чердачные антенны. Журнал “Радио всем” 1927 № 04.

 Я использовал провод  как одножильный, так и многожильный от электропроводки, не снимая с него изоляцию.

                                                                         Потолочная антенна.

Рис. 11. Комнатная потолочная антенна. Журнал “радио всем” 1929 № 11.

Это та самая антенна, на которую отцовский приёмник брал города.

Медный моточный провод диаметром 0,5 – 0,7 мм наматывался на карандаш, а затем растягивался под потолком комнаты.

Был кирпичный дом и высокий этаж, и приёмник работал превосходно, а когда переехали в дом из железобетона, то арматурная сетка дома стала преградой для радиоволн, и радио перестало нормально работать.

Рис. 12.  Журнал “Радио всем” 1926 12.

                                                                       Из истории антенн.

 Возвращаясь в прошлое, мне интересно было узнать, как выглядела первая в мире антенна.

 Первая антенна была предложена А. С. Поповым в 1895 году, представляла собой длинный тонкий провод, приподнятый с помощью воздушных шаров. Она была присоединена к грозоотметчику (приемнику, регистрирующему грозовые разряды), прототипу радиотелеграфа. А во время первой в мире радиопередачи 1896 года на заседании Русского физико-химического общества в физическом кабинете Петербургского университета от первого радиотелеграфного радиоприёмника, к вертикальной антенне был протянут тонкий провод (журнал «Радио» 1946 г. 04 05 «Первая антенна»).

Рис. 13. Первая антенна.
Рис. 14. Антенна – змей.Журнал “Радио всем” 1925 № 06.

Источник: http://dedclub.blogspot.com/2017/05/blog-post.html

Малогабаритная антенна диапазона 80 м

Без преувеличения можно сказать, что 80-метровый диапазон является одним из наиболее популярных. Однако многие земельные участки слишком малы для установки полноразмерной антенны на этот диапазон, с чем и столкнулся американский коротковолновик Joe Everhart, N2CX. Пытаясь выбрать оптимальный тип малогабаритной антенны, он проанализировал много вариантов.

При этом не были забыты классические проволочные антенны, которые при длине более L/4 работают достаточно эффективно. К сожалению, такие антенны, запитанные с конца, нуждаются в хорошей системе заземления. Разумеется, качественное заземление не требуется в случае применения полуволновой антенны, но ее длина оказывается такой же, как у полноразмерного диполя, запитанного по центру.

Таким образом, Joe решил, что самой простой антенной с хорошими параметрами является горизонтальный диполь, возбуждаемый в центре. К сожалению, как уже указывалось, длина полуволнового диполя 80-метрового диапазона часто является препятствующим фактором при его установке. Тем не менее, длина может быть уменьшена примерно до L/4 без фатального ухудшения характеристик.

А если приподнять центр диполя и приблизить к земле концы вибраторов, получим классическую конструкцию Inverted V, которая дополнительно сэкономит площадь при установке. Следовательно, можно рассматривать предложенную конструкцию как Inverted V 40-метрового диапазона, который используется на 80 м (см. рис. выше).

Полотно антенны образовано двумя вибраторами по 10,36 м, симметрично снижающимися от точки запитки под углом 90° друг к другу. При монтаже нижние концы вибраторов должны располагаться на высоте не менее 2 м над землей, для чего высота подвеса центральной части должна быть не менее 9 м.

Малая высота подвеса обуславливает эффективное излучение под большими углами, что идеально подходит для связей на расстояниях до 250 км. Самым главным преимуществом подобной конструкции является то обстоятельство, что ее проекция не превышает 15.5 м.

Как известно, достоинством полуволнового диполя, питаемого по центру, является хорошее согласование с 50 или 75-омным коаксиальным кабелем без применения специальных согласующих устройств. Описываемая антенна в диапазоне 80 м имеет длину L/4 и, следовательно, не является резонансной.

Активная составляющая входного импеданса мала, а реактивная — велика. Это означает, что при сопряжении такой антенны с коаксиальным кабелем, КСВ окажется слишком высок, и уровень потерь будет значителен.

Проблема решается просто — необходимо применить линию с малыми потерями и использовать антенный тюнер для ее согласования с 50-омной аппаратурой. В качестве антенного фидера был использован 300-омный телевизионный плоский ленточный кабель.

Меньшие потери обеспечивает двухпроводная воздушная линия, но ее сложнее завести в помещение. Кроме того, может потребоваться подстройка длины фидера, чтобы попасть в диапазон перестройки антенного тюнера.

В оригинальной конструкции концевые и центральный изоляторы были изготовлены из обрезков стеклотекстолита толщиной 1,6 мм, а для полотна антенны использовался изолированный монтажный провод диаметром 0,8 мм. Провода малого диаметра успешно эксплуатировались на радиостанции N2CX в течение нескольких лет. Разумеется, значительно дольше прослужат более прочные монтажные провода диаметром 1,6…2,1 мм.

Проводники плоского телевизионного кабеля недостаточно прочны и обычно обрываются в точках подключения к антенному тюнеру, поэтому необходимую механическую прочность и простоту подключения линии к тюнеру обеспечивает переходник, изготовленный из фольгированного стеклотекстолита.

Схема тюнера очень проста, и представляет собой последовательную резонансную цепочку, обеспечивающую согласование с коаксиальным кабелем.

Настройка тюнера осуществляется с помощью конденсатора С1.

Для QRP-варианта катушка индуктивности L1 содержит 50 витков, a L2 — 4 витка изолированного провода, намотанных на тороидальный сердечник из карбонильного железа Т68-2 (внешний диаметр — 17,5 мм, внутренний — 9,4 мм, высота — 4,8 мм, р=10). Можно использовать и катушку с воздушным сердечником, но при этом увеличатся габариты устройства.

Конструкция тюнера также очень проста. Для его изготовления применен фольгирован- ный стеклотекстолит. На припаянных к основанию боковых пластинах установлены пара клемм с одной стороны и коаксиальный разъем — с другой. Выводы L1 и С1, подключаемые к линии, не имеют соединения с общим проводом.

Один конец вторичной обмотки L2 «заземлен» на плату основания и экран коаксиального разъема, а «горячий» конец этой обмотки припаян к центральному выводу коаксиального разъема Конденсатор переменной емкости может быть припаян (приклеен) к основанию или закреплен с помощью винтов, но обкладки конденсатора не должны соединяться с общим проводом.

Для настройки антенной системы с этим тюнером длина 300-омного фидера должна быть 13,7 м. При использовании другого тюнера, возможно, придется удлинить или укоротить фидер, чтобы попасть в диапазон перестройки тюнера.

В связи с тем что настройка тюнера довольно «остра», желательно проверить работу устройства до подключения антенны. Эквивалентом антенны может служить зажатый между клеммами 10-ом резистор. Изменяя емкость кондесатора С1 и число витков L2, добиваются КСВ не хуже 1,5.

Настройка тюнера при работе с антенной также будет «острой», поэтому вполне удовлетворительным будет значение КСВ около 2 в полосе частот около 40 кГц.

Несмотря на то что описываемая антенна была разработана для диапазона 80 м, она может использоваться и в качестве многодиапазонной. Однако простейший тюнер придется заменить на более сложный.

Joe Everhart, N2CX. —     QST, 2001, 4

Источник: https://www.ruqrz.com/malogabaritnaya-antenna-diapazona-80-m/

мир электроники – Радиоприемные антенны диапазона СВ- ДВ

категория

Практическая электроника

материалы в категории

Радио 1998 год, номер 2
В. ПОЛЯКОВ, г. Москва

Простейшие детекторные или транзисторные приемники имеют небольшое усиление и требуют для нормальной работы значительного уровня сигнала на входе, который создается антенной.

Работают такие приемники в диапазонах длинных и средних волн (ДВ и СВ), где для отстройки от сигналов соседних по частоте, мешающих радиостанций достаточно даже одного колебательного контура.

О приемных антеннах для этих диапазонов и пойдет речь.

Современные радиостанции имеют, к счастью, значительную мощность и создают большую напряженность поля, поэтому принимать их можно даже на детекторный приемник с антенной умеренных размеров. Провод антенны должен располагаться вдоль силовых линий электрического поля принимаемой волны, т.е.

по направлению вектора ее электрического поля Е (рис. 1 ,а). На ДВ и СВ радиостанции излучают волны с вертикальной поляризацией, у которых вектор электрического поля Е вертикален, а вектор магнитного поля Н – горизонтален. Соответственно магнитную антенну надо располагать горизонтально (рис.

1 ,б), а электрическую – вертикально (рис. 1 ,в).

Магнитная антенна представляет собой ферритовый стержень прямоугольного или круглого сечения с намотанной на него катушкой, которая одновременно является и катушкой входного, а может быть, и единственного в приемнике колебательного контура.

Ферритовый стержень, обладая большой магнитной проницаемостью, концентрирует магнитное поле принимаемой волны в катушке. Располагается антенна обычно внутри корпуса приемника, и поэтому очень удобна. Она обладает направленностью и должна располагаться примерно перпендикулярно направлению на радиостанцию.

Если же направление неизвестно, его можно определить, поворачивая корпус приемника, причем минимум приема, когда ось стержня магнитной антенны смотрит на радиостанцию, выражен острее. С какой же именно стороны находится станция (по найденному направлению) определить с помощью магнитной антенны невозможно.

К сожалению, напряжение сигнала, развиваемое магнитной антенной, совершенно недостаточно для работы детекторного приемника – требуется один или два транзисторных каскада усиления радиочастоты перед детектором.

Если вы начинаете осваивать радиотехнику с постройки простейшего детекторного приемника, придется воспользоваться электрической проволочной антенной, развивающей значительно большее напряжение. Приемники с магнитными антеннами освоите позднее.

Классическая электрическая антенна -это диполь, представляющий собой прямолинейный отрезок провода, разомкнутый в середине, с подключенной в этом месте двухпроводной линией, соединяющей диполь с приемником (рис. 1 ,в).

Диполь располагается вертикально, он имеет собственную резонансную частоту, на которой его длина равна половине длины волны. Но на СВ и тем более ДВ длина волны составляет от 200 до 2000 м. и приемных диполей длиной более 100 м, тем более расположенных вертикально, разумеется, никто не делает.

Применяют укороченные диполи, развиваемое напряжение сигнала которых снижается пропорционально уменьшению длины. Правда, есть способ укоротить длину диполя вдвое без ухудшения его работы – использовать заземление (рис. 1,г). Земля будет служить прекрасным противовесом верхней половине диполя и заменит его нижнюю половину.

Так делают даже на передающих радиоцентрах, где высота полноразмерной антенны-мачты должна теперь составлять четверть длины волны.

Дальнейшие возможности уменьшения длины диполя (а значит, его высоты -ведь диполь-то вертикальный) состоят в использовании емкостной нагрузки на его верхнем конце. Ток. текущий по проводу снижения, должен перезаряжать эту емкость с частотой принимаемых колебаний. Следовательно, чем больше емкость, тем больше и ток, текущий по проводу снижения и поступающий в приемник.

Верхнюю емкостную нагрузку выполняют по-разному. В простейшем случае используется горизонтальный провод, подвешенный на изоляторах между двумя мачтами или другими подходящими объектами (домами, деревьями).

Если он является продолжением вертикального провода снижения, получается Г-образная антенна (рис.2,а).

Она имеет слабо выраженную направленность: немного лучше принимаются станции со стороны снижения, поэтому дальний, свободный конец провода лучше протягивать в сторону от радиостанции.

Если провод снижения подключен где-то ближе к середине горизонтальной части, получается Т-образная антенна (рис. 2,6). Она одинаково принимает радиосигналы со всех направлений. Длина горизонтальной части может составлять 10…25 м, делать ее слишком длинной нецелесообразно, поскольку непосредственно в приеме радиоволн она не участвует, а лишь повышает эффективность вертикальной части.

Для Г- и Т-образных антенн нужны две опоры – в этом их недостаток, Если позволяют местные условия, можно протянуть антенну типа “наклонный луч” от окна, куда входит снижение, до ближайшего высокого объекта (конька крыши, дерева). Свободный конец провода надо изолировать одним-двумя фарфоровыми изоляторами (подойдут старые ролики от электропроводки).

При закреплении антенны на деревьях постарайтесь не ломать ветки и не обкручивать стволы проволокой – деревья от этого страдают и гибнут, у них ведь нет средств защититься от варваров! Лучше всего повесьте на подходящую развилку ветвей очень свободную и ни в коем случае не затягивающуюся петлю из пеньковой или хлопчатобумажной веревки, а уже к ней привязывайте провод, идущий к первому изолятору антенны, или сам этот изолятор.

Учтите, что деревья качаются от ветра, поэтому провод надо подвешивать с большим “провисом”, чтобы он не оборвался. Диаметр провода антенны не имеет значения и выбирается только из соображений механической прочности.

Вполне подойдет медный обмоточный провод в эмалевой изоляции, смотанный со старых (выброшенных) трансформаторов. Даже при диаметре 0,5 мм его прочность на разрыв достигает 4 кг, возрастая пропорционально квадрату диаметра.

Этого вполне достаточно, к тому же антенна получается очень легкой и, к слову сказать, почти невидимой с земли.

Две другие антенны (рис. 2,в,г), монтируют на одной мачте – вертикальном деревянном шесте, при необходимости укрепляемом оттяжками. Небольшой и легкий шест можно закрепить на коньке крыши, более длинный и тяжелый лучше устанавливать на земле.

Оттяжки сделайте из синтетического шнура или капроновой лески диаметром 0,8…1 мм -она прочна, упруга, стоит недорого. Кстати, если, прогуливаясь по берегу речки, найдете запутанный и выброшенный рыбаками моток лески, не поленитесь поднять его и распутать.

Пригодится.

В антенне, изображенной на рис. 2,в, верхняя емкостная нагрузка образована проволочным “колесом” произвольной формы и конфигурации, соединенным с проводом снижения и изолированным от мачты фарфоровым изолятором.

Изолятор нужен на случай дождливой и сырой погоды, когда влажное дерево мачты становится хоть и плохим, но проводником, и может ухудшить работу антенны, Аналогично выполнена широко известная “метелочная” антенна, в которой вместо “колеса” используют пучок проволок, соединенных со снижением и расходящихся веером от изолятора. Делать ее не рекомендуем, потому что пучок получается тяжелым, а работает антенна неэффективно, поскольку проволоки расположены слишком близко друг к другу. Лучше взять всего 6 или 8 проволок длиной около 0.5 м и развести их в стороны наподобие спиц. Этого уже достаточно, но можно еще соединить концы спиц тонким медным проводником.

Роль емкостной нагрузки в так называемой “зонтичной” антенне (рис. 2,г) выполняют верхние части растяжек длиной по 2…3 м. выполненные из проводов, соединенных в центральной точке со снижением.

Концы проводов изолированы от растяжек изоляторами. Если же растяжки сделаны из лески, являющейся хорошим диэлектрикам, можно обойтись и без изоляторов, связав леску с проводом.

Обычно ставят три или четыре растяжки.

Источник: http://radio-uchebnik.ru/txt/9-prakticheskaya-elektronika/287-radiopriemnye-antenny-diapazona-sv-dv

Емкостная антенна для дв и св диапазонов частот и способ ее перестройки

Изобретение относится к антенной технике и может быть использовано при создании приемо-передающих антенных устройств для корабельной аппаратуры радиосвязи в ДВ и СВ диапазонах частот.

В качестве прототипа выбрана емкостная антенна (Патент RU №2470424), выполненная в виде цилиндрической вертикальной конструкции. Такая антенна имеет узкую рабочую полосу частот (порядка 10-12 процентов в диапазоне УКВ и около 2-4 процентов в нижней части СВ диапазона) и при этом она не подлежит перестройке по частоте.

Кроме того, в нижней части СВ диапазона частот вертикальный размер активной части цилиндрической емкостной антенны может достигать величин порядка 6-8 метров, не считая высоты подъема ее над палубой корабля. При массе в десятки килограммов такая конструкция оказывается сложной для установки и эксплуатации в корабельных условиях.

Более того размещение цилиндрической емкостной антенны на стальной корабельной палубе приводит к существенному снижению ее коэффициента полезного действия (КПД) при излучении в ДВ и СВ диапазонах частот по причине замыкания значительной части токов смещения (см. фиг.

1) на металлическую проводящую заземленную поверхность палубы и снижения добротности антенного контура.

Целью изобретения является снижение общей высоты емкостной антенны, увеличение ее КПД при излучении над токопроводящей заземленной поверхностью, а также обеспечение возможности перестройки рабочей частоты емкостной антенны в ДВ и СВ диапазонах частот.

Технический результат достигается тем, что:

– с целью снижения общей высоты емкостной антенны и увеличения ее коэффициента полезного действия при излучении над токопроводящей заземленной поверхностью емкостной элемент выполняется в виде двух плоских токопроводящих пластин, одна из которых располагается горизонтально над плоскостью палубы корабля, а другая устанавливается выше и перпендикулярно к ней;

– с целью обеспечения возможности перестройки емкостной антенны по частоте вводится блок перестройки частоты особой конструкции.

На чертежах изображено:

Фиг. 1. – Распределение токов смещения в пространстве вокруг цилиндрической емкостной антенны (прототип), установленной над токопроводящей поверхностью, где цифрами обозначено: 1 – токопроводящие цилиндры емкостного элемента антенного контура; 2 – токи проводимости; 3 – токи смещения; 4 – токопроводящая поверхность (стальная палуба корабля).

Фиг. 2. – Емкостная антенна для ДВ и СВ диапазонов частот и способ ее перестройки, где цифрами обозначено: 1 – токопроводящие пластины емкостного элемента антенного контура; 2 – токи проводимости; 3 – токи смещения; 4 – блок перестройки частоты; 5 – устройство согласования.

Фиг. 3. – Блок перестройки частоты, где цифрами обозначено: 6 – диэлектрический цилиндр с винтовой канавкой; 7 – токопроводящий цилиндр с винтовой канавкой; 8 – медный провод (обмотка) катушки переменной индуктивности; 9 – вращающийся электрический соединитель; 10 – привод вращения.

Емкостная антенна для ДВ и СВ диапазонов частот состоит из развернутого в пространстве емкостного элемента, образованного двумя плоскими токопроводящими пластинами 1 (см. фиг. 2), например, из листовой меди. Одна из пластин располагается горизонтально непосредственно над палубой корабля, а другая устанавливается выше перпендикулярно к ней.

Последовательно с емкостным элементом включен блок перестройки частоты 4, содержащий катушку переменной индуктивности, которая вместе с емкостным элементом образует перестраиваемый колебательный контур (антенный контур), настраиваемый на частоту излучаемого (принимаемого) электромагнитного сигнала.

К антенному контуру с помощью устройства согласования 5 подключена фидерная линия, питающая антенну.

При излучении по фидерной линии, электрически согласованной с антенной, от передатчика подводится напряжение сигнала высокой частоты.

На резонансе между развернутыми в пространстве пластинами емкостного элемента возникает переменное напряжение высокой частоты, в Q раз превышающее по величине входное напряжение (Q – добротность антенного контура).

Высокочастотное электрическое поле, действующее между пластинами, индуцирует в окружающем пространстве токи смещения (Эйхенвальд А.А. «Электричество», изд. 5-е, М.-Л.: Государственное издательство, 1928, первое уравнение Максвелла), благодаря которым и возникает высокочастотное электромагнитное излучение (электромагнитная волна).

В корабельных условиях для достижения высокого КПД в ДВ и СВ диапазонах частот цилиндрическая емкостная антенна, описанная в прототипе, должна быть поднята на значительную высоту над токопроводящей подстилающей поверхностью. В противном случае значительная часть токов смещения будет замыкаться на стальную заземленную палубу корабля (фиг. 1). Это приведет к ухудшению добротности антенного контура и снижению КПД антенны при излучении.

Предлагаемая конфигурация емкостной антенны (фиг. 2) позволяет значительно уменьшить долю токов смещения, замыкающихся на токопроводящую подстилающую заземленную поверхность, а также существенно снизить общую высоту антенны при сохранении ее КПД в излучении.

Для перестройки емкостной антенны по частоте необходимо изменять в широких пределах индуктивность антенного контура.

В теории и на практике хорошо известны такие способы изменения индуктивности, как, например, применение ферромагнитного сердечника, применение коммутирующего устройства для изменения числа витков в катушке индуктивности, а также путем изменения взаимного положения последовательно соединенных индуктивностей (вариометры).

В емкостной антенне применение ферромагнитного сердечника для изменения индуктивности катушки не решает стоящей задачи поскольку, во-первых, не позволяет изменять индуктивность в необходимых пределах, а во-вторых, приводит к большим потерям в сердечнике на высокой частоте в режиме излучения.

Изменение индуктивности катушки путем коммутации ее витков, включаемых в цепь контура, совершенно не приемлемо, поскольку исключенные из антенного контура витки остаются связанными с основной катушкой через общее магнитное поле. Это приводит к искажению частотной характеристики, расстройке антенны и дополнительным потерям при излучении.

Применение дискретного набора катушек с разными величинами индуктивности не позволяет обеспечить плавную перестройку по частоте.

Реализовать плавную перестройку рабочей (резонансной) частоты емкостной антенны без ухудшения ее КПД при излучении возможно путем применения блока перестройки частоты (см. фиг.

3), состоящего из двух вращающихся цилиндров (6, 7) и привода вращения (10). Один из цилиндров (6) – диэлектрический, на который намотана в один ряд катушка индуктивности антенного контура.

Другой цилиндр (7) – токопроводящий с малым поверхностным электрическим сопротивлением, например, медный или бронзовый.

Обмотка (8) катушки индуктивности, выполненная медным оголенным многожильным проводом, например, марки МГ повышенной гибкости, укладывается в винтовую канавку на поверхности обоих цилиндров, которая обеспечивает точное позиционирование и фиксацию витков катушки индуктивности при перемотке провода с одного цилиндра на другой.

В процессе перестройки рабочей частоты антенны происходит синхронное вращение обоих цилиндров, при котором медный провод перематывается с диэлектрического цилиндра на токопроводящий, и наоборот.

При этом в катушке индуктивности уменьшается (увеличивается) число витков, и резонансная (рабочая) частота антенного контура возрастает (уменьшается). Витки провода, который перематывается на токопроводящий цилиндр, электрически закорачиваются через его поверхность, имеющую малое электрическое сопротивление.

Это позволяет исключать их из электрической цепи контура и избегать условий возникновения паразитных явлений и потерь.

Электрическое подключение катушки индуктивности, выполненной на вращающихся цилиндрах, может быть обеспечено с помощью вращающегося электрического соединителя (9), например, производства фирмы MERCOTAC.

1.

Емкостная антенна для ДВ и СВ диапазонов частот и способ ее перестройки, содержащая развернутый в пространстве емкостной элемент, катушку индуктивности и согласующую катушку индуктивности, отличающаяся тем, что емкостной элемент выполнен в виде двух плоских токопроводящих пластин, одна из которых располагается горизонтально над подстилающей токопроводящей поверхностью, а другая установлена выше и перпендикулярно к ней.

2. Емкостная антенна для ДВ и СВ диапазонов частот и способ ее перестройки по п.

1, отличающаяся тем, что последовательно с емкостным элементом включен блок перестройки частоты, содержащий вращающийся диэлектрический цилиндр с обмоткой катушки индуктивности, подключенной одним концом через вращающийся электрический соединитель к верхней пластине емкостного элемента, выполненной мягким медным оголенным проводом, уложенным в винтовую канавку, прорезанную на его поверхности, и вращающийся токопроводящий цилиндр с винтовой канавкой, в которую укладывается продолжение медного провода, другой конец которого подключен через вращающийся электрический соединитель к устройству согласования и центральному проводнику фидерной линии, а другой вывод устройства согласования подключен к нижней пластине емкостного элемента и внешней оплетке фидерной линии.

3. Емкостная антенна для ДВ и СВ диапазонов частот и способ ее перестройки по п. 1, отличающаяся тем, что с помощью привода вращения обеспечиваются синхронное вращение обоих цилиндров и перематывание медного провода с диэлектрического цилиндра на токопроводящий, где витки оголенного провода электрически закорачиваются, а индуктивность катушки и рабочая частота антенны изменяются.

Источник: http://www.FindPatent.ru/patent/256/2566434.html

Техника радиоприёма

Неплохой заменой ферритовой магнитной антенны может оказаться рамочная. Она легче и дешевле, а в некоторых случаях у нее более удобная конструкция.

Ее электрические параметры оказываются даже лучше, чем у ферритовой, к тому же она совершенно не подвержена перекрестной модуляции в сильных посторонних магнитных полях, следовательно, помехоустойчивость ее также выше, чем у ферритовой.

По этим причинам и было решено поделиться практическим опытом изготовления рамочной антенны СВ диапазона.

Потребовав, чтобы действующая высота рамочной антенны была не меньше, чем у ферритовой, и учитывая, что сердечника нет и μ = 1, можно оценить ее необходимые размеры.

При этом число витков определяем по формуле для расчета индуктивности круглой рамки диаметром D: L = kN2D, где k – коэффициент, зависящий от плотности намотки, его значение лежит в пределах (1-3)10-6.

Для “корзиночной” обмотки, описанной ниже, k = 1,6*10-6.

Расчеты показали, а эксперимент подтвердил, что в СВ диапазоне при диаметре рамки D = 12 см и числе витков N = 37 рамочная антенна не уступает даже хорошей ферритовой, намотанной на стержне из феррита 400НН длиной 200 и диаметром 10 мм.

Рамки большего диаметра по своим параметрам превосходят ферритовые антенны. Здесь уместно вспомнить, что на выделенных приемных радиоцентрах в начале 20-х гг.

применялись рамки на деревянном каркасе в виде квадрата, поставленного на угол, причем сторона квадрата доходила до 20 м!

Но вернемся к нашей миниатюрной рамке. Чтобы не шунтировать контур, образованный рамкой и КПЕ, первый каскад УРЧ был собран по схеме истокового повторителя на полевом транзисторе VT1 (рис. 4.6). Нагрузкой каскада служит резистор R3, элементы R2C2 развязывают цепь питания.

Резистор R1 предотвращает самовозбуждение каскада на верхнем краю диапазона из-за паразитных емкостей полевого транзистора затвор-исток и исток-земля, образующих «емкостную трехточку», создавая тем самым положительную обратную связь.

Уменьшая сопротивление этого резистора, можно достичь благоприятного эффекта – увеличения добротности антенного контура на высокочастотном краю диапазона.

Какая же нам необходима добротность? В простых одноконтурных приемниках прямого усиления, работающих в диапазоне СВ, желательно, чтобы она составляла 120-300, возрастая с повышением частоты.

Тогда полоса пропускания контура, равная f0/Q сохраняется равной примерно 4-5 кГц во всем диапазоне, обеспечивая разумный компромисс между воспроизведением верхних частот звукового спектра и селективностью приемника.

В супергетеродинах, где селективность определяется трактом ПЧ и имеется большой запас усиления, добротность контура магнитной антенны бывает существенно ниже.

Добротность ферритовой магнитной антенны даже при намотке одножильным проводом может достигать 150-250, плавно уменьшаясь к высокочастотному краю диапазона из-за увеличения потерь в феррите и проводе.

Намотка ферритовой антенны литцендратом позволяет довести добротность до 350-380, но на низкочастотном краю диапазона, где это не очень нужно.

Добротность же на высокочастотном краю при этом составит 250-270.

Добротность рамочной антенны зависит от многих факторов и почти не поддается расчету. Для решения вопроса был проведен рад экспериментов по определению добротности. Первая рамка была намотана на пенопластовом кольце диаметром 14 и шириной 1,5 см. 24 витка провода ПЭЛ 0,23 располагались плотно, внавал.

Для настройки контура использовалась секция стандартного сдвоенного блока КПЕ с воздушным диэлектриком от радиоприемников, емкостью 10-365 пФ. Добротность получилась низкой (кривая 1 на рис. 4.7), да к тому же уменьшалась к высокочастотному краю диапазона.

Увеличение диаметра провода до 0,5 мм положения не исправило.

Низкая добротность объясняется увеличением сопротивления провода на высокой частоте из-за вытеснения тока к поверхности металла (скин-эффект). На верхних частотах СВ диапазона толщина скин-слоя в меди составляет всего лишь 0,08 мм.

Только для более тонких проводов их сопротивление на высокой частоте можно считать равным сопротивлению на постоянном токе. Отсюда ясен смысл применения литцендрата – многожильного провода, свитого из нескольких (от 4 до 81) тонких изолированных проводников.

При намотке той же рамки литцендратом ЛЭШО 21×0,07 добротность контура возросла вдвое, но неблагоприятная частотная зависимость сохранилась (кривая 2).

Следующий фактор, влияющий на добротность, – это эффект близости витков друг к другу, вызывающий потери на вихревые токи в соседних витках.

Кроме того, при плотном расположении витков создаваемое ими магнитное поле как бы вытесняет ток из обмотки, приводя к увеличению ее сопротивления, особенно на высоких частотах. Явление аналогично скин-эффекту в сплошных проводниках.

При плотной намотке возрастает и собственная междувитковая емкость катушки, также увеличивающая потери из-за протекания дополнительного реактивного тока в проводе.

Эксперимент подтвердил большое значение эффекта близости витков. Та же рамка, намотанная в навал самодельным литцендратом из шести проводников ПЭЛ 0,09, причем проводники не были скручены, оказалась вообще неработоспособной.

Ее добротность была низкой, а собственная емкость велика настолько, что со стандартным КПЕ даже не перекрывался весь СВ диапазон.

Произошло это, видимо, потому, что отдельные проводники разных витков тесно перемешались друг с другом.

Уменьшение «эффекта близости» достигается в однослойной цилиндрической обмотке, лучше с шагом в 1-2 диаметра провода. Многослойные высокочастотные катушки нельзя наматывать так, как наматывают низкочастотные, например сетевые трансформаторы. Хороша намотка «универсаль», еще лучше сотовая. Предпочтительнее провод с толстой изоляцией, ПЭЛШО, ПШД и т.д.

Для рамочных антенн цилиндрическая форма намотки неудобна, предпочтительнее радиальная. Очень удобна «корзиночная» обмотка, автоматически обеспечивающая шаг между витками, равный диаметру провода.

В этом случае катушку наматывают на плоском каркасе из диэлектрика с нечетным числом радиальных прорезей, в которые и укладывают провод, проходящий попеременно с одной или с другой стороны каркаса.

Был изготовлен каркас с прорезями из листа органического стекла толщиной 4 мм (рис. 4.8). Края прорезей следует скруглить острым ножом или надфилем, чтобы не повредить провод при намотке. Центральную часть каркаса целесообразно вырезать и удалить (вообще, чем меньше диэлектрика в каркасе, тем лучше).

Обмотка содержала 37 витков провода ЛЭШО 21×0,07, выводы были закреплены в специально просверленных отверстиях каркаса. Можно припаять выводы к специально прикрепленным к каркасу лепесткам. Нижний выступ каркаса предназначен для крепления всей антенны.

Добротность рамочной магнитной антенны с корзиночной обмоткой значительно возросла и, кроме того, стала увеличиваться с частотой, достигнув значения 280 на частоте 1600 кГц (кривая 3 на рис. 4.7). Это обеспечило полосу пропускания контура антенны не шире 6 кГц во всем С В диапазоне.

Напряжение, наводимое полем центральных радиостанций на выводах контура магнитной антенны, составило от 15 до 300 мВ в условиях Москвы, на девятом этаже панельного дома.

Несколько слов о конструктивном оформлении приемника с рамочной антенной. Безусловно, нежелательно наматывать рамку на самом корпусе приемника, поскольку все детали оказываются в ее поле.

Не говоря уж о вероятных наводках и паразитных связях, при этом трудно получить и высокую добротность из-за обилия «металла» внутри рамки.

Если габариты позволяют, можно разместить рамку на задней стенке корпуса, придав ей овальную или даже прямоугольную форму.

Но лучше всего расположить магнитную антенну в «свободном пространстве», на расстоянии не менее одного ее диаметра от окружающих предметов. «Корзиночная» обмотка на каркасе из оргстекла или цветной пластмассы красива и послужит оригинальным элементом дизайна приемника.

Рамку целесообразно расположить над приемником в вертикальной плоскости и сделать поворот ной, достаточно в пределах 90°, чтобы ориентировать ее по максимуму приема. Эскиз возможного варианта конструктивного оформления приемника с рамочной антенной показан на рис. 4.9.

Если рамку предполагается поворачивать вокруг вертикальной оси просто рукой, то с общим проводом лучше соединить внешний виток рамки.

Читать дальше – Экономичные приемники

Источник: http://amfan.ru/priemniki-pryamogo-usileniya/ramochnaya-srednevolnovaya-antenna/

Ссылка на основную публикацию
Adblock
detector