Осциллограф своими руками

Осциллограф своими руками

Осциллограф своими руками

Главная > Советы электрика > Осциллограф своими руками

Любому радиолюбителю сложно представить свою лабораторию без такого важного измерительного прибора, как осциллограф. И, действительно, без специального инструмента, позволяющего анализировать и измерять действующие в цепи сигналы, ремонт большинства современных электронных устройств невозможен.

USB-осциллограф

С другой стороны, стоимость этих приборов нередко превышает бюджетные возможности рядового потребителя, что вынуждает его искать альтернативные варианты или изготавливать осциллограф своими руками.

Варианты решения проблемы

Отказаться от покупки дорогостоящих электронных изделий удаётся в следующих случаях:

  • Использование для этих целей встроенной в ПК или ноутбук звуковой карты (ЗК);
  • Изготовление USB-осциллографа своими руками;
  • Доработка обычного планшета.

Каждый из перечисленных выше вариантов, позволяющих изготавливать осциллограф своими руками, применим не всегда. Для полноценной работы с самостоятельно собранными приставками и модулями необходимо выполнение следующих обязательных условий:

  • Допустимость определённых ограничений по измеряемым сигналам (по их частоте, например);
  • Наличие опыта обращения со сложными электронными схемами;
  • Возможность доработки планшета.

Так, осциллограф из звуковой карты, в частности, не позволяет измерять колебательные процессы с частотами, находящимися за пределами её рабочего диапазона (20 Гц-20 кГц). А для изготовления USB-приставки к ПК потребуется определённый опыт сборки и настройки сложных электронных устройств (как и при подключении к обычному планшету).

Обратите внимание! Вариант, при котором удаётся изготовить осциллограф из ноутбука или планшета при простейшем подходе, сводится к первому случаю, предполагающему использование встроенной ЗК.

Рассмотрим, как реализуется на практике каждый из указанных выше методов.

Использование ЗК

Для реализации этого способа получения изображения потребуется изготовить небольшую по габаритам приставку, состоящую всего из нескольких доступных для каждого электронных компонентов. С её схемой можно ознакомиться на приведённой ниже картинке.

Схема приставки к ЗК

Основное назначение такой электронной цепочки – обеспечить безопасное поступление внешнего исследуемого сигнала на вход встроенной звуковой карты, имеющей «собственный» аналого-цифровой преобразователь (АЦП).

Используемые в ней полупроводниковые диоды гарантируют ограничение амплитуды сигнала на уровне не более 2-х Вольт, а делитель из соединенных последовательно резисторов позволяет подавать на вход напряжения с большими амплитудными значениями.

Плата приставки

К плате с резисторами и диодами со стороны выхода подпаивается провод с имеющимся на ответном конце штекером на 3,5 мм, который вставляется в гнездо ЗК под наименованием «Линейный вход». Исследуемый сигнал подаётся на входные клеммы.

Важно! Длина соединительного шнура должна быть по возможности короче, что обеспечивает минимальные искажения сигнала при очень низких измеряемых уровнях. В качестве такого соединителя рекомендуется использовать двухжильный провод в медной оплётке (экране).

Хотя пропускаемые таким ограничителем частоты относятся к НЧ диапазону, указанная предосторожность способствует повышению качества передачи.

Программа для получения осциллограмм

Помимо технического оснащения, перед началом измерений следует подготовить соответствующее программное обеспечение (софт). Это значит, что на ПК нужно установить одну из утилит, разработанных специально для получения изображения осциллограммы.

Программа для осциллографа

Таким образом, всего за час или чуть больше удаётся создать условия для исследования и анализа электрических сигналов посредством стационарного ПК (ноутбука).

Доработка планшета

Использование встроенной карты

Для того чтобы приспособить обычный планшет под снятие осциллограмм можно воспользоваться уже описанным ранее способом подключения к звуковому интерфейсу. В этом случае возможны определённые затруднения, так как дискретного линейного входа для микрофона у планшета нет.

Решить эту проблему удаётся следующим образом:

  • Нужно взять гарнитуру от телефона, в составе которой должен иметься встроенный микрофон;
  • Затем следует уточнить разводку (распиновку) входных клемм на используемом для подключения планшете и сравнить её с соответствующими контактами на штекере гарнитуры;
  • При их совпадении можно смело подключать источник сигнала вместо микрофона, используя уже рассмотренную ранее приставку на диодах и резисторах;
  • В завершении останется установить на планшете специальную программу, способную анализировать сигнал на микрофонном входе и выводить на экран его график.

Преимущества данного способа подключения к компьютеру – это простота реализации и дешевизна. К его минусам следует отнести малый диапазон измеряемых частот, а также отсутствие стопроцентной гарантии безопасности для планшета.

Преодолеть эти недостатки удаётся за счёт применения специальных электронных приставок, подключаемых через Bluetooth-модуль или посредством Wi-Fi-канала.

Самодельная приставка к Bluetooth-модулю

Подключение по «Bluetooth» осуществляется с помощью отдельного гаждета, представляющего собой приставку со встроенным в неё микроконтроллером АЦП. За счёт использования самостоятельного канала обработки информации удаётся расширить полосу пропускаемых частот до 1 МГц; при этом величина входного сигнала может достигать 10 Вольт.

Однако собрать такое преобразовательное устройство в домашних условиях способен не каждый, что существенно ограничивает круг пользователей. Для всех не готовых к самостоятельному изготовлению приставки возможен вариант приобретения готового изделия, с 2010 года поступающего в свободную продажу.

Приведённые выше характеристики могут устроить домашнего мастера, занимающегося ремонтом не очень сложной низкочастотной аппаратуры.

Для более трудоёмких ремонтных операций могут потребоваться профессиональные преобразовательные устройства с полосой пропускания до 100 МГц.

Эти возможности может обеспечить Wi-Fi-канал, поскольку скорости протокола обмена данными в этом случае несравнимо выше, чем в «Bluetooth».

Осциллографы-приставки с передачей данных по Wi-Fi

Вариант передачи цифровых данных по этому протоколу заметно расширяет пропускные способности измерительного устройства. Работающие по данному принципу и свободно продающиеся приставки не уступают по своим характеристикам некоторым образцам классических осциллографов. Однако стоимость их также далека от того, чтобы считаться приемлемой для пользователей со средними доходами.

В заключение отметим, что с учётом приведённых выше ограничений вариант подключения по Wi-Fi также подходит лишь для ограниченного круга пользователей. Тем же, кто решил отказаться от этого способа, советуем попытаться собрать цифровой осциллограф, обеспечивающий те же характеристики, но за счёт подключения к USB-входу.

Данный вариант также очень сложен в реализации, так что тем, кто не до конца уверен в своих силах, разумнее будет приобрести имеющуюся в свободной продаже готовую USB-приставку.

Видео

Источник: https://elquanta.ru/sovety/oscillograf-svoimi-rukami.html

Как собрать осциллограф своими руками

Вам понадобится

  • – Набор с цифровым осциллографом DSO138;
  • – мультиметр;
  • – источник питания на 8-12 В;
  • – пинцет;
  • – отвёртка для мелких работ;
  • – паяльник;
  • – припой и флюс;
  • – ацетон или бензин.

Инструкция

Первым делом припаяем петлю из проволоки толщиной 0,5 мм в отверстия разъёма J2. Это будет контакт для выхода сигнала самотестирования осциллографа.
После этого закоротим с помощью паяльника и припоя контакты перемычки JP3.

Займёмся платой TFT LCD экрана. Нужно припаять 3 штыревых разъёма с нижней части платы. Два маленьких разъёма по два пина и один двухрядный 40-пиновый.
Мы почти закончили сборку. Но не спешите убирать паяльник, он нам ещё ненадолго понадобится.

Теперь желательно промыть плату ацетоном, бензином или каким-либо другим способом очистить от следов флюса.

Когда промоем плату, нужно дать ей полностью высохнуть, это очень важно!
После этого подключим источник питания к плате и замерим напряжение между землёй и точкой TP22.

Если напряжение примерно равно 3,3 вольтам, значит вы всё хорошо спаяли, поздравляю! Сейчас нужно отключить источник питания и закоротить припоем контакты перемычки JP4.

Сейчас можно подключить к осциллографу ЖК дисплей, совместив его штыревые выводы с колодками на печатной плате осциллографа.
Подключите источник питания к осциллографу. Должен загореться дисплей и два раза моргнуть светодиод. Затем на пару секунд на экране появится логотип изготовителя и загрузочная информация. После этого осциллограф войдёт в рабочий режим.

Подключим пробник к BNC разъёму осциллографа и проведём первый тест. Никуда не подключая чёрный провод пробника, прикоснитесь рукой к красному. На осциллограмме должен появится сигнал наводки от вашей руки.

Теперь откалибруем осциллограф. Подключите красный щуп пробника к петле сигнала самотестирования, а чёрный оставьте неподключённым. Переключатель SEN1 поставьте в положение “0.1V”, SEN2 в положение “X5”, а CPL – в положение “AC” или “DC”.

С помощью тактовой кнопки SEL переместите курсор на метку времени, а кнопками “+” и “-” выставьте время “0.2ms”, как на иллюстрации. На осциллограмме должен быть виден красивый меандр.

Если края импульсов закругляются или имеют резкие острые пики по краям, нужно, поворачивая отвёрткой конденсатор C4, добиться того, чтобы импульсы сигнала стали максимально близкими к прямоугольным.

Теперь переключатель SEN1 поставим в положение “1V”, SEN2 – в положение “X1”. Остальные настройки оставим прежними. Аналогично предыдущему пункту, если сигнал далёк от прямоугольного, то подкорректируем его с помощью регулировки конденсатора C6.

На этом настройка осциллографа DSO138 закончена. Давайте проверим его в боевых условиях.
Подключим щупы осциллографа к работающей электрической схеме и посмотрим сигнал.

Для управления чувствительностью служат переключатели SEL1 и SEL2. Первый из них задаёт базовый уровень напряжения, второй – множитель. Например если выставить переключатели в положения “0,1V” и “X5”, разрешение вертикальной шкалы будет 0,5 вольт на клетку.

Кнопка SEL служит для перемещения по элементам экрана, которые можно настраивать. Настройка выделенного элемента осуществляется с помощью кнопок + и .

Элементами для настройки являются: время развёртки, режим срабатывания, выбор фронта триггера, уровень срабатывания, перемещение вдоль горизонтальной оси осциллограммы, перемещение оси по вертикали.Поддерживаемые режимы работы: автоматический, нормальный и однократный. Автоматический режим постоянно выводит сигнал на экран осциллографа.

При нормальном режиме сигнал выводится каждый раз, когда превышен заданный триггером порог. Однократный режим выводит сигнал при первом срабатывании триггера.

Кнопка OK позволяет остановить развёртку и удерживать текущую осциллограмму на экране.

Кнопка RESET сбрасывает и перезагружает цифровой осциллограф.
Полезная функция осциллографа DSO138 – отображение информации о сигнале: частоты, периода, скважности, размаха, среднего напряжения и т.д. Чтобы активировать её, нажмите и удерживайте 2 секунды кнопку OK.
Осциллограф умеет запоминать текущую осциллограмму в энергонезависимой памяти. Для этого нажмите одновременно SEL и +. Чтобы вызвать на экран сохранённую в памяти осциллограмму, нажмите SEL и .

Читайте также:  Электронный сетевой выключатель-предохранитель

Источники:

  • Осциллограф DSO138 устройство и приспособление к нему

Источник: https://www.kakprosto.ru/kak-902708-kak-sobrat-oscillograf-svoimi-rukami-

Как сделать своими руками осциллограф из компьютера: устройство, принцип работы, какой вариант выбрать

Осциллограф — инструмент, который имеется почти у каждого радиолюбителя. Но для начинающих он стоит слишком дорого.

Проблема высокой стоимости решается просто: есть много вариантов изготовления осциллографа.

Компьютер отлично подойдёт для такой переделки, причём его функциональность и внешний вид никак не пострадают.

Устройство и назначение

Принципиальная схема осциллографа сложна для понимания начинающего радиолюбителя, поэтому рассматривать её нужно не целиком, а предварительно разбив на отдельные блоки:

Каждый блок представляет собой отдельную микросхему, или плату.

Сигнал с исследуемого устройства поступает через вход Y на входной делитель, задающий чувствительность измерительного контура. После прохождения предварительного усилителя и линии задержки он попадает на конечный усилитель, который управляет вертикальным отклонением индикаторного луча. Чем выше уровень сигнала — тем больше отклоняется луч. Так устроен канал вертикального отклонения.

Второй канал — горизонтального отклонения, нужен для синхронизации луча с сигналом. Он позволяет удерживать луч в заданном настройками месте.

Синхронизация бывает трёх видов: от внешнего источника, от сети и от исследуемого сигнала. Если сигнал имеет постоянную частоту, то синхронизацию лучше использовать от него.

В качестве внешнего источника обычно выступает лабораторный генератор сигналов.

Вместо него для этих целей подойдёт смартфон с установленным на него специальным приложением, которое модулирует импульсный сигнал и выводит его в гнездо для наушников.

Осциллографы применяются при ремонте, проектировании и настройке различных электронных устройств. Сюда входят диагностика систем автомобиля, устранение неисправностей в бытовой технике и многое другое.

Осциллограф измеряет:

  • Уровень сигнала.
  • Его форму.
  • Скорость нарастания импульса.
  • Амплитуду.

Также он позволяет развёртывать сигнал до тысячных долей секунды и просматривать его в мельчайших подробностях.

Осциллограф, подключаемый через USB

Есть множество вариантов изготовления самодельных USB осциллографов, но не все из них доступны новичкам. Самым простым вариантом будет его сборка из уже готовых комплектующих. Они продаются в радиомагазинах.

Более дешёвым вариантом будет купить эти радиодетали в китайских интернет-магазинах, но нужно помнить о том, что купленные в Китае комплектующие могут прийти в неисправном состоянии, а деньги за них возвращают далеко не всегда.

После сборки должна получиться небольшая приставка, подключаемая к ПК.

Этот вариант осциллографа имеет самую высокую точность. Если встает проблема, какой осциллограф выбрать для ремонта ноутбуков и другой сложной техники, лучше остановить свой выбор на нём.

Для изготовления понадобятся:

  • Плата с разведёнными дорожками.
  • Процессор CY7C68013A.
  • Микросхема аналого-цифрового преобразователя AD9288−40BRSZ.
  • Конденсаторы, резисторы, дроссели и транзисторы. Номиналы этих элементов указаны на принципиальной схеме.
  • Паяльный фен для запайки SMD компонентов.
  • Провод в лаковой изоляции сечением 0,1 мм².
  • Тороидальный сердечник для намотки трансформатора.
  • Кусок стеклотекстолита.
  • Паяльник с заземлённым жалом.
  • Припой.
  • Флюс.
  • Паяльная паста.
  • Микросхема памяти EEPROM flash 24LC64.
  • Корпус.
  • USB разъём.
  • Гнездо для подключения щупов.
  • Реле ТХ-4,5 или другое, с управляющим напряжением не более 3,3 В.
  • 2 операционных усилителя AD8065.
  • DC-DC преобразователь.

Собирать нужно по этой схеме:

Обычно для изготовления печатных плат радиолюбители пользуются методом травления. Но сделать таким образом двухстороннюю печатную плату со сложной разводкой самостоятельно не получится, поэтому её нужно заранее заказать на заводе, выпускающем подобные платы.

Для этого нужно отослать на завод чертёж платы, по которому её изготовят. На одном и том же заводе делают разные по качеству платы. Оно зависит от выбранных при оформлении заказа опций.

Для того чтобы получить в итоге хорошую плату, нужно указать в заказе следующие условия:

  • Толщина стеклотекстолита — не менее 1,5 мм.
  • Толщина медной фольги — не менее 1 OZ.
  • Сквозная металлизация отверстий.
  • Лужение контактных площадок свинецсодержащим припоем.

Первым собирается DC-DC преобразователь, выдающий напряжения +5 и -5 вольт.

Его нужно собрать на отдельной плате и подключить к основной с помощью экранированного кабеля.

Припаивать микросхемы к основной плате нужно аккуратно, не перегревая их. Температура паяльника не должна быть выше трехсот градусов, иначе паяемые детали выйдут из строя.

После установки всех компонентов собирают устройство в подходящий по размеру корпус и подключают к компьютеру USB кабелем. Замыкают перемычку JP1.

Нужно установить и запустить на ПК программу Cypress Suite, перейти во вкладку EZ Console и кликните по LG EEPROM. В появившемся окне выбрать файл прошивки и нажать Enter. Дождаться появления надписи Done, говорящей об успешном завершении процесса. Если вместо неё появилась надпись Error, значит, на каком-то этапе произошла ошибка. Нужно перезапустить прошивальщик и попробовать снова.

После прошивки изготовленный своими руками цифровой осциллограф будет полностью готов к работе.

Вариант с автономным питанием

В домашних условиях радиолюбители обычно пользуются стационарными устройствами. Но иногда возникает ситуация, когда нужно отремонтировать что-то находящееся вдали от дома. В таком случае понадобится портативный осциллограф с автономным питанием.

Перед началом сборки приготовьте следующие комплектующие:

  • Ненужные Bluetooth наушники или аудиомодуль.
  • Планшет или смартфон на Android.
  • Литий-ионный аккумулятор типоразмера 18650.
  • Холдер для него.
  • Контроллер заряда.
  • Гнездо Jack 2,1 Х 5,5 мм.
  • Разъем для подключения измерительных щупов.
  • Сами щупы.
  • Выключатель.
  • Пластиковая коробочка из-под губки для обуви.
  • Экранированный провод сечением 0,1 мм².
  • Тактовая кнопка.
  • Термоклей.

Нужно разобрать беспроводную гарнитуру и достать из неё плату управления. Отпаять от неё микрофон, кнопку включения и аккумулятор. Отложить плату в сторонку.

Вместо блютус-наушников можно использовать Bluetooth аудиомодуль.

Ножом соскрести с коробочки остатки губки и хорошо почистить её с использованием моющих средств. Подождать, пока она высохнет, и вырезать отверстия под кнопку, выключатель и разъёмы.

Припаять провода к гнёздам, холдеру, кнопке и выключателю. Установить их на свои места и закрепить термоклеем.

Провода нужно соединять так, как показано на схеме:

Расшифровка обозначений:

  1. Холдер.
  2. Выключатель.
  3. Контакты «BAT +» и «BAT —».
  4. Контроллер заряда.
  5. Контакты «IN +» и «IN —».
  6. Разъём Jack 2,1 Х 5,5 мм.
  7. Контакты «OUT+» и «OUT —».
  8. Контакты батареи.
  9. Плата управления.
  10. Контакты кнопки включения.
  11. Тактовая кнопка.
  12. Гнездо для щупов.
  13. Контакты микрофона.

Далее припаять провода к контроллеру заряда и плате управления, затем поместить их внутрь корпуса и зафиксировать термоклеем. Закрыть коробочку крышкой и защёлкнуть её.

Затем скачать из плеймаркета приложение виртуального осциллографа и установить его на смартфон. Включить блютус модуль и синхронизировать его со смартфоном. Подключить щупы к осциллографу и открыть на телефоне его программную часть.

При касании щупами источника сигнала на экране Android-устройства появится кривая, показывающая уровень сигнала. Если она не появилась, значит, где-то была допущена ошибка.

Установка в корпус монитора

Этот вариант самодельного осциллографа легко устанавливается в корпус настольного ЖК монитора. Такое решение позволяет сэкономить немного места на вашем рабочем столе.

Для сборки понадобятся:

  • Компьютерный ЖК монитор.
  • DC-DC инвертор.
  • Материнская плата от телефона или планшета с HDMI-выходом.
  • USB разъём.
  • Кусок HDMI кабеля.
  • Провод сечением 0,1 мм².
  • Тактовая кнопка.
  • Резистор на 1 кОм.
  • Двусторонний скотч.

Встроить своими руками в монитор осциллограф сможет каждый радиолюбитель. Для начала нужно снять с монитора заднюю крышку и найти место для установки материнской платы. После того как определились с местом, рядом с ним нужно вырезать в корпусе отверстия для кнопки и USB разъёма.

Далее выпаять HDMI разъёмы, установленные на плате и в мониторе. Припаять один конец кабеля к контактам на плате монитора. Делать это нужно согласно распиновке:

Второй конец кабеля нужно припаять к плате от планшета. Перед припаиванием каждой жилки прозванивать её мультиметром. Это поможет не перепутать порядок их подключения.

Далее нужно найти на плате монитора точки с постоянным напряжением в 5, 9, 12, 19 или 24 вольта. И припаять к ним провода.

Следующим шагом нужно выпаять с платы планшета кнопку включения и micro USB разъём. К тактовой кнопке и USB гнезду припаять провода и закрепить их в вырезанных отверстиях.

Затем соединить все провода так, как это показано на рисунке, и припаять их:

Поставить перемычку между контактами GND и ID в микро ЮСБ разъёме. Это нужно для перевода USB порта в режим OTG.

Далее необходимо впаять между минусовым и средним контактом батареи резистор. Без этой процедуры материнка не запустится без аккумулятора, а он в мониторе ни к чему.

Нужно приклеить инвертор и материнку от планшета на двусторонний скотч, после чего защёлкнуть крышку монитора.

Подключить к USB порту мышку и нажать кнопку включения. Пока устройство загружается, включить Bluetooth передатчик. Затем нужно синхронизировать его с приёмником. Можно открыть приложение осциллографа и убедиться в работоспособности собранного устройства.

Вместо монитора отлично подойдёт и старый ЖК телевизор, в котором нет Смарт ТВ. Начинка от планшета по своим возможностям превосходит многие Smart TV системы. Не стоит ограничивать её применение одним лишь осциллографом.

Изготовление из аудиокарты

Осциллограф, собранный из внешнего аудиоадаптера, обойдётся всего в 1,5-2 доллара и займёт минимум времени на своё изготовление. По размеру он получится не больше обычной флешки, а по функционалу не уступит своему большому собрату.

Необходимые детали:

  • USB аудиоадаптер.
  • Резистор на 120 кОм.
  • Штекер mini Jack 3,5 мм.
  • Измерительные щупы.

Нужно разобрать аудиоадаптер, для этого стоит поддеть и расщёлкнуть половинки корпуса.

Выпаять конденсатор C6 и припаять на его место резистор. Затем установить плату обратно в корпус и собрать его.

Следует отрезать от щупов стандартный штекер и припаять на его место мини-джек. Подключить щупы ко звуковому входу аудиоадаптера.

Затем нужно скачать соответствующий архив и распаковать его. Вставить карту в USB разъём.

Осталось самое простое: зайти в Диспетчер устройств и во вкладке «Аудио, игровые и видеоустройства» найти подключённый USB аудиоадаптер. Щёлкнуть по нему правой кнопкой мыши и выбрать пункт «Обновить драйвер».

Читайте также:  6.2.2. принципиальная схема

Что делать дальше, показано на картинках:

Нужно указать путь к папке device из распакованного архива и нажать Enter:

После нажатия на «Далее» произойдёт установка драйверов из указанной папки. Если пропустить этот этап и оставить стандартные драйвера, осциллограф не заработает.

Затем переместить файлы miniscope.exe, miniscope.ini и miniscope.log из архива в отдельную папку. Запустить «miniscope.exe».

Перед использованием программу нужно настроить. Необходимые настройки показаны на скриншотах:

Если коснуться щупами источника сигнала, в окне осциллографа должна появиться кривая:

Таким образом, чтобы превратить аудиоадаптер в осциллограф, нужно приложить минимум усилий. Но стоит помнить, что погрешность такого осциллографа составляет 1-3%, чего явно недостаточно для работы со сложной электроникой. Он отлично подойдёт для начинающего радиолюбителя, а мастерам и инженерам стоит присмотреться к другим, более точным осциллографам.

Источник: https://elektro.guru/polezno-znat/ostsillograf-iz-monitora-kompyutera-v-domashnih-usloviyah.html

Цифровой осциллограф своими руками | Мастер Винтик. Всё своими руками!

Осциллограф — это незаменимый помощник в мастерской радиолюбителя. С его помощью можно наблюдать форму сигнала, измерить длительность, частоту, амплитуду. Цифровой осциллограф способен запомнить изображение на экране, выводить на экран сопутствующую информацию о сигнале и многое другое.

Стоит осциллограф дорого, особенно цифровой, а вот сделать его из набора не сложно и не дорого.

Как-то на днях купил я недорого набор для сборки цифрового осциллографа в китайском интернет магазине GEARBEST

Набор пришёл довольно быстро (около 2 нед) с подробной инструкцией, схемой на английском. Было всё понятно, т.к. описание в картинках подробно расписано шаг за шагом.

Принципиальная схема цифрового осциллографа DSO 138

Характеристики осциллографа

Подробное описание сборки набора осциллографа

Этот набор сложнее, чем рассматриваемый ранее набор частотомера, но при аккуратной и внимательной сборке работает сразу без проблем.

На печатной плате уже был припаян прошитый микроконтроллер. Это 32 битный микроконтроллер, базирующийся на ARM 32-bit Cortex™ — M3 ядре. Максимальная частота работы 72 МГц, также он имеет 2 x 12-bit, 1 μs АЦП. Есть в других наборах уже впаяны все smd детали. В моём только микроконтроллер, но остальные я сам впаял без особого труда остро заточенным паяльником и в очках с подсветкой. Все smd детали были по количеству на одну больше для запаса на случай потери такой крохотульки

Источник: http://www.MasterVintik.ru/cifrovoj-oscilograf-svoimi-rukami/

Осциллограф своими руками! Супер-компакт! — DRIVE2

Привет содруги! Сегодня я расскажу о повторении наверно самого простого осциллографа. У одного товарища на его ютуб канале я случайно наткнулся на видео, где он повторял это устройство.

Так как мне не очень то нужен полноценный дорогостоящий осцил, я решил собрать его примитивное подобие.

Автор называет его Пультоскоп и совершенно свободно разместил его исходники за что отдельное спасибо.

Поиск корпуса
Корпус я искал недолго. Прочитав статью, посмотрев видео я решил, что бейте меня по-рукам, но мне нужен этот прибор. Пока ждал экран от Nokia 5110 с Али, я нашел карту памяти для DreamCast. Даже сам не знаю откуда она у меня, ведь приставки у меня никогда не было). Конечно понимал, что будет трудно все уместить в таком крошечном коробке, но попытаться нужно было.

Карта памяти от DreamCast стала отличным корпусом!

Сборка

Полный размер

Разбираем это чудо. Оно кстати было исправно абсолютно.

Сборка затянулась на пару вечеров с одновременным просмотром футбола. Затянулась потому, что корпус очень мал, а впихнуть нужно было немного-немало экран, кусок платы с кнопками, arduino pro micro, выключатель и батареи. Свое варварство я начал с разбора и откусывания платы. Кнопки нужно было оставить и пришлось поступать радикально).

Полный размер

Нагло откусываем плату. Даже дреммель лень достать.

Потом началась размахивание горячим жалом и “кривыми” руками пайка.

Полный размер

Примеркаприклейка экрана.

Полный размер

Пайка не мое( надо посмотреть пару уроков на ютуб.

Полный размер

Некрасиво все, но не видно же будет)

Полный размер

Не пинайте ногами не умеющего)

Ардуина, мешала плотно закрыть корпус, поэтому пришлось отказаться от нее в пользу Atmega328 распаянной на макетной плате. Прошивка, проверка — все работает. Я думаю самодельщики знают это чувство, когда, что-то сделанное своими руками вдруг работает) Радость и гордость за себя самого переполняют)) Заработало кстати, с первого раза, я даже удивился.

Полный размер

Собран, но еще не отмыт.

Полный размер

Он уж очень мал!

Полный размер

Рядом с телефоном для наглядности и масштаба.

Потыкал, померил, все хорошо, но есть наводки от сети, когда берешься за щуп или за само устройство наводка в 50 герц появляется сразу. Нашел старый, советский, экранированный провод взамен китайскому коннектору.

Советский провод тридцатилетней давности кстати, лудится и припаивается намного лучше и приятнее новых поднебесных — прогресс мать его.

Экран на землю, провод на пин микроконтроллера и все, наводки пропали! Дальше собрал все в корпус без китайских соплей термоклея конечно же не обошлось, но а как по другому созидать? здесь китайцем нужно сказать спасибо)).

Прибор получился нуууу оооооочень компактным! Осциллограф в треть ладони это круто парни! Пусть характеристиками и не блещет, но для минимальных, простых задач достаточно. Рекомендую для повторения, тем более, что бюджет примерно 250-400 рублей учитывая корпус и мелочевку и даже электричество). Оставляйте комментарии. Спасибо за потраченное время!

Источник: https://www.drive2.ru/b/3190196/

Как сделать цифровой осциллограф из компьютера своими руками(часть 1)

Начинающим радиолюбителям посвящается!

О том, как собрать самый простой адаптер для программного виртуального осциллографа, пригодный для использования в ремонте и настройке аудиоаппаратуры.

О виртуальных осциллоскопах.

Когда-то у меня была идея фикс: продать аналоговый осциллограф и купить ему на замену цифровой USB осциллоскоп.

Но, прошвырнувшись по рынку, обнаружил, что самые бюджетные осциллографы «начинаются» от 250 долларов, да и отзывы о них не очень хорошие. Более же серьёзные приборы стоят в несколько раз дороже.

Так что, решил я ограничиться аналоговым осциллографом, а для построения какой-нибудь эпюры для сайта, использовать виртуальный осциллограф.

Скачал из сети несколько программных осциллографов и попытался что-нибудь померить, но ничего путного из этого не вышло, так как, либо не удавалось откалибровать прибор, либо интерфейс не годился для скриншотов.

 Было, уже забросил это дело, но когда подыскивал себе программу для снятия АЧХ, наткнулся на комплект программ «AudioTester».

Анализатор из этого комплекта мне не понравился, а вот осциллограф «Osсi» (далее буду его называть «AudioTester») оказался в самый раз.

Этот прибор имеет интерфейс схожий с обычным аналоговым осциллографом, а на экране есть стандартная сетка, которая позволяет измерять амплитуду и длительность.

Из недостатков можно назвать некоторую нестабильность работы.

Программа иногда подвисает (когда запущено несколько процессов одновременно) и для того, чтобы её сбросить приходится прибегать к помощи Task Manager-а.

Но, всё это компенсируется привычным интерфейсом, удобством использования и некоторыми очень полезными функциями, которые я не встречал ни в одной другой программе подобного типа.

Внимание!

В комплекте программ «AudioTester» есть генератор низкой частоты.

Я не рекомендую его использовать, так как он пытается самостоятельно управлять драйвером аудиокарты, что при работе на XP может привести к отключению звука.

Если Вы решите его использовать позаботьтесь о точке восстановления или о бэкапе ОС. Но, лучше скачайте нормальный генератор из «Дополнительных материалов».

 Другую интересную программу виртуального осциллографа «Аванград» написал наш соотечественник Записных О.Л.

У этой программы нет привычной измерительной сетки, да и экран слишком большой для снятия скриншотов, но зато есть встроенный вольтметр амплитудных значений и частотомер, что частично компенсирует указанный выше недостаток.

 Частично потому, что на малых уровнях сигнала и вольтметр и частотомер начинают сильно привирать. Однако для начинающего радиолюбителя, который не привык воспринимать эпюры в Вольтах и миллисекундах на деление, этот осциллограф может вполне сгодиться.

Другое полезное свойство осциллографа «Авангард» – возможность независимой калибровки двух имеющихся шкал встроенного вольтметра.Так что, я расскажу о том, как построить измерительный осциллограф на базе программ «AudioTester» и «Авангард». Конечно, кроме этих программ понадобится и любая встроенная или отдельная, самая бюджетная аудиокарта.

Собственно, все работы сводятся к тому, чтобы изготовить делитель напряжения (аттенюатор), который позволил бы охватить широкий диапазон измеряемых напряжений. Другая функция предлагаемого адаптера – защита входа аудиокарты от повреждения при попадании на вход высокого напряжения.

Технические данные и область применения.

   Так как во входных цепях аудиокарты есть разделительный конденсатор, то и осциллограф может использоваться только с «закрытым входом». То есть, на его экране можно будет наблюдать только переменную составляющую сигнала. Однако, при некоторой сноровке, с помощью осциллографа «AudioTester» можно измерить и уровень постоянной составляющей.

Это может пригодиться, например, когда время отсчёта мультиметра не позволяет зафиксировать амплитудное значение напряжения на конденсаторе, заряжающемся через большой резистор.   Нижний предел измеряемого напряжения ограничен уровнем шума и уровнем фона и составляет примерно 1мВ.

Верхний предел ограничивается только параметрами делителя и может достигать сотен вольт.    Частотный диапазон ограничен возможностями аудиокарты и для бюджетных аудиокарт составляет: 0,1Гц… 20кГц  для качественных типа “Sound Blaster” от   0,1Гц… 41кГц (для синусоидального сигнала).

Конечно, речь идёт о довольно примитивном приборе, но в отсутствие более продвинутого девайса, вполне может сгодиться и этот. 

Читайте также:  Сварочный мини-аппарат

   Прибор может помочь в ремонте аудиоаппаратуры или использоваться в учебных целях, особенно если его дополнить виртуальным генератором НЧ. Кроме этого, с помощью виртуального осциллографа легко сохранить эпюру для иллюстрации какого-либо материала, или для размещения в Интернете.

Электрическая схема аппаратной части осциллографа.

 На чертеже изображена аппаратная часть осциллографа – «Адаптер».     Для постройки двухканального осциллографа придётся продублировать эту схему. Второй канал может пригодиться для сравнения двух сигналов или для подключения внешней синхронизации. Последнее предусмотрено в «AudioTester-е».

    Резисторы R1, R2, R3 и Rвх. – делитель напряжения (аттенюатор).Номиналы резисторов R2 и R3 зависят от применяемого виртуального осциллографа, а точнее от используемых им шкал.

Но, так как у «AudioTester-а» цена деления кратна 1, 2 и 5-ти, а у «Авангард-а» встроенный вольтметр имеет всего две шкалы, связанных между собой коэффициентом 1:20, то использование адаптера, собранного по приведённой схеме не должно доставлять неудобств в обоих случаях.

     Входное сопротивление аттенюатора около 1-го мегома. По-хорошему, это значение должно бы быть постоянным, но конструкция делителя при этом бы серьёзно усложнилась.    Конденсаторы C1, C2 и C3 выравнивают амплитудно-частотную характеристику адаптера.

Стабилитроны VD1 и VD2 вместе с резисторами R1 защищают линейный вход аудиокарты от повреждения в случае случайного попадания высокого напряжения на вход адаптера, когда переключатель находится в положении 1:1. 

    Согласен с тем, что представленная схема не отличается изящностью. Однако это схемное решение позволяет самым простым способом достичь широкого диапазона измеряемых напряжений при использовании всего нескольких радиодеталей.

Аттенюатор же, построенный по классической схеме, потребовал бы применения высокомегаомных резисторов, и его входное сопротивление менялось бы слишком значительно при переключении диапазонов, что ограничило бы применение стандартных осциллографических кабелей, рассчитанных на входной импеданс 1мОм.

Защита от «Придурака».

Чтобы обезопасить линейный вход аудиокарты от случайного попадания высокого напряжения, параллельно входу установлены стабилитроны VD1 и VD2.

Резистор R1 ограничивает ток стабилитронов до 1мА, при напряжении 1000 Вольт на входе 1:1.

Если Вы, действительно, собираетесь использовать осциллограф для измерения напряжения до 1000 Вольт, то в качестве резистора R1 можно установить МЛТ-2 (двухваттный) или два МЛТ-1 (одноваттных) резистора последовательно, так как резисторы различаются не только по мощности, но и по максимально-допустимому напряжению.

Конденсатор С1 также должен иметь максимальное допустимое напряжение 1000 Вольт.

Небольшое пояснение вышесказанного. Иногда требуется взглянуть на переменную составляющую сравнительно небольшой амплитуды, которая, тем не менее, имеет большую постоянную составляющую.

В таких случаях нужно иметь в виду, что на экране осциллографа с закрытым входом можно увидеть только переменную составляющую напряжения.

   На картинке видно, что при постоянной составляющей 1000 Вольт и размахе переменной составляющей 500 Вольт, максимальное напряжение, приложенное к входу, будет 1500 Вольт. Хотя, на экране осциллографа мы увидим только синусоиду амплитудой 500 Вольт.

    Этот параграф можно пропустить. Он рассчитан на любителей мелких подробностей.

 Выходное сопротивление (выходной импеданс) линейного выхода, рассчитанного на подключение телефонов (наушников), слишком мало, чтобы оказать существенное влияние на точность измерений, которые нам предстоит выполнить в следующем параграфе.

     Так для чего измерять выходной импеданс? Так как мы будем использовать для калибровки осциллографа виртуальный низкочастотный сигнал-генератор, то его выходной импеданс будет равен выходному импедансу линейного выхода (Line Out) звуковой карты.

   Убедившись в том, что выходной импеданс мал, мы можем предотвратить грубые ошибки при измерении входного импеданса. Хотя, даже при самом плохом стечении обстоятельств эта ошибка вряд ли превысит 3… 5%. Откровенно говоря, это даже меньше возможной ошибки измерений.

Но, известно, что ошибки имеют привычку «набегать».     При использовании генератора для ремонта и настройки аудиотехники тоже желательно знать его внутренне сопротивление. Это может пригодиться, например, при измерении ESR (Equivalent Series Resistance) эквивалентного последовательного сопротивления или попросту реактивного сопротивления конденсаторов.

Мне, благодаря этому измерению, удалось выявить самый низкоомный выход в моей аудиокарте.

Если у аудиокарты всего одно выходное гнездо, то тогда всё ясно. Оно одновременно является и линейным выходом и выходом на телефоны (наушники). Его импеданс, как правило, мал, и его можно не измерять. Именно такие аудио-выходы используются в ноутбуках.

  Когда же гнёзд целых шесть и есть ещё парочка на передней панели системного блока, а каждому гнезду можно назначить определённую функцию, то выходное сопротивление гнёзд может существенно отличаться.
Обычно, самый низкий импеданс соответствует гнезду салатового цвета, которое по-умолчанию и является линейным выходом.

Пример замера импеданса нескольких разных выходов аудиокарты установленных в режим «Телефоны» и «Линейный выход».

 Как видно из формулы, абсолютные значения измеренного напряжения роли не играют, потому эти замеры можно делать задолго до калибровки осциллографа.
Пример расчёта.R1 = 30 Ом.U1 = 6 делений.U2 = 7 делений.

Rx = 30(7 – 6) / 6 = 5 (Ом)

Как измерить входное сопротивление линейного входа?

Чтобы рассчитать аттенюатор для линейного входа аудиокарты, нужно знать входное сопротивление линейного входа. К сожалению, измерить входное сопротивление при помощи обычного мультиметра нельзя. Это связано с тем, что во входных цепях аудиокарт имеются разделительные конденсаторы.

   Входные же сопротивления разных аудиокарт могут очень сильно отличаться. Так что, этот замер сделать всё-таки придётся.

 Для измерения входного импеданса аудокарты по переменному току, нужно подать на вход через балластный (добавочный) резистор синусоидальный сигнал частотой 50 Гц и рассчитать сопротивление по приведённой формуле. 

   Синусоидальный сигнал можно сформировать в программном генераторе НЧ, ссылка на который есть в «Дополнительных материалах». Замер амплитудных значений также можно произвести программным осциллографом.

 На картинке изображена схема подключений.
Напряжения U1 и U2 нужно измерить виртуальным осциллографом в соответствующих положениях выключателя SA. Абсолютные значения напряжения знать не нужно, поэтому расчёты валидны до калибровки прибора.

Пример расчёта.R1 = 50кОм.U1 = 100U2 = 540

Rx = 50 * 100 / (540 – 100) ≈ 11,4 (кОм).

Вот результаты замеров импеданса разных линейных входов.
Как видите, входные сопротивления отличаются в разы, а в одном случае почти на порядок.

Максимальная неограниченная амплитуда входного напряжения аудиокарты, при максимальном уровне записи, около 250мВ. Делитель же напряжения, или как его ещё называют, аттенюатор позволяет расширить диапазон измеряемых напряжений осциллографа.
Аттенюатор можно построить по разным схемам, в зависимости от коэффициента деления и необходимого входного сопротивления.

 Вот один из вариантов делителя, позволяющих сделать входное сопротивление кратным десяти. Благодаря добавочному резистору Rдоб. можно подогнать сопротивление нижнего плеча делителя до какой-нибудь круглой величины, например, 100 кОм.

Недостаток этой схемы в том, что чувствительность осциллографа будет слишком сильно зависеть от входного сопротивления аудиокарты.
Так, если входной импеданс равен 10 кОм, то коэффициент деления делителя увеличится в десять раз.

Уменьшать же резистор верхнего плеча делителя не желательно, так как он определяет входное сопротивление прибора, да и является основным звеном защиты прибора от высокого напряжения.

 Так что, я предлагаю Вам самостоятельно рассчитать делитель, исходя из входного импеданса Вашей аудиокарты. На картинке нет ошибки, делитель начинает делить входное напряжение уже при выборе масштаба 1:1. Расчеты же, конечно нужно делать, опираясь на реальное соотношение плеч делителя.

На мой взгляд, это самая простая и вместе с тем самая универсальная схема делителя.

 По представленным формулам можно рассчитать аттенюатор для адаптера, если Вы согласитесь с предложенной схемой.

 Пример расчёта делителя.Исходные значения.R1 – 1007 кОм (результат замера резистора на 1 мОм).

Rвх. – 50 кОм (я выбрал более высокоомный вход из двух имеющихся на передней панели системного блока).

Расчёт делителя в положении переключателя 1:20.Сначала рассчитаем по формуле (1) коэффициент деления делителя, определяемый резисторами R1 и Rвх.

1007 + 50/ 50 = 21,14 (раз)

Значит, общий коэффициент деления в положении переключателя 1:20 должен быть:

21,14*20 = 422,8 (раз)

Рассчитываем номинал резистора для делителя.1007*50 / 50*422,8 –50 –1007 ≈ 2,507 (кОм)Расчёт делителя в положении переключателя 1:100.Определяем общий коэффициент деления в положении переключателя 1:100.

20,14*100 = 2014 (раз) 

Рассчитываем величину резистора для делителя.

1007*50 / 50*2014 –50 –1007 ≈ 0,505 (кОм)

Если вы собираетесь использовать только осциллограф «Авангард» и только в диапазонах 1:1 и 1:20, то точность подбора резистора может быть низка, так как «Авангард» можно откалибровать независимо в каждом из двух имеющихся диапазонов. Во всех остальных случаях придётся подобрать резисторы с максимальной точностью. Как это сделать написано в следующем параграфе.

 Если Вы сомневаетесь в точности своего тестера, то можно подогнать любой резистор с максимальной точностью методом сравнения показаний омметра.      Для этого, вместо постоянного резистора R2 временно устанавливается подстроечный резистор R*. Сопротивление подстроечного резистора подбирается так, чтобы получить минимальную ошибку в соответствующем диапазоне деления.

    Затем сопротивление подстроечного резистора измеряется, а постоянный резистор уже подгоняется под измеренное омметром сопротивление. Так как оба резистора измеряются одним и тем же прибором, то погрешность омметра не влияет на точность замера.

 А это парочка формул для расчёта классического делителя. Классический делитель может пригодиться, когда требуется высокое входное сопротивление прибора (мОм/В), а применять дополнительную делительную головку не хочется.

Как подобрать или подогнать резисторы делителя напряжения?

Так как радиолюбители часто испытывают трудности при поиске прецизионных резисторов, я расскажу о том, как можно с высокой точностью подогнать обычные резисторы широкого применения.

Использование подстроечных резисторов.

 Как видите, каждое плечо делителя состоит из двух резисторов – постоянного и подстроечного.
Недостаток – громоздкость. Точность ограничена только доступной точностью измерительного прибора.

ПРОДОЛЖЕНИЕ СЛЕДЁТ.

Раздел: [Измерительная техника]

Источник: http://www.cavr.ru/article/1459-kak-sdelati-cifrovoj-oscillograf-iz-kompiyutera-svoimi-rukami(chasti-1)

Ссылка на основную публикацию
Adblock
detector