Светодиодный драйвер lt3955 с внутренним шим генератором

Светодиодный драйвер LT3955 с 5–60 VIN/80 VOUT и собственным ШИМ-генератором

Светодиодный драйвер lt3955 с внутренним ШИМ генератором

2 июля 2013

DC/DC-преобразователь LT3955 от Linear Technology с собственным ключом на 3,5 А предназначен для работы в качестве источника постоянного тока и стабилизатора постоянного напряжения. Внутренний ШИМ-генератор в схеме управления яркостью эффективно управляет сильноточными светодиодами и позволяет заряжать батареи и суперконденсаторы.

Благодаря тому, что диапазон входных напряжений LT3955 составляет 4,5–60 В, этот драйвер годится для широкого круга приложений, в т.ч. для автомобильного, промышленного и архитектурного освещения.

КПД DC/DC-преобразователя LT3955 от Linear Technology достигает 94% в повышающих топологиях

Особенности LT3955:

  • ШИМ-регулировка яркости светодиодов 3000:1 с истинной цветопередачей
  • широкий диапазон VIN: 4,5–60 В
  • диапазон чувствительности по току: 0–80 В (полный размах)
  • собственный ключ 80 В/3,5 А
  • программируемый ШИМ-генератор сигнала для регулирования яркости
  • стабилизация постоянного тока (±3%) и постоянного напряжения (±2%)
  • точный аналоговый димминг
  • управление светодиодами в схемах SEPIC, CUK, повышающей, понижающей, понижающе-повышающей и обратноходовой топологиях

Драйвер LT3955 с внутренним N-канальным ключом на 80 В может управлять 12 светодиодами белого свечения на 300 мА при номинальном входном напряжении 12 В. Верхнее плечо драйвера оснащено функцией чувствительности по току, что позволяет использовать устройство в режимах повышения, понижения, понижающе-повышающей и SEPIC-топологиях.

КПД DC/DC-преобразователя LT3955 превышает 94% в повышающих топологиях, что исключает необходимость во внешнем теплоотводе. Специальный вывод позволяет программировать частоту в диапазоне 100 кГц…1 МГц, благодаря чему оптимизируется КПД и сводятся к минимуму размеры внешних компонентов и их стоимость.

Драйвер LT3955 в корпусе QFN размерами 5×6 мм представляет собой очень компактное решение для управления мощными светодиодами.

Устройство LT3955 оснащено собственным ШИМ-генератором, обеспечивающим регулирование яркости в диапазоне 25:1. Драйвер также может использовать внешний ШИМ-сигнал в диапазоне регулирования 3000:1. При менее жестких требованиях к регулированию яркости используется вывод CTRL, обеспечивающий аналоговый димминг 10:1.

Фиксированная частота этого устройства, архитектура токового режима обеспечивает устойчивое функционирование в широком диапазоне питающего и выходного напряжений. Защита от короткого замыкания выхода и защита светодиодов повышают надежность всей системы.

Заземленный вывод FB служит входом для нескольких цепей защиты светодиодов и позволяет преобразователю работать в качестве источника постоянного тока в системах зарядки.

Tweet

Источник: http://www.lightingmedia.ru/news/news_725.html

ШИМ, драйверы, светодиоды — DRIVE2

Ух давненько ничего не публиковал. Не потому что нечего, а вопреки.

Приветствую всех гостей и подписчиков, предлагаю разобраться наконец в вопросе как-же у нас регулируется яркость светодиодов, что такое ШИМ и как это все работает с импульсными драйверами светодиодов.
Материал ориентирован скорее на начинающих и тех, у кого познания в электронике нулевые, а руки чешутся сделать тюнинг на свою любимую машинку, но будет полезен и искушенным.

Давайте разбираться, как-же мы можем регулировать яркость светодиодов? Тут варианта два:1) линейная регулировка тока (напряжения)

2) ШИМ регулирование

Первый вариант — это всем известная схема включения с одним резистором и одним светодиодом.

Тут все просто: при использовании одного какого-то типа светодиодов, яркость зависит лишь от тока, протекающего по нему, который, в свою очередь, зависит от питающего напряжения и сопротивления ограничительного резистора.

Не сочтите за рекламу, а токмо чтобы вопросов было поменьше: калькулятор расчета резистора для светодиодов
Частным случаем является использование драйверов, как линейных, так и импульсных.

Это стабилизаторы тока При любом допустимом изменении питающего напряжения и температурного дрейфа параметров кристалла светодиода они призваны обеспечить стабильный ток питания светодиода, что безусловно благоприятно на нем сказывается.

Вообще питание светодиода драйверами (стабилизаторами тока) является единственно верным решением. Регулируя ток светодиода регулируем и его яркость. Но к ним мы вернемся чуть позже.

С ШИМ уже не все так очевидно.Чтож это за зверь? Кто еще не в курсе — это широтно импульсная модуляция. Сигнал ШИМ позволяет регулировать параметры объекта, на который он воздействует. В нашем случае при питании светодиода ШИМ сигналом мы имеем возможность регулировки его яркости.

Как? Очень просто. ШИМ сигнал — это чередование импульсов и пауз. То есть на светодиод то приходит напряжение, то нет. Если импульсы будут повторяться с довольно высокой частотой (от 24 импульсов в секунду), благодаря инерционности зрения мы не будем видеть пауз в свечении светодиода.

И яркость его свечения будет определяться продолжительностью свечения или длительностью импульса питания по отношению к паузе. Если поделить время работы на время периода (длительность работы + длительность паузы) получим относительную величину, показывающую какой процент мощности от максимума подано на светодиод.

И называется она скважность.

На иллюстрации видим желтый сигнал ШИМ, питающий светодиод. Синий график — эквивалентная мощность в нагрузке (светодиоде). Всё, что такое ШИМ разобрались. Едем дальше.

ШИМ сигналом можно питать светодиод равно как и без него. То есть по схеме со стабилизатором тока или с токоограничивающим резистором.

Не считая отдельных исключений с импульсными драйверами, все эти методы позволят в сочетании с ШИМ получить желанную возможность выкрутить яркость светодиода от нуля до максимума.

И если с линейными регуляторами все более менее ясно — подключай резистор со светодиодом на ШИМ и будет тебе счастье, то с импульсными стабилизаторами не все так гладко.

Сабж, ставший первопричиной появления этого поста и ролика на youtube.
Имеем пользующиеся народной любовью импульсные драйвера светодиодов с Алиэкспресс, светодиоды оттуда-же, плату контроллера динамических поворотников, все это собираем в кучу и радуемся. Или нет?

А вот тут все будет зависеть от того что за драйвера и светодиоды и насколько сэкономил на надежности ваш продавец плат динамических поворотников.

Грубо говоря, цепляете вы ваши светодиоды к драйверам, их к платам контроллеров, запускаете и ладно если еще не установили все в фару и на автомобиль, а тестируете “на коленке”.

С неприятностью обнаруживаете что ваш контроллер динамических поворотников разогрелся как из ада и возможно даже испустил дух со спецэффектами, которые вы не оплачивали. Обидно однако.

В чем-же дело? автор плат уверяет, что все платы прошли контроль и на 100% исправны, мощность светодиодов не превышает заложенный в девайс потенциал, но на выходе имеем то что имеем.

Китайцы виноваты или автор плат? Или сам где-то напорол?
Нет. Никто не виноват, да, бывает и так.

Просто максимальная нагрузка для плат и комбинация импульсных драйверов с мощными светодиодами оказались несогласованными одно с другим.

Виной тут схемотехника самих драйверов. Все за редким исключением они имеют довольно емкий выходной конденсатор (а некоторые и входной), который начинает заряжаться при подаче на драйвер напряжения т.е. при появлении импульса ШИМ.

Как известно (но не всем, разумеется) из курса физики, разряженный конденсатор при подаче на него напряжения является практически полным коротким замыканием в цепи.

И по мере принятия заряда его сопротивление и напряжение на нем растут, а ток в цепи напротив — уменьшается.
Рассмотрим этот процесс подробнее.

Поворотник отключен, контроллер не дает на выход ШИМ сигнал. Конденсатор драйвера разряжен, светодиод не светится.

Включили поворотник, контроллер выдал ШИМ на драйвер, пусть 50% скважность. Вот тут мы и получили мощный бросок тока, заряжающего конденсатор и питающего светодиод. Как там транзисторы контроллера? выжили, ну ничего, это был лишь первый импульс…

Далее конденсатор зарядился и ток питания драйвера, он-же ток нагрузки контроллера динамических поворотов, нормализовался до адекватных рабочих значений.

Но вот приходит через паузы ШИМ. Светодиод продолжает гореть за счет подпитки от конденсатора. По этой-же самой причине может иметь место отсутствие регулировки яркости светодиодов при больших значениях скважности ШИМ из-за большой емкости конденсатора, малой мощности светодиода, слишком высокой частоте ШИМ (короткие паузы между импульсами).

Далее приходит новый импульс и процесс повторяется. Но тут есть вариант, что конденсатор не успеет разрядиться полностью и ток его зарядки будет ниже.

И так далее.

Резюмируем. Установленные в импульсных драйверах конденсаторы при заряде дают весьма не хилый бросок тока в цепи ШИМ сигнала, что может привести к весьма печальным последствиям.

Надеюсь, доступно на пальцах объяснил причины возможного выхода из строя управляющих контроллеров при регулировке яркости светодиодов, запитанных через импульсные драйвера.

Теорию подтвердил практикой с совершенно конкретными устройствами, живущими долго и счастливо уже много у кого.

Источник: https://www.drive2.ru/b/498569150642258084/

Схемы драйверов светодиодов на PT4115, QX5241 и др. микросхемах с регулятором яркости для диммируемых светодиодных светильников

Содержание статьи:

  • Драйверы на микросхемах:- PT4115 (6-30V, 1.2A, 30W, аналог CL6808)- CL6708 (6-35V, 1A, 35W)- SN3350 (6-40V, 0.7A, 28W)- ZXLD1350 (7-30V, 0.35A, 10W)- QX5241 (5.5-36V, 2.5A, 40W)- AL9910 (15-500V, 40W и более)

В предыдущей статье мы рассказали как сделать драйвер для светодиодов своими руками, используя транзисторы и распространенные микросхемы-стабилизаторы напряжения. Сегодня же речь пойдет о схемах драйверов на специализированных микросхемах.

Начнем с самой популярной на сегодняшний день микросхемы драйвера светодиодов РТ4115.

PT4115

Просто поразительно, как это никому не известному китайскому производителю PowTech удалось создать настолько успешную микросхему драйвера светодиодов, вместив в компактном корпусе несколько блоков управления с мощным полевым транзистором на выходе!

Микросхема требует минимального обвеса и позволяет конструировать светодиодные светильники мощностью более 30 Вт с высоким КПД и возможностью плавной регулировки яркости.

Полным аналогом РТ4115 является микросхема СL6808 от компании Chiplink Semiconductor. Микросхемы имеют идентичные характеристики и полностью взаимозаменяемы. Поэтому все, что сказано ниже о PT4115, в равной степени относится и к СL6808.

Согласно официальной документации, LED-драйвер с функцией диммирования на основе PT4115 обладает следующими техническими характеристиками:

  • диапазон рабочего входного напряжения: 6–30В;
  • регулируемый выходной ток до 1,2А;
  • погрешность стабилизации выходного тока – не более 5%;
  • имеется защита от обрыва нагрузки и перегрева;
  • имеется вывод DIM для регулировки яркости и включения/выключения;
  • частота переключения до 1 МГЦ;
  • КПД до 97% (максимум, чего я добился – 90%);
  • производится в двух вариантах корпуса – SOT89-5 и ESOP8 (последний более эффективен, с точки зрения рассеивания мощности);
  • единственный прецизионный элемент обвязки – маломощный токозадающий резистор (погрешность сопротивления 1A 27-47 мкГн В 1.3-1.5 раза больше тока светодиода 0.8A < ILED ≤ 1A 33-82 мкГн 0.4A < ILED ≤ 0.8A 47-100 мкГн ILED ≤ 0.4A 68-220 мкГн

    Несмотря на имеющиеся табличные данные, допускается монтаж катушки с отклонением индуктивности в большую сторону от номинала. При этом изменяется КПД всей схемы, но она остается работоспособной.Дроссель можно взять фабричный, а можно сделать своими руками из ферритового кольца от сгоревшей материнской платы и провода ПЭЛ-0,35.Если важна максимальная автономность устройства (переносные светильники, фонари), то, в целях повышения эффективности схемы, имеет смысл потратить время на тщательный подбор дросселя. На малых токах индуктивность должна быть больше, чтобы минимизировать погрешности управления током, возникающие из-за задержки при переключении транзистора.Дроссель должен располагаться как можно ближе к выводу SW, в идеале – подключен напрямую к нему.И, наконец, самый прецизионный элемент схемы драйвера светодиода – резистор R. Как уже было сказано, его минимальное значение равно 0,082 Ом, что соответствует току 1,2 А.К сожалению, не всегда удается найти резистор подходящего номинала, поэтому самое время вспомнить формулы расчета эквивалентного сопротивления при последовательном и параллельном включении резисторов:

    • Rпосл = R1+R2+…+Rn;
    • Rпар = (R1xR2) / (R1+R2).

    Комбинируя различные способы включения, можно получить требуемое сопротивление из нескольких имеющихся под рукой резисторов.

    Важно так развести плату, чтобы ток диода Шоттки не протекал по дорожке между R и VIN, так как это может привести к погрешностям измерения тока нагрузки.

    Низкая стоимость, высокая надежность и стабильность характеристик драйвера на РТ4115 способствует его повсеместному использованию в светодиодных лампах. Практически каждая вторая 12-вольтовая LED-лампа с цоколем MR16 собрана на PT4115 (или СL6808).

    Следует иметь в виду, что чем ниже напряжение питания драйвера и чем ниже его КПД, тем выше будет рассеиваемая мощность микросхемы. Схема может иметь низкий КПД при использовании неправильной катушки индуктивности или повышенной паразитной емкостью на выходе.

    CL6807

    По внутреннему устройству и принципу действия микросхема-драйвер светодиодов CL6807 полностью идентична рассмотренной выше PT4115. Имеются лишь некоторые отличия в технических характеристиках. Вот самые главные из них:

    • напряжение питания 6-35В;
    • максимальный ток нагрузки – 1А;
    • имеет мягкий старт;
    • максимальный КПД – 95%;
    • выпускается в трех различных корпусах: SOT89-5, SOT23-5, SOP8 (цоколевка SOT89-5 полностью совпадает с PT4115).

    Полная спецификация (даташит) доступна по ссылке.

    Сопротивление токозадающего резистора (в Омах) рассчитывается точно по такой же формуле:

    R = 0.1 / ILED [A]

    Типовая схема включения выглядит так:

    Как видите, все очень похоже на схему светодиодной лампы с драйвером на РТ4515. Описание работы, уровни сигналов, особенности используемых элементов и компоновки печатной платы точно такие же как у PT4115, поэтому повторяться не имеет смысла.

    SN3350

    SN3350 – очередная микросхема для светодиодных драйверов. Является практически полным аналогом PT4115 с той лишь разницей, что напряжение питания может лежать в диапазоне от 6 до 40 вольт, а максимальный выходной ток ограничен 750 миллиамперами (длительный ток не должен превышать 700 мА).

    Как и все вышеописанные микросхемы, SN3350 представляет собой импульсный step-down преобразователь с функцией стабилизации выходного тока. Как обычно, ток в нагрузке (а в нашем случае в роли нагрузки выступают один или несколько светодиодов) задается сопротивлением резистора R:

    R = 0.1 / ILED

    Чтобы не превысить значение максимального выходного тока, сопротивление R не должно быть ниже 0.15 Ом.

    Микросхема выпускается в двух корпусах: SOT23-5 (максимум 350 мА) и SOT89-5 (700 мА).

    Как обычно, подавая постоянное напряжение на вывод ADJ, мы превращаем схему в простейший регулируемый драйвер для светодиодов.

    Особенностью данной микросхемы является несколько иной диапазон регулировки: от 25% (0.3В) до 100% (1.2В). При снижении потенциала на выводе ADJ до 0.2В, микросхема переходит в спящий режим с потреблением в районе 60 мкА.

    Типовая схема включения:

    Остальные подробности смотрите в спецификации на микросхему (pdf-файл).

    ZXLD1350

    Не смотря на то, что эта микросхема является очередным клоном PT4115, некоторые отличия в технических характеристиках не допускают их прямую замену друг на друга.

    Вот главные отличия:

    • микросхема стартует уже при 4.8В, но на нормальный режим работы выходит только при напряжении питания от 7 до 30 Вольт (на полсекунды допускается подавать до 40В);
    • максимальный ток нагрузки – 350 мА;
    • сопротивление выходного ключа в открытом состоянии – 1.5 – 2 Ома;
    • изменением потенциала на выводе ADJ от 0.3 до 2.5В можно менять выходной ток (яркость светодиода) в диапазоне от 25 до 200%. При напряжении 0.2В в течении, как минимум, 100 мкс, драйвер переходит в спящий режим с низким потреблением энергопотреблением (порядка 15-20 мкА);
    • если регулировка осуществляется ШИМ-сигналом, то при частоте следования импульсов ниже 500 Гц, диапазон изменения яркости составляет 1-100%. Если же частота выше 10 кГц, то от 25% до 100%;

    Максимальное напряжение, которое можно подавать на вход регулировки яркости (ADJ) составляет 6В. При этом в диапазоне от 2.5 до 6В драйвер выдает максимальный ток, который задан токоограничительным резистором. Сопротивление резистора рассчитывается точно так же, как во всех вышеперечисленных микросхемах:

    R = 0.1 / ILED

    Минимальное сопротивление резистора – 0.27 Ом.

    Типовая схема включения ничем не отличается от своих собратьев:

    Без конденсатора С1 подавать питание не схему НЕЛЬЗЯ!!! В лучшем случае микросхема будет перегреваться и выдавать нестабильные характеристики. В худшем случае – мгновенно выйдет из строя.

    Более подробные характеристики можно найти в даташите на эту микросхему.

    QX5241

    QX5241 – это китайский аналог MAX16819 (MAX16820), но в более удобном корпусе. Также выпускается под наименованиями KF5241, 5241B. Имеет маркировку “5241a” (см. фото).

    Драйвер работает по точно такому же принципу, как и все вышеописанные (понижающий преобразователь непрерывного действия), однако не содержит в своем составе выходной ключ, поэтому для работы требуется подключение внешнего полевого транзистора.

    Можно взять любой N-канальный MOSFET с подходящим током стока и напряжением сток-исток. Подойдут, например, такие: SQ2310ES (до 20V!!!), 40N06, IRF7413, IPD090N03L, IRF7201. Вообще, чем ниже будет напряжение открытия, тем лучше.

    Вот некоторые ключевые характеристики LED-драйвера на QX5241:

    • максимальный выходной ток – 2.5 А;
    • КПД до 96%;
    • максимальная частота диммирования – 5 кГц;
    • максимальная рабочая частота преобразователя – 1 МГц;
    • точность стабилизации тока через светодиоды – 1%;
    • напряжение питания – 5.5 – 36 Вольт (нормально работает и при 38!);
    • выходной ток рассчитывается по формуле: R = 0.2 / ILED

    Более подробно читайте в спецификации (на инглише).

    Светодиодный драйвер на QX5241 содержит мало деталей и собирается всегда по такой схеме:

    Микросхема 5241 бывает только в корпусе SOT23-6, так что со паяльником для пайки кастрюль к ней лучше не подходить. После монтажа плату следует хорошенько промывать от флюса, любые непонятные загрязнения могут негативно сказываться на режиме работы микросхемы.

    Разница между питающим напряжением и суммарным падением напряжения на диодах должно быть вольта 4 (или больше). Если меньше – то наблюдаются какие-то глюки в работе (нестабильность тока и свист дросселя). Так что берите с запасом. Причем, чем больше выходной ток, тем больше запас по напряжению. Хотя, возможно, мне просто попался неудачный экземпляр микросхемы.

    Если входное напряжение меньше, чем общее падение на светодиодах, то генерация срывается. При этом выходной полевик полностью открывается и светодиоды светятся (естественно, не на полную мощность, так как напряжения маловато).

    AL9910

    Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).

    Вот ее основные характеристики:

    • входное напряжение – до 500В (до 277В для переменки);
    • встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
    • возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
    • встроенная защита от перегрева (срабатывает при 150°С);
    • рабочая частота (25-300 кГц) задается внешним резистором;
    • для работы необходим внешний полевой транзистор;
    • выпускается в восьминогих корпусах SO-8 и SO-8EP.

    Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.

    Микросхема выпускается в двух модификациях: AL9910 и AL9910a. Отличаются минимальным напряжением запуска (15 и 20В соответственно) и выходным напряжением внутреннего стабилизатора ((7.5 или 10В соответственно). Еще у AL9910a немного выше потребление в спящем режиме.

    Типовая схема включения (без диммирования) выглядит так:

    Здесь светодиоды всегда горят на полную мощность, которая задается значением резистора Rsense:

    Rsense = 0.25 / (ILED + 0.15⋅ILED)

    Для регулировки яркости 7-ую ногу отрывают от Vdd и вешают на потенциометр, выдающий от 45 до 250 мВ. Также яркость можно регулировать, подавая ШИМ-сигнал на вывод PWM_D. Если этот вывод посадить на землю, микросхема отключается, выходной транзистор полностью закрывается, потребляемый схемой ток падает до ~0.5мА.

    Частота генерации должна лежать в диапазоне от 25 до 300 кГц и, как уже было сказано ранее, она определяется резистором Rosc. Зависимость можно выразить следующим уравнением:

    fosc [МГц] = 25 / (Rosc + 22), где Rosc – сопротивление в килоомах (обычно от 75 до 1000 кОм).

    Резистор включается между 8-ой ногой микросхемы и “землей” (или выводом GATE).

    Индуктивность дросселя рассчитывается по страшной на первый взгляд формуле:

    L ≥ (VIN – VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED)

    Пример расчета

    Для примера давайте рассчитаем параметры элементов обвязки микросхемы для двух последовательно включенных светодиода Cree XML-T6 и минимального напряжения питания (15 вольт).

    Итак, допустим, мы хотим, чтобы микросхема работала на частоте 240 кГц (0.24 МГц). Значение резистора Rosc должно быть:

    Rosc = 25/fosc – 22 = 25/0.24 – 22 = 82 кОм

    Идем дальше. Номинальный ток светодиодов – 3А, рабочее напряжение – 3.3В. Следовательно, на двух последовательно включенных светодиодах упадет 6.6В. Имея эти исходные данные, можем рассчитать индуктивность:

    L ≥ (VIN – VLEDs)⋅VLEDs / (0.3⋅VIN⋅fosc⋅ILED) = (15-6.6)⋅6.6 / (0.3⋅15⋅240000⋅3) = 17 мкГн

    Т.е. больше или равно 17 мкГн. Возьмем распространенную фабричную индуктивность на 47 мкГн.

    Осталось рассчитать Rsense:

    Rsense = 0.25 / (ILED + 0.15⋅ILED) = 0.25 / (3 + 0.15⋅3) = 0.072 Ом

    В качестве мощного выходного MOSFET'а возьмем какой-нибудь подходящий по характеристикам, например, всем известный N-канальник 50N06 (60В, 50А, 120Вт).

    И вот, собственно, какая схема у нас получилась:

    Не смотря на указанный в даташите минимум в 15 вольт, схема прекрасно запускается и от 12, так что ее можно использовать в качестве мощного автомобильного прожектора. На самом деле, приведенная схема – это реальная схема драйвера светодиодного прожектора 20 ватт YF-053CREE, которая была получена методом реверс-инжиниринга.

    Рассмотренные нами микросхемы драйверов светодиодов PT4115, CL6808, CL6807, SN3350, AL9910, QX5241 и ZXLD1350 позволяют быстро собрать драйвер для мощных светодиодов своими руками и широко применяются в современных LED-светильниках и лампах.

    Источник: http://electro-shema.ru/chertezhi/micro-sxema-driver-svetodiodov.html

    Драйвер для светодиодов своими руками: простые схемы с описанием

    Для применения светодиодов в качестве источников освещения обычно требуется специализированный драйвер. Но бывает так, что нужного драйвера под рукой нет, а требуется организовать подсветку, например, в автомобиле, или протестировать светодиод на яркость свечения. В этом случае можно сделать драйвер для светодиодов своими руками.

    Как сделать драйвер для светодиодов

    В приведенных ниже схемах используются самые распространенные элементы, которые можно приобрести в любом радиомагазине. При сборке не требуется специальное оборудование, — все необходимые инструменты находятся в широком доступе. Несмотря на это, при аккуратном подходе устройства работают достаточно долго и не сильно уступают коммерческим образцам.

    Необходимые материалы и инструменты

    Для того, чтобы собрать самодельный драйвер, потребуются:

    • Паяльник мощностью 25-40 Вт. Можно использовать и большей мощности, но при этом возрастает опасность перегрева элементов и выхода их из строя. Лучше всего использовать паяльник с керамическим нагревателем и необгораемым жалом, т.к. обычное медное жало довольно быстро окисляется, и его приходится чистить.
    • Флюс для пайки (канифоль, глицерин, ФКЭТ, и т.д.). Желательно использовать именно нейтральный флюс, — в отличие от активных флюсов (ортофосфорная и соляная кислоты, хлористый цинк и др.), он со временем не окисляет контакты и менее токсичен. Вне зависимости от используемого флюса после сборки устройства его лучше отмыть с помощью спирта. Для активных флюсов эта процедура является обязательной, для нейтральных — в меньшей степени.
    • Припой. Наиболее распространенным является легкоплавкий оловянно-свинцовый припой ПОС-61. Бессвинцовые припои менее вредны при вдыхании паров во время пайки, но обладают более высокой температурой плавления при меньшей текучести и склонностью к деградации шва со временем.
    • Небольшие плоскогубцы для сгибания выводов.
    • Кусачки или бокорезы для обкусывания длинных концов выводов и проводов.
    • Монтажные провода в изоляции. Лучше всего подойдут многожильные медные провода сечением от 0.35 до 1 мм2.
    • Мультиметр для контроля напряжения в узловых точках.
    • Изолента или термоусадочная трубка.
    • Небольшая макетная плата из стеклотекстолита. Достаточно будет платы размерами 60х40 мм.

    Макетная плата из текстолита для быстрого монтажа

    Схема простого драйвера для светодиода 1 Вт

    Одна из самых простых схем для питания мощного светодиода представлена на рисунке ниже:

    Как видно, помимо светодиода в нее входят всего 4 элемента: 2 транзистора и 2 резистора.

    В роли регулятора тока, проходящего через led, здесь выступает мощный полевой n-канальный транзистор VT2. Резистор R2 определяет максимальный ток, проходящий через светодиод, а также работает в качестве датчика тока для транзистора VT1 в цепи обратной связи.

    Чем больший ток проходит через VT2, тем большее напряжение падает на R2, соответственно VT1 открывается и понижает напряжение на затворе VT2, тем самым уменьшая ток светодиода. Таким образом достигается стабилизация выходного тока.

    Питание схемы осуществляется от источника постоянного напряжения 9 — 12 В, ток не менее 500 мА. Входное напряжение должно быть минимум на 1-2 В больше падения напряжения на светодиоде.

    Резистор R2 должен рассеивать мощность 1-2 Вт, в зависимости от требуемого тока и питающего напряжения. Транзистор VT2 – n-канальный, рассчитанный на ток не менее 500 мА: IRF530, IRFZ48, IRFZ44N. VT1 – любой маломощный биполярный npn: 2N3904, 2N5088, 2N2222, BC547 и т.д. R1 – мощностью 0.125 — 0.25 Вт сопротивлением 100 кОм.

    Ввиду малого количества элементов, сборку можно производить навесным монтажом:

    Еще одна простая схема драйвера на основе линейного управляемого стабилизатора напряжения LM317:

    Здесь входное напряжение может быть до 35 В. Сопротивление резистора можно рассчитать по формуле:

    R=1,2/I

    где I – сила тока в амперах.

    В этой схеме на LM317 будет рассеиваться значительная мощность при большой разнице между питающим напряжением и падением на светодиоде. Поэтому ее придется разместить на небольшом радиаторе. Резистор также должен быть рассчитан на мощность не менее 2 Вт.

    Более наглядно эта схема рассмотрена в следующем видео:

    Здесь показано, как подключить мощный светодиод, используя аккумуляторы напряжением около 8 В. При падении напряжения на LED около 6 В разница получается небольшая, и микросхема нагревается несильно, поэтому можно обойтись и без радиатора.

    Схема мощного драйвера с входом ШИМ

    Ниже показана схема для питания мощных светодиодов:

    Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

    Особенности драйвера

    • Напряжение питания: 5 — 24 В, постоянное;
    • Выходной ток: до 1 А, регулируемый;
    • Выходная мощность: до 18 Вт;
    • Защита от КЗ по выходу;
    • Возможность управления яркостью при помощи внешнего ШИМ сигнала (интересно будет почитать, как регулировать яркость светодиодной ленты через диммер).

    Принцип действия

    Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора.

    Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3.

    Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

    Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

    Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM — порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

    D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

    Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

    • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
    • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
    • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.

    В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

    Сборка и настройка драйвера

    Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.

    Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.

    При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно проверить с помощью мультиметра в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом.

    Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.

    После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.

    Список элементов:

    Заключение

    Первые две из рассмотренных схем очень просты в изготовлении, но они не обеспечивают защиты от короткого замыкания и обладают довольно низким КПД. Для долговременного использования рекомендуется третья схема на LM393, поскольку она лишена этих недостатков и обладает более широкими возможностями по регулировке выходной мощности.

    Источник: http://ledno.ru/svetodiody/led-driver-svoimi-rukami.html

    Микросхема и другие компоненты драйвера мощного светодиода

    • AliExpress
    • Сделано руками
    • Фонарики и светодиодные лампы

    Я публиковал несколько обзоров светодиодов, пришло время написать чем их можно кормить. В обзоре учавствуют три позиции деталей (ссылки и цены присутствуют), но все они нужны для одной цели, сделать драйвер для светодиода.

    Сразу извиняюсь за заглавное фото, оно упорно пытается масштабироваться по своему, исправить я не смог, более правильное на странице продавца. Все знают, что светодиоды питаются током, желательно стабилизированным, что бы не менялась яркость при изменении напряжения. Для этой цели служит драйвер, по сути стабилизатор тока.

    Ограничивать ток можно простыми микросхемами типа LM317 и специально предназначенными для этого стабилизаторами тока (на муське есть обзор одной такой детали), но они выделяют обычно достаточно много тепла, так как имеют низкий КПД. А ведь преимущество светодиодов как раз в высоком КПД.

    Более интересными являются импульсные стабилизаторы тока, они посложнее, но имеют гораздо больший КПД, особенно если напряжение питания сильно отличается от напряжения на светодиоде. Да, многие скажут что такой драйвер проще купить в Китае и не заморачиваться, соглашусь. Но ведь всегда приятнее сделать что то своими руками.

    Собственно я так и решил, заказывая компоненты для драйвера. Возможно я изобретаю велосипед. Но в обзоре учавствуют компоненты, которые пригодятся для многих других задач, и возможно многим будет полезна информация о том, что на продают и что мы получаем на самом деле.

    Начну собственно с микросхемы.

    Это довольно хорошо известная любителям светодиодов PT4115. описание — www.micro-bridge.com/data/CRpowtech/PT4115E.pdf

    Микросхема имеет вывод для управления яркостью. Вход, насколько я понял, может управляться и ШИМом или изменением напряжения. Вход довольно высокоомный, так как при прикосновении к этому выводу светодиод начинал мерцать с частотой 100Гц. Стоимость лота из 10 штук — 2 доллара.

    После заказа микросхемы продавец отписался что посылка будет без трека и спросил, устроит ли это меня, я решил что 2 доллара не те деньги что бы сильно беспокоиться и дал добро. Через некоторое время в почтовом ящике я обнаружил конверт.

    Внутри был пакетик с необходимыми мне микросхемами.Проверил одну микросхему, подключив ее навесным монтажом, отписал продавцу что все в порядке, подтвердил получение и стал ждать остальные детали.

    После этого пришли дроссели. aliexpress.

    com/item/NEW-12-12-7-68UH-standard-word-680-shielded-inductor-SMD-Power-Inductors-20pieces/1496762525.html

    Стоимость лота из 20 штук 7.36 доллара. Их уже принесли мне на дом (впрочем как и следующий заказ). Они были упакованы в картонную коробочку, хотя мне такая мера кажется излишней. К слову у нас такие дроссели стоят значительно дороже, да и покупал я их не только для этого. Собственно дроссели, Индуктивность 68 мкГн, ток 1.6 или 1.

    8 Ампера (у продавца не указано, потому ориентировочно), размеры 12х12х7мм.Замер индуктивности показал отклонение в пределах погрешности.Аналогично первому случаю подтвердил заказ, оставил хороший отзыв. Ну и в конце пришли диоды Шоттки. Так как вещь в хозяйстве нужная, то заказал я их сотню. Хотел больше, но не стал рисковать.

    aliexpress.

    com/item/Free-Shipping-100pcs-IN5822-SS34-DO-214AC-1N5822-SMD-Schottky-Barrier-Diodes/882503650.html

    Цена лота из 100 штук 5.26 доллара. У нас они тоже стоят дороже.

    Диоды промаркированы как SS34, на самом деле они меньше, по габаритам и характеристикам полностью соответствуют диодам SS24. www.onsemi.ru.com/pub_link/Collateral/SS24-D.PDF

    Сделал замер падения напряжения на диоде при токе в 1 Ампер и меня он устроил.На этом часть закупок на Алиэкспресс закончилась. В принципе на этом можно было и обзор закончить, но купить детали и не опробовать их в деле было бы неправильно. Потому естественно было решено довести дело до какого то логического конца.

    Когда был у нас на рынке, попутно купил smd резисторы 1206 сопротивлением 1 Ом для датчика тока. Думал сначала купить сразу низкоомные резсторы как в даташите на микросхему, но они выходят значительно дороже и если захочется настроить на разные токи, то надо покупать несколько номиналов, в общем неудобно, а резисторы 1 Ом я и так иногда использую.

    в итоге получилось, что 1 такой резистор примерно соответствует току 0.1 Ампера, два параллельно 0.2 Ампера и т.д. smd резисторы и конденсаторы удобно паяются друг на друга потому можно легко подбирать необходимый ток. Конденсаторы на входной фильтр питания и обрезки текстолита у меня были, а больше ничего не требуется.

    Ну в общем стал я изобретать свой велосипед драйвер.

    накидал побыстрому платку в Спринте, схема из даташита, потому придумывать ничего не пришлось.

    подобрал кусочек текстолита что бы сделать сразу 5 плат (планирую переделать 5 галогеновых светильников на светодиоды).

    Немного фоток процесса и схема

    Печатная плата в Спринте 6

    Перенёс на текстолит.Вытравил, просверлил отверстия, порезал на отдельные платки, пролудил дорожки и промыл от остатков флюса.

    Собрал все необходимые компонетыНа выходе получилась такая платка, она больше по размерам чем продающиеся у китайцев, но имеет более мощный дроссель и два параллельных диода, соответственно меньшие потери и большую надежность, а габариты мне были совершенно некритичны.

    После этого естественно захотелось проверить (куда же без этого).

    Проверял с этими светодиодами — mysku.ru/blog/aliexpress/24091.html

    Попутно выяснилось, что микросхема ток стабилизирует нормально, но все равно при полуторакратном повышении напряжения на входе, ток на выходе хоть несильно, но меняется. Но я немного грешу на то, что может быть большая погрешность из-за пульсирующего тока (выходной ток измерял последовательно со светодиодом).

    Можно было конечно померять ток при помощи резистора и осциллографа, но я счел это излишним, так как хорошо было заметно переход с линейного режима до ограничения тока, и последующий переход в режим стабилизации в режиме с ШИМ стабилизацией. Номинал шунта был 1/6=0,166 Ома. При таких параметрах на входе, на выходе был ток 0.7 Ампера.При таких ток на выходе был 0.

    65 АмпераПеред пороговым напряжением перехода в режим ШИМ стабилизации я получил максимальный ток —При плавном повышении напряжения питания, входной ток сначала плавно рос, после перехода в режим стабилизации и дальнейшем повышении начинал плавно падать, что говорит о работе ШИМ стабилизации.

    Кстати, при очень плавном повышении напряжения питания заметен переход, яркость светодиода сначала плавно увеличивается, после перехода скачкообразно снижается процентов на 10, после этого (при дальнейшем повышении входного напряжения) больше не меняется. Видимо так микросхема отрабатывает включение ШИМ стабилизации.

    Нагрев при токе 600мА практически не чувствуется, бесконтактно мерять нечем, а контактное измерение внесет большую погрешность. Пробовал давать на выход 1 Ампер, нагрев конечно увеличивался, но несильно. да и нагрев был только у микросхемы. В общем остался доволен. Спросите почему не купил готовое на том же Али? -Детали пригодятся и в других поделках. -Хотелось немного «размять руки».

    -Затраты на все компоненты получились примерно 1 доллар на 1 плату. -Решил протестировать не готовое устройство, а детали, так как их применяют не только в драйверах. -На выходе получил устройство надежнее, чем предлагают магазины Китая.

    Очень надеюсь, что данный обзор будет полезен.

    Планирую купить +121 Добавить в избранное Обзор понравился +129 +282

    Источник: https://mysku.ru/blog/aliexpress/24219.html

    Драйверы для светодиодов: виды, характеристики и критерии выбора устройств

    Гарантией яркости свечения, эффективности и долговечности LED-источников является правильное питание, которое могут обеспечить специальные электронные устройства — драйверы для светодиодов.

    Они преобразуют напряжение переменного тока в сети 220В в напряжение постоянного тока заданного значения.

    Разобраться в том, какую функцию выполняют преобразователи и на что обратить внимание при их выборе, поможет анализ основных видов и характеристик устройств.

    Драйвер гарантирует эффективность и яркость свечения LED-источника

    Назначение LED-драйверов для светодиодов

    Основной функцией драйвера для светодиодов является обеспечение стабилизированного тока, проходящего через LED-прибор. Значение тока, протекающего через кристалл полупроводника, должно соответствовать паспортным параметрам светодиода.

    Это обеспечит устойчивость свечения кристалла и поможет избежать его преждевременной деградации. Кроме того при заданном токе падение напряжения будет соответствовать величине, необходимой для p-n перехода.

    Узнать соответствующее напряжение питания светодиода можно воспользовавшись вольт-амперной характеристикой.

    LED-драйвер обеспечивает стабилизацию тока, проходящего через прибор

    При освещении жилых и офисных помещений светодиодными лампами и светильниками применяют драйверы, питание которых обеспечивается от сети переменного тока 220В. В автомобильном освещении (фары, ДХО и пр.

    ), велосипедных фарах, портативных фонарях используют источники питания постоянного напряжения в диапазоне от 9 до 36В.

    Некоторые светодиоды небольшой мощности можно подключать без драйвера, но тогда в схему включения светодиода в сеть 220 вольт должен быть внесен резистор.

    Напряжение драйвера на выходе указывается в интервале двух конечных значений, между которыми обеспечивается стабильное функционирование. Существуют адаптеры с интервалом от 3В до нескольких десятков.

    Чтобы запитать схему из 3-х последовательно соединенных светодиодов белого цвета, каждый из которых имеет мощность 1 Вт, потребуется драйвер с выходными значениями U – 9-12В, I – 350 мА.

    Падение напряжения для каждого кристалла составит около 3,3В, а в общей сумме 9,9В, что войдет в диапазон драйвера.

    Основные характеристики преобразователей

    Перед тем как купить драйвер для светодиодов, следует ознакомиться с основными характеристиками устройств. К ним относят напряжение на выходе, номинальный ток и мощность.

    Выходное напряжение преобразователя зависит от величины падения напряжения на LED-источнике, а также от способа подключения и количества светодиодов в схеме. Ток находится в зависимости от мощности и яркости излучающих диодов.

    Драйвер должен обеспечить светодиодам такой ток, который необходим им для поддержки требуемой яркости.

    К характеристикам драйвера относятся напряжение на выходе, номинальный ток и мощность

    Одной из важных характеристик драйвера считается мощность, которую прибор выдает в виде нагрузки. На выбор мощности драйвера влияет мощность каждого LED-прибора, общее количество и цвет свечения светодиодов. Алгоритм расчета мощности состоит в том, что максимальная мощность устройства не должна быть ниже потребления всех светодиодов:

    P = P(led) × n,

    где P(led) – мощность единичного LED-источника, а n — количество светодиодов.

    Кроме того должно выполняться обязательное условие, при котором бы обеспечивался запас мощности в пределах 25-30%. Таким образом значение максимальной мощности должно быть не меньше значения (1,3 х P).

    Следует также брать во внимание цветовые характеристики светодиодов. Ведь различные по цвету полупроводниковые кристаллы имеют разную величину падения напряжения при прохождении через них тока одинаковой силы.

    Так падение напряжения у красного светодиода при токе 350 мА составляет 1,9-2,4В, тогда среднее значение его мощности будет равно 0,75 Вт. У аналога зеленого цвета величина падения напряжения находится в пределах от 3,3 до 3,9В и при таком же токе мощность составит уже 1,25 Вт.

    Значит к драйверу для светодиодов 12В можно подсоединить 16 красных LED-источников или 9 зеленых.

    Полупроводниковые кристаллы разных цветов имеют разную величину падения напряжения

    Какими бывают драйверы для светодиодов по типу устройства

    Драйверы для светодиодов классифицируют по типу устройства на линейные и импульсные. Структура и типовая схема драйвера для светодиодов линейного типа представляет собой генератор тока на транзисторе с р-каналом.

    Такие устройства обеспечивают плавную стабилизацию тока при условии неустойчивого напряжения на входном канале.

    Они являются простыми и дешевыми устройствами, однако отличаются низкой эффективностью, выделяют при работе много тепла и не могут быть использованы как драйвера для мощных светодиодов.

    Импульсные устройства создают в выходном канале ряд высокочастотных импульсов.

    Их работа основана на принципе ШИМ (широтно-импульсной модуляции), когда средняя величина тока на выходе обуславливается коэффициентом заполнения, т.е. отношением длительности импульса к числу его повторений.

    Изменение величины среднего выходного тока происходит вследствие того, что частота импульсов остается неизменной, а коэффициент заполнения изменяется от 10-80%.

    Благодаря высокому КПД преобразований (до 95%) и компактности устройств, они нашли широкое применение для портативных светодиодных конструкций.

    Кроме того, эффективность устройств положительно сказывается на длительности функционирования автономных приборов питания.

    Преобразователи импульсного типа имеют компактные размеры и отличаются обширным диапазоном входных напряжений. Недостатком этих устройств является высокий уровень электромагнитных помех.

    КПД светодиодных драйверов достигает 95%

    Перед тем как подобрать драйвер для светодиодов, необходимо знать условия его функционирования и место размещения светодиодных приборов.

    Широтно-импульсные драйверы, в основе которых лежит одна микросхема, имеют миниатюрные размеры и рассчитаны на питание от автономных низковольтных источников. Основное применение этих устройств – тюнинг автомобилей и светодиодная подсветка.

    Однако ввиду использования упрощенной электронной схемы качество таких преобразователей несколько ниже.

    Диммируемые драйверы для светодиодов

    Современные драйверы для светодиодов совместимы с устройствами регулирования яркости свечения полупроводниковых приборов.

    Использование диммируемых драйверов позволяет управлять уровнем освещенности в помещениях: снижать интенсивность свечения в дневное время, подчеркивать или скрывать отдельные элементы в интерьере, зонировать пространство.

    Это, в свою очередь, дает возможность не только рационально использовать электроэнергию, но и экономить ресурс светодиодного источника света.

    Диммируемые драйверы бывают двух типов. Одни подсоединяются между блоком питания и LED-источниками. Такие устройства управляют энергией, поступающей от источника питания к светодиодам.

    В основе таких устройств используется ШИМ-управление, при котором энергия поступает к нагрузке в виде импульсов. Длительность импульсов определяет количество энергии от минимального до максимального значения.

    Драйверы такого типа применяются по большей части для светодиодных модулей с фиксированным напряжением, таких как светодиодные ленты, бегущие строки и др.

    Управление драйвером осуществляется с помощью диммера или ШИМ

    Диммируемые преобразователи второго типа управляют непосредственно источником питания. Принцип их работы заключается как в ШИМ-регулировании, так и в управлении величиной протекающего через светодиоды тока.

    Диммируемые драйверы этого типа используются для LED-приборов со стабилизированным током.

    Стоит отметить, что при управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты.

    Сравнивая эти два метода регулирования, стоит отметить, что при регулировании величины тока через LED-источники наблюдается не только изменение яркости свечения, но и изменение цвета свечения.

    Так, белые светодиоды при меньшем токе излучают желтоватый свет, а при увеличении – светятся синим. При управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты и высокий уровень электромагнитных помех.

    В связи с этим ШИМ-управление используется достаточно редко в отличие от регулирования тока.

    Схемы драйверов для светодиодов

    Многие производители выпускают для светодиодов микросхемы драйверов, позволяющие запитывать источники от пониженного напряжения. Все существующие драйверы делят на простые, выполненные на базе от 1-3 транзисторов и более сложные с использованием специальных микросхем с широтно-импульсной модуляцией.

    Схема драйверов для светодиодов на 1W

    Компания ON Semiconductor предлагает в качестве основы для драйверов широкий выбор микросхем.

    Они отличаются приемлемой стоимостью, отличной эффективностью преобразования, экономичностью и низким уровнем электромагнитных импульсов.

    Производителем представлен драйвер импульсного типа UC3845 с величиной тока на выходе до 1А. На такой микросхеме можно реализовать схему драйвера для светодиода 10W.

    Электронные компоненты HV9910 (Supertex) являются популярной микросхемой для драйверов, благодаря простому схемному разрешению и невысокой цене.

    Она имеет встроенный регулятор напряжения и выводы для осуществления управления яркостью, а также вывод для программирования частоты переключений. Выходное значение тока составляет до 0,01А.

    На данной микросхеме возможно воплотить простой драйвер для светодиодов.

    На базе микросхемы UCC28810 (пр-во компании Texas Instruments) можно создать схему драйвера для мощных светодиодов. В такой схеме LED-драйвера может создаваться выходное напряжение величиной 70-85В для светодиодных модулей, состоящих из 28 LED-источников током 3 А.

    Схема подключения мощного светодиода

    Компания Clare предлагает создание простого драйвера импульсного типа на основе микросхемы CPC 9909. Она включает контроллер преобразователя, размещенного в компактном корпусе.

    За счет встроенного стабилизатора напряжения допускается питание преобразователя от напряжения 8-550В.

    Микросхема CPC 9909 позволяет эксплуатировать драйвер в условиях широкого разброса температурных режимов от -50 до 80°С.

    Как подобрать драйвер для светодиодов

    На рынке представлен широкий ассортимент драйверов для светодиодов от разных производителей. Многие из них, особенно китайского производства, отличаются низкой ценой.

    Однако покупать такие устройства не всегда выгодно, так как большинство из них не соответствует заявленным характеристикам.

    Кроме того такие драйверы не сопровождаются гарантией, а в случае обнаружения брака их нельзя вернуть или заменить на качественные.

    Так существует вероятность приобретения драйвера, заявленная мощность которого составляет 50 W. Однако на деле оказывается, что эта характеристика имеет непостоянный характер и такая мощность является лишь кратковременной.

    В реальности же такое устройство будет работать как LED-driver 30W или максимум 40W. Так же может оказаться, что в начинке не будет хватать некоторых компонентов, отвечающих за устойчивое функционирование драйвера.

    Кроме того могут применяться компоненты низкого качества и с небольшим сроком службы, что является по сути браком.

    Ресурс работы качественного драйвера — более 70 тыс. часов

    При покупке стоит обращать внимание на указание бренда изделия. На качественном товаре обязательно будет указан изготовитель, который предоставит гарантию и будет готов отвечать за свою продукцию. Следует отметить, что и срок службы драйверов от проверенных производителей будет гораздо больше. Ниже приведено ориентировочное время работы драйверов в зависимости от изготовителя:

    • драйвер от сомнительных производителей – не более 20 тыс. часов;
    • устройства среднего качества – около 50 тыс. часов;
    • преобразователь от проверенной фирмы-изготовителя с использованием качественных компонентов – свыше 70 тыс. часов.

    Для рассчета требуемого напряжения на выходе, необходимо учитывать мощность и силу тока

    Расчет драйверов для светодиодов

    Чтобы определить напряжение на выходе светодиодного драйвера, необходимо рассчитать отношение мощности (Вт) к значению тока (А). К примеру, драйвер имеет следующие характеристики: мощность 3 Вт и ток 0,3 А. Расчетное отношение составляет 10В. Таким образом, это будет максимальная величина выходного напряжения данного преобразователя.

    Статья по теме:

    Если необходимо подключить 3 LED-источника, ток каждого из которых составляет 0,3 мА при напряжении питания 3В. Подключая к светодиодному драйверу один из приборов, то выходное напряжение будет равно 3В и ток 0,3 А.

    Собрав последовательно два LED-источника, выходное напряжение будет равно 6В и ток 0,3 А. Добавив в последовательную цепочку третий светодиод, получим 9В и 0,3 А. При параллельном соединении 0,3 А одинаково распределятся между светодиодами по 0,1 А.

    Подключая светодиоды к устройству на 0,3 А при значении тока 0,7, им достанется всего 0,3 А.

    В некоторых драйверах предусмотрена защита от аварийных ситуаций

    Таков алгоритм функционирования светодиодных драйверов. Они выдают такое количество тока, на которое они рассчитаны. Способ подключения LED-приборов в этом случае не играет роли. Есть модели драйверов, предполагающие любое количество подключаемых к ним светодиодов.

    Но тогда существует ограничение по мощности LED-источников: она не должна превышать мощность самого драйвера. Выпускаются драйверы, рассчитанные на определенное число подключаемых светодиодов К ним разрешается подключить меньшее количество светодиодов.

    Но такие драйверы имеют низкую эффективность, в отличие от устройств, рассчитанных на конкретное количество LED-приборов.

    Следует отметить, что у драйверов, рассчитанных на фиксированное количество излучающих диодов, предусмотрена защита от аварийных ситуаций.

    Такие преобразователи некорректно работают, если к ним подключить меньшее число светодиодов: они будут мерцать или вообще не будут светиться.

    Таким образом, если подключить к драйверу напряжение без соответствующей нагрузки, он будет работать нестабильно.

    Где купить драйверы для светодиодов

    Купить LED-driver можно в специализированных точках по продаже радиодеталей. Кроме того гораздо удобней ознакомиться с продукцией и заказать необходимое изделие, используя каталоги соответствующих сайтов.

    Помимо этого в интернет-магазинах можно приобрести не только преобразователи, а также приборы светодиодного освещения и сопутствующую продукцию: блоки питания, устройства управления, средства подключения, электронные компоненты для ремонта и сборки драйвера для светодиодов своими руками.

    Стоимость драйвера может достигать 300 рублей и выше

    Реализующими компаниями представлен огромный ассортимент драйверов для светодиодов, технические характеристики и цены которых можно увидеть в прайсах.

    Как правило цены на продукцию носят ориентировочный характер и уточняются при заказе у менеджера проекта.

    В ассортименте имеются преобразователи различной мощности и степени защиты, применяемые для наружного и внутреннего освещения, а также для подсветки и тюнинга автомобилей.

    Выбирая драйвер следует учитывать условия его использования и потребляемую мощность светодиодной конструкции. Поэтому приобретать драйвер необходимо перед покупкой светодиодов.

    Так, прежде чем купить драйвер для светодиодов 12 вольт, необходимо принять во внимание, что он должен иметь запас мощности около 25-30%. Это нужно для того, чтобы уменьшить риск повреждения или полного выхода из строя прибора при коротком замыкании или перепадах напряжения в сети.

    Стоимость преобразователя зависит от количества приобретаемых устройств, формы оплаты и сроков доставки.

    В таблице приведены основные параметры и размеры стабилизаторов напряжения 12 вольт для светодиодов с указанием их ориентировочной цены:

    Модификация LD DC/AC 12 V Габариты, мм (в/ш/г) Выходной ток, A Мощность, W Цена, руб.
    1x1W 3-4VDC 0.3A MR11

    Источник: http://remoo.ru/elektrika/drajvery-dlya-svetodiodov

Ссылка на основную публикацию
Adblock
detector