Универсальные бп с защитой от перегрузок и к.з.

Регулируемый блок питания с защитой

Источник: http://el-shema.ru/publ/pitanie/reguliruemyj_blok_pitanija_s_zashhitoj/5-1-0-321

:: УСТРОЙСТВО ЗАЩИТЫ ДЛЯ ЛЮБОГО БЛОКА ПИТАНИЯ ::

Источник: http://samodelnie.ru/publ/samodelnye_bloki_pitanija/ustrojstvo_zashhity_dlja_ljubogo_bloka_pitanija/3-1-0-250

Защита от переполюсовки и КЗ зарядного устройства, блока питания своими руками

Содержание

  • 1 Вариант 1
  • 2 Вариант 2
  • 3 Вариант 3
  • 4 Итог

Многие самодельные блоки имеют такой недостаток, как отсутствие защиты от переполюсовки питания. Даже опытный человек может по невнимательности перепутать полярность питания. И есть большая вероятность что после этого зарядное устройство придет в негодность.

В этой статье будет рассмотрено 3 варианта защит от переполюсовки, которые работают безотказно и не требуют никакой наладки.

Вариант 1

Это защита наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

В случае внедрения такой защиты в зарядное устройство автомобильного аккумулятора, стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности зарядника. В среднем стоит использовать реле на 15-20 А.

Вариант 2

Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.

Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.

При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте.

Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой.

Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.

Из-за высокой скорости реагирования эта схема гарантированно защитит зарядное устройство при любой проблеме на выходе.

Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.

Вариант 3

Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.

Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.

Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.

А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.

Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.

Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.

Итог

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.

Источник: https://volt-index.ru/muzhik-v-dome/kak-sdelat-zashhitu-ot-perepolyusovki-dlya-bloka-pitaniya.html

Блок питания с защитой

Интегральная микросхема (ИМС) КР142ЕН12А представляет собой регулируемый стабилизатор напряжения компенсационного типа в корпусе КТ-28-2, который позволяет питать устройства током до 1,5 А в диапазоне напряжений 1,2…37 В. Этот интегральный стабилизатор имеет термостабильную защиту по току и защиту выхода от короткого замыкания.

На основе ИМС КР142ЕН12А можно построить регулируемый блок питания, схема которого (без трансформатора и диодного моста) показана на рис.2. Выпрямленное входное напряжение подается с диодного моста на конденсатор С1. Транзистор VT2 и микросхема DA1 должны располагаться на радиаторе.

Теплоотводящий фланец DA1 электрически соединен с выводом 2, поэтому если DAT и транзистор VD2 расположены на одном радиаторе, то их нужно изолировать друг от друга.

В авторском варианте DA1 ус­тановлена на отдельном небольшом радиаторе, который гальванически не связан с радиатором и транзистором VT2. Мощность, рассеиваемая микросхемой с теплоотводом, не должна превышать 10 Вт.

Резисторы R3 и R5 образуют делитель напряжения, входящий в измерительный элемент стабилизатора. На конденсатор С2 и резистор R2 (служит для подбора термостабильной точки VD1) подается стабилизированное отрицательное напряжение -5 В.

В авторском варианте напряжение подается от диод­ного моста КЦ407А и стабилизатора79L05, питающихся от отдельной обмотки силового трансформатора.

Для защиты от замыкания выходной цепи стабилизатора достаточно подключить параллельно резистору R3 электролитический конденсатор емкостью не менее 10 мкФ, а резистор R5 зашунтировать диодом КД521А.

Расположение деталей некритично, но для хорошей температурной стабильности необходимо применить соответствующие типы резисторов. Их надо располагать как можно дальше от источников тепла.

Общая стабильность выходного напряжения складывается из многих факторов и обычно не превышает 0,25% после прогрева.

После включения и прогрева устройства минимальное выходное напряжение 0 В устанавливают резистором Rao6. Резисторы R2 (рис.2) и резистор Rno6 (рис.3) должны быть многооборотными подстроечными из серии СП5.

Возможности по току у микросхемы КР142ЕН12А ограничены 1,5 А. В настоящее время в продаже имеются микросхемы с аналогичными параметрами, но рассчитанные на больший ток в нагрузке, например LM350 – на ток 3 A, LM338 – на ток 5 А.

В последнее время в продаже появились импортные микросхемы из серии LOW DROP (SD, DV, LT1083/1084/1085). Эти микросхемы могут работать при пониженном напряжении между входом и выходом (до 1… 1,3 В) и обеспечивают на выходе стабилизированное напряжение в диапазоне 1,25…

30 В при токе в нагрузке7,5/5/3 А соответственно. Ближайший по параметрам отечественный аналог типа КР142ЕН22 имеет максимальный ток стабилизации 7,5 А. При максимальном выходном токе, режим стабилизации гарантируется производителем при напряжении вход-выход не менее 1,5 В.

Микросхемы также имеют встроенную защиту от превышения тока в нагрузке допустимой величины и тепловую защиту от перегрева корпуса.

Данные стабилизаторы обеспечивают нестабильность выходного напряжения 0,05%/В, нестабильность выходного напряжения при изменении выходного тока от 10 мА до максимального значения не хуже 0,1%/В. На рис.4 показана схема БП для домашней лаборатории, позволяющая обойтись без транзисторов VT1 и VT2, показанных на рис.2.

Вместо микросхемы DA1 КР142ЕН12А применена микросхема КР142ЕН22А. Это регулируемый стабилизатор с малым падением напряжения, позволяющий получить в нагрузке ток до 7,5 А.

Например, входное напряжение, подаваемое на микросхему, Uin=39 В, выходное напряжение на нагрузке Uout=30 В, ток на нагрузке louf=5 А, тогда максимальная рассеиваемая микросхемой мощность на нагрузке составляет 45 Вт.

Электролитический конденсатор С7 применяется для снижения выходного импеданса на высоких частотах, а также понижает уровень напряжения шумов и улучшает сглаживание пульсаций. Если этот конденсатор танталовый, то его номинальная емкость должна быть не менее 22 мкФ, если алюминиевый – не менее 150 мкФ. При необходимости емкость конденсатора С7 можно увеличить.

Если электролитический конденсатор С7 расположен на расстоянии более 155 мм и соединен с БП проводом сечением менее 1 мм, тогда на плате параллельно конденсатору С7, бли­же к самой микросхеме, устанавливают дополнительный электролитический конденсатор емкостью не менее 10мкФ.

Емкость конденсатора фильтра С1 можно определить приближенно, из расчета 2000 мкФ на 1 А выходного тока (при напряжении не менее 50 В).Для снижения температурного дрейфа выходного напряжения резистор R8 должен быть либо проволочный, либо металлофольгированный с погрешностью не хуже 1%. Резистор R7 того же типа, что и R8.

Если стабилитрона КС113А в наличии нет, можно применить узел, показанный на рис.3. Схемное решение защиты, приведенное в [2], автора вполне устраивает, так как работает безотказно и проверено на практике. Можно использовать любые схемные решения защиты БП, например предложенные в [3]. В авторском варианте при срабатывании реле К1 замыкаются контакты К 1.1, закорачивая резистор R7, и напряжение на выходе БП становится равным 0 В. Печатная плата БП и расположение элементов показаны на рис.5, внешний вид БП – на рис.6.

Источник: Радиоаматор №12 2004г стр. 20

Источник: http://shemu.ru/markirovka/132-bp-szawitoi.html

Регулируемый блок питания с защитой от перегрузки

При настройке всевозможных радиоэлектронных устройств зачастую бывает, необходим блок питания, в котором реализована функция плавной регулировки, как выходного напряжения, так и значения тока по перегрузке.

В большинстве простых блоков, реализована защита блока питания от перегрузки только по превышению максимального тока нагрузки. Подобная электронная защита, главным образом, предназначается для самого блока питания, а не для подключенной к нему нагрузки.

Для надежного функционирования, как блока питания, так и подсоединенного к нему электронного устройства, желательно иметь возможность изменения порога срабатывания защиты по току в больших пределах, причем при срабатывании защиты подключенная нагрузка должна быть обесточена.

Приведенная в данной статье схема является еще одним вариантом лабораторного блока питания, позволяющая производить плавную регулировку всех перечисленных выше параметров.

Описание работы регулируемого блока питания

На операционном усилителе LM358 (DA1.1) построен регулируемый стабилизатор напряжения. С вывода потенциометра R2 на его прямой вход (вывод 3) идет опорное напряжение, величина которого устанавливается стабилитроном VD1, а на инверсный вход (вывод 2) поступает потенциал ООС с эмиттера транзистора VT1 через резисторный делитель напряжения R10 и R7.

Отрицательно обратная связь создает баланс напряжений на обоих входах ОУ LM358, возмещая воздействие дестабилизирующих причин. Путем вращения ручки потенциометра R2 осуществляется изменение выходного напряжения блока питания.

Блок защиты от перегрузки по току построен на втором операционном усилителе DA1.2, входящем в состав микросхемы LM358 , который используется в данной схеме в качестве компаратора. На его прямой вход через сопротивление R14 идет напряжение с датчика тока нагрузки (сопротивление R13), а на инверсный вход поступает опорное напряжение, постоянство которого обеспечивает диод VD2.

До тех пор пока падение напряжения, формируемое током нагрузки на сопротивлении R13, ниже опорного, потенциал на выходе 7 операционного усилителя DA1.2 практически равен нулю. В том случае, если ток нагрузки превзойдет допустимый, потенциал на выходе DA1.2 возрастет до напряжения питания.

В результате этого через сопротивление R9 пойдет ток, который откроет транзистор VT2 и зажжет светодиод HL1. Диод VD3 начинает пропускать ток и сквозь сопротивление R11 шунтирует электрическую цепь ПОС.

Транзистор VT2 подсоединяет сопротивление R12 параллельно стабилитрону VD1, и как следствие этого напряжение на выходе блока питания снижается фактически до нуля из-за закрытия транзистора VT1.

Заново подключить нагрузку возможно непродолжительным выключением сетевого питания или путем нажатия на кнопку SA1. Для защиты транзистора VT1 от обратного напряжения, идущего с емкости С5, которое возникает при отсоединении нагрузки от блока питания, в схему добавлен диод VD4.

Детали блока питания

Транзистор VT2 возможно поменять на КТ315Б – КТ315Е. Транзистор VT1 можно заменить на произвольный из серий КТ827, КТ829. Диоды VD2 – VD4 возможно применить КД522Б.

 Сопротивление R13 возможно собрать из трех впараллель соединенных резисторов МЛТ-1 сопротивлением по 1 Ом каждый. Стабилитрон VD1 любой с напряжением стабилизации 7…8 вольт и током от 3 до 8 мА. Емкости СЗ, С4 произвольные пленочные или керамические.

Электролитические конденсаторы: С1 – К50-18 или аналогичный зарубежный, другие – марки К50-35. Кнопка SA1 без фиксации.

Источник: Радио, 9/2005

Источник: http://www.joyta.ru/6075-reguliruemyj-blok-pitaniya-s-zashhitoj-ot-peregruzki/

Универсальный мощный блок питания » Блог: Блог инженера » Портал инженера

Этот блок питания (БП) собран из легкодоступных частей. Он практически не требует налаживания, действует в широком промежутке подводимого переменного напряжения, оснащен защитой от перегрузки по току.

От известных раньше конструкций этот блок питания различается простотой и надежностью, а еще вероятностью с поддержкою наружного управляющего сигнала дистанционно подключать и отключать стабилизатор.

Данная легкая схема позволяет заполучить неплохой коэффициент стабилизации и большой выходящий ток, кой зависит от численности управляющих транзисторов, включенных параллельно.Тех. возможностиРегулировка выходного напряжения в пределах 3…20 В. Фиксированное напряжение 13,8 В с защитой от перенапряжения.

Нестабильность выходного напряжения в диапазоне регулировки при изменении напряжения питания сети на 10% от номинального значения при любом возможном токе нагрузки не превышает 0,03%.Нестабильность выходного напряжения при изменении тока нагрузки от максимально допустимого значения до нуля не превышает 0,1%.

Амплитуда пульсаций выходного напряжения не превышает 1 мВ действенного значения в диапазоне регулировки при любом допустимом токе нагрузки.Температурный коэффициент выходного напряжения во всем диапазоне регулировки при всяком допустимом токе нагрузки при изменении температуры находящейся вокруг среды от 5 до 40 С, не превышает 0,02%/град.

Защита блока питания от перегрузок и коротких замыканий. Допускается заземление выходных цепей положительной либо отрицательной полярности, а еще параллельная и последовательная работа 2-ух схожих блоков питания. Возможно включение и отключение нагрузок без снятия напряжения.

Рис.1. Принципиальная электрическая схема блока питания

Принципиальная электрическая схема блока питания показана на рис.1. Блок питания собран по традиционной схеме последовательного компенсационного стабилизатора напряжения. Приспособление состоит из 2-ух многофункциональных частей: фактически стабилизатора напряжения и узла защиты.

Стабилизированный источник питания состоит из понижающего трансформатора Т1, мощного выпрямителя на диодах VD1–VD4, конденсаторов фильтра С1–С3 и стабилизатора постоянного напряжения на микросхеме DA1. Плавная регулирование выходного напряжения исполняется потенциометром R5.

Микросхема К142ЕН3 дозволяет заметно упростить систему блока питания, повысить его качественные свойства, нарастить надежность, убавить габариты [1].

Эта микросхема считается регулируемым стабилизатором напряжения с системой защиты от перегрузки по току и коротких замыканий в цепи нагрузки, обеспечивает выходное напряжение от 3 до 30 В при токе до 1 А, а еще дозволяет наружным управляющим сигналом дистанционно подключать и отключать стабилизатор.

В случае срабатывания системы тепловой защиты повторное включение стабилизатора может быть лишь опосля остывания микросхемы.

Электрическая схема микросхемы существенно усложнена по сопоставлению со схемой стабилизаторов К142ЕН1, К142ЕН2 за счет введения двухкаскадного дифференциального УПТ с токостабилизирующими двухполюсниками, что значительно повысило стабильность по напряжению, а присутствие мощного проходного транзистора обеспечило ток нагрузки до 1 А.

Предназначение выводов микросхемы: 2 – вход системы защиты; 4 – вход сигнала обратной связи; 6 – цепь выключения; 8 – общий вывод, электрически соединен с фланцем; 11, 17 – коррекция; 13 – выход; 15 – вход.

Для увеличения выходящий мощности интегральной микросхемы употребляется транзистор структуры n-p-n, коллектор которого включен к выходу источника питания, а эмиттер соединен с выходом выпрямителя. База транзистора подключена к выходному выводу стабилизатора [2].

При срабатывании системы защиты от перегрузки по току выходное напряжение уменьшается практически до нуля.Принцип действияСхема регулирования тока действует следующим образом. При протекании тока через резистор R3 снижение напряжения на нем повлияет на вход системы защиты микросхемы и закрывает регулирующий транзистор VT1. Чтоб опять перевести БП в рабочее состояние опосля устранения причины, вызвавшей перегрузку, надо на краткое время отключить БП из сети переключателем SA1. Выходное напряжение и ток контролируются по приборам.Включенный в схему выпрямителя тиристор надежно спаливает предохранитель, ежели выходное напряжение по каким-то факторам делается больше допустимого. Напряжение срабатывания защиты от перенапряжения зависит от стабилитрона. В момент срабатывания защиты зажигается светодиод, сигнализирующий о том, что предохранитель сгорел. Этот узел при желании разрешено исключить.

Конструкция

Все устройство размещено в металлическом корпусе размерами 250 170 180 мм. На верхней и нижней крышках (со стороны задней стенки радиатора) просверлены отверстия диаметром 4 мм для улучшения охлаждения. На нижней крышке укрепляют небольшие ножки, в качестве которых можно использовать колпачки от тюбиков.

На передней лицевой панели расположены: тумблер включения сети SA1; гнезда для предохранителей FU1, FU2 (плавкие вставки расположены на передней панели блока питания для удобства их замены); вольтметр РА1 и амперметр РА2 (на схеме не показаны); потенциометр R5; светодиод HL1; контрольная лампочка EL1; выходные клеммы 3…20 В и разъем 24 В. Последний используется для электропитания радиоэлектронных устройств нестабилизированным напряжением. На задней панели находится резиновая втулка, через которую выводят сетевой шнур нужной длины с вилкой Х1 на конце.

Блок питания смонтирован на печатной плате из одностороннего фольгированного стеклотекстолита. Возможно применение резисторов типа МЛТ, С2-33, С1-4. Оксидные конденсаторы С1, С2 типа К50-46 или импортные.

При необходимости их количество или емкость можно увеличить. Конденсаторы С3, С7 желательно применить танталовые, например, К521Б или подобные.

Блокировочные и корректирующий конденсаторы С4-С6 типа КМ, подпаяны прямо на выводы микросхемы.

Регулирующие транзисторы и интегральный стабилизатор установлены на радиатор, расположенный на задней стенке корпуса. Их следует надежно изолировать от радиатора слюдяными прокладками толщиной 0,05 мм, предварительно смазанными теплопроводящей пастой КПТ-8, или поставить на изолирующие стойки сам радиатор.

Диоды VD1–VD4 установлены на теплоотводящие радиаторы и изолированы от корпуса. В данном БП применены диоды типа КД2999, по два в параллель. Диоды КД2999 можно заменить КД213А (при большем количестве включении в параллель) или любыми другими, так чтобы допустимый прямой ток был не менее 20 А. Вместо тиристора VD5 типа КУ202 возможно применение тиристоров Т4-10, Т10-16.

Потенциометр R5 типа СП-1 или любой другой, удобный для установки на переднюю панель блока питания. Токовыравнивающие резисторы типа С5-16 установлены рядом с транзисторами навесным монтажом на изолированных от корпуса монтажных стойках.

Измерительные приборы РА1 и РА2 любые с током полного отклонения от 0,05 до 1 мА и удобной шкалой. Шкалы проградуированы через 1 В и 1 А. Можно использовать микроамперметры типа М4248 с пределом измерения 100 мкА. В этом случае сопротивления дополнительного и шунтирующего резисторов следует подобрать.

Мощность трансформатора Т1 должна быть больше мощности, потребляемой нагрузкой. Ориентировочная мощность 450…500 Вт. Первичная обмотка имеет несколько отводов для выбора оптимального напряжения на вторичной обмотке.

Включение большего числа витков первичной обмотки позволяет уменьшить мощность рассеивания на транзисторе VT1 при сохранении основных параметров блока питания. Вторичная обмотка трансформатора выдает напряжение 2х17 В.

Для уменьшения размеров БП можно применить трансформатор с тороидальным магнитопроводом.

Выключатель SA1 типа ТВ1, еще лучше применить появившиеся на рынке импортные сетевые выключатели со встроенной лампой, которая индицирует режим включения. Резистор R3 типа С5-16 или отрезок нихромовой проволоки диаметром 1 мм и подобранной длины. Сопротивление этого ограничительного резистора регулировки токовой защиты рассчитывают по формуле:

Перед включением БП в сеть проверяют правильность монтажа. Включают БП в сеть и измеряют напряжение на конденсаторах С1–С3. Оно должно составлять около 24 В. По образцовым приборам градуируют шкалы РА1 и РА2, подобрав при этом дополнительный и шунтирующий резисторы.

При необходимости можно увеличить выходной ток источника параллельным включением необходимого числа регулирующих транзисторов. При этом в цепь эмиттеров транзисторов следует включить токовыравнивающие резисторы сопротивлением 0,1 Ом, а также использовать трансформатор большей мощности и увеличить количество диодов в плече выпрямителя.

При двух транзисторах КТ819 в параллель БП длительное время “держит” ток в 22 А при напряжении 13,8 В. При грамотно выполненном монтаже “просадка” выходного напряжения не превышает 0,2 В.

Рис.2. Параметры и цоколевки транзисторов

Транзистор VT1 КТ819 допустимо заменять любым из серии КТ802, КТ803А, КТ805А, КТ808А, КТ809А, КТ812, КТ827, КТ908 или другим мощным с допустимым током коллектора не менее 5 А и допустимым напряжением коллектор-эмиттер больше напряжения питания.

Параметры и цоколевки транзисторов показаны на рис.2. Диоды VD1–VD4 любые выпрямительные с допустимым прямым током больше 5 А и соответствующим напряжением. Светодиод можно применить любого типа.

Токовые цепи выполнены многожильным монтажным проводом сечением 4…6 мм2.

Данный БП можно использовать также в качестве зарядного устройства, если снабдить его таймером, который бы отключал блок через заданное время, необходимое для зарядки аккумулятора.

Источник: https://istochnikpitania.ru/

Источник: https://ingeneryi.info/blog/ingener/news/846-universalnyy-moschnyy-blok-pitaniya.html

Универсальные БП с защитой от перегрузок и К.З

Предлагаю несколько несложных схем универсальных блоков питания для наладки, проверки и ремонта различного радио и электрооборудования. Предлагаемые блоки питания двухполярные, но можно использовать, конечно, и только один канал.

Все блоки содержат схемы защиты от перегрузки и короткого замыкания (К.З.) на выходе. Здесь представлены разные варианты схем защиты – схема на реле, тиристоре и вообще без реле и тиристоров.

Даны также варианты использования так называемых «составных» транзисторов для значительного увеличения выходного тока блока питания, которые можно использовать и в других схемах.

Блок питания с плавной регулировкой выходного напряжения

Блок питания выдает двухполярное напряжение от 1 до 15..18 В при токе нагрузки до 1 А и содержит схему защиты от перегрузки и короткого замыкания на выходе.

Им удобно пользоваться при наладке радиосхем и аппаратуры, так как практически исключается возможность вывода из строя различных активных элементов схемы (транзисторов, микросхем и т.д.

) при случайной переплюсовке или неправильном монтаже, а также случайных коротких замыканий.

Принципиальная схема блока представлена на рисунке ниже

Рис.1

При изготовлении блока питания у меня стояла задача сделать его размеры минимально возможными, что послужило причиной достаточно плотной компоновки элементов внутри корпуса. Тем не менее этот блок питания используется  уже 3 года и работает без каких либо нареканий.

Управляющие транзисторы практически не греются и не требуют, поэтому, применения больших теплоотводов. В качестве теплоотвода используется корпус блока, сделанный из пластин фольгированного двухстороннего текстолита.

Транзисторы (VT1) крепятся к задней стенке через изоляционные прокладки из слюды.

В целях экономии места, также, применяется один вольтметр и один амперметр на оба канала. При помощи переключателя типа П2К они могут подключаться к выходу одного из каналов.

Применение на выходе постоянно включенного амперметра очень удобно, так как позволяет в любой момент контролировать потребление тока налаживаемой схемы или устройства и, таким образом, вовремя заметить отклонения от нормального режима работы.

Схемы коммутации измерительных приборов переключателями типа П2К:

В качестве индикаторов рабочего режима и срабатывания защиты от перегрузки или короткого замыкания используются светодиоды соответственно зеленого и красного цвета свечения подключенные на выходе схемы последовательно с резисторами 2 кОм. (подключение светодиодов показано на принципиальной схеме блока питания).

Никакого налаживания собранная схема блока питания не требует. Подстроечным резистором R3  устанавливается порог срабатывания схемы защиты. Для этого к выходу каждого канала подключается нагрузка (резистор), соответствующая нужному току, например 0,9А и поворотом движка резистора R3  добиваются срабатывания реле.

Чтобы вернуть блок питания в рабочий режим после срабатывания защиты, нужно на несколько секунд выключить блок питания. В схеме можно применить любые другие реле с рабочим напряжением 6 – 12 В и соответствующей группой контактов, например РЭК-53. Тиристоры КУ202 могут быть с любой буквой, можно поставить и КУ101, 104, 105.

 Операционный усилитель К153УД5 можно заменить на другой, из серии К140 (например К140УД7, К140УД8).

Простой блок питания с дискретным переключением

Эта схема проще, но также содержит узел защиты от перегрузки и К.З. на выходе. Выходное напряжение здесь задается дискретно, при помощи подключения опорных стабилитронов на разное напряжение стабилизации

Рис. 2

Характеристики: – Uвых = 6 … 25 В (зависит от примененных стабилитронов); – Iмакс (без теплоотводов) = 200 мА. При применении теплоотводов и «составных» регулирующих транзисторов (описаны далее) – до 2 .. 3 А; – Уровень пульсаций – около 1 мВ;

– Кстаб = 700.

Стабилитроны VD2 – VD5 задают нужные значения выходного напряжения и переключаются при помощи подходящего кнопочного или галетного преключателя на нужное количество позиций. Ниже приведена примерная таблица соответствия типа стабилитрона и выходного напряжения блока:

   У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно.

Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть.

Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.

   Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:

   Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио.

При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер.

Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:

   На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.

   Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять  выходящие провода с этой схемы, приведу следующий рисунок:

   Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм.

На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно.

Рисунок печатной платы защиты от короткого замыкания:

   Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. Схему взял с этого сайта.

Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока.

Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.

   Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется  мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:

   Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым.

В первом случае,  выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания.

Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:

   На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:

   Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве. Материал подготовил AKV.

   Это небольшой блок универсальной защиты от короткого замыкания, что предназначен для использования в сетевых источниках питания. Она специально разработана так, чтобы вписаться в большинство блоков питания без переделки их схемы. Схема, несмотря на наличие микросхемы, очень проста для понимания. Сохраните её на компьютер, чтоб увидеть в лучшем размере.

Схема блока защиты БП

   Чтобы спаять схему вам понадобится:

  1. 1 – TL082 сдвоенный ОУ
  2. 2 – 1n4148 диод
  3. 1 – tip122 транзистор NPN
  4. 1 – BC558 PNP транзистор BC557, BC556
  5. 1 – резистор 2700 ом
  6. 1 – резистор 1000 ом
  7. 1 – резистор 10 ком
  8. 1 – резистор 22 ком
  9. 1 – потенциометр 10 ком
  10. 1 – конденсатор 470 мкф
  11. 1 – конденсатор 1 мкф
  12. 1 – нормально закрытый выключатель
  13. 1 – реле модели Т74 “G5LA-14”

Подключение схемы к БП

   Здесь резистор с низким значением сопротивления соединен последовательно с выходом источника питания.

Как только ток начинает течь через него, появится небольшое падение напряжения и мы будем использовать это падение напряжения, чтобы определить, является ли питание результатом перегрузки или короткого замыкания. В основе этой схемы операционный усилитель (ОУ) включенный в качестве компаратора.

  • Если напряжение на неинвертирующем выходе выше, чем на инвертирующем, то на выходе устанавливается “высокий” уровень.
  • Если напряжение на неинвертирующем выход ниже, чем на инвертирующем, то на выходе устанавливается “низкий” уровень.

   Правда это не имеет ничего общего с логическим 5 вольтовым уровнем обычных микросхем. Когда ОУ находится в “высоком уровне”, его выход будет очень близким к положительному потенциалу напряжения питания, поэтому, если питание +12 В, “высокий уровень” будет приближаться к +12 В. Когда ОУ находится в “низком уровне”, его выход будет почти на минусе напряжения питания, поэтому, близко к 0 В.

   При использовании ОУ в качестве компараторов, мы обычно имеем входной сигнал и опорное напряжение для сравнения этого входного сигнала. Итак, у нас есть резистор с переменным напряжением, которое определяется в соответствии с током, который течет через него и опорным напряжением.

Этот резистор является наиболее важной частью схемы. Он подключен последовательно с питанием выходного. Вам необходимо выбрать резистор, падение напряжения на котором составляет примерно 0.5~0.7 вольт при перегрузке тока, проходящего через него.

Ток перегрузки появляется в тот момент, когда схема защиты срабатывает и закрывает выход питания для предотвращения повреждений на нем.

   Вы можете выбрать резистор, используя закон Ома. Первое, что нужно определить, является перегрузка током блока питания. Для этого надо знать максимальный допустимый ток блока питания.

   Допустим, ваш блок питания может выдать 3 ампера (при этом напряжение блока питания не имеет значения). Итак, мы получили Р= 0,6 В / 3 А. Р = 0.2 Ом. Следующее, что вы должны сделать, это рассчитать рассеиваемую мощность на этом резисторе по формуле: Р=V*I. Если мы используем наш последний пример, то получим: Р=0.6 В * 3 А. Р = 1,8 Вт – 3 или 5 Вт резистора будет более чем достаточно.

   Чтобы заставить работать схему, вы должны будете подать на неё напряжение, которое может быть от 9 до 15 В. Для калибровки подайте напряжение на инвертирующий вход ОУ и поверните потенциометр. Это напряжение будет увеличиваться или уменьшаться в зависимости от стороны, куда вы поворачиваете его.

Значение необходимо скорректировать согласно коэффициента усиления входного каскада 0.6 Вольт (что-то около 2.2 до 3 вольт если ваш усилительного каскада похож на мой). Эта процедура занимает некоторое время, и лучший способ для калибровки это метод научного тыка.

Вам может потребоваться настроить более высокое напряжение на потенциометре, так чтоб защита не срабатывала на пиках нагрузки. Скачать файл проекта.

Поделитесь полезными схемами

   Преобразователь 12 – 220 В, мощность 70 ватт, самый простой и очень маленький. Иногда в быту возникает необходимость иметь автономное сетевое напряжение 220 вольт. Данную конструкцию мне предложил попробовать друг, он проводил с ней опыты и достоверно заявлял, что преобразователь способен ярко засветить лампу накаливания с мощностью 60 ватт, сначала не поверил, но был удивлен получившейся мощью и простотой сборки.

Стабилитрон

Uвых, В

КС133

3, 3

КС156

5,6

КС168, Д814А

7

Д814 В

9

Д814Д, КС107А

12

Если нет стабилитрона на более высокие напряжения, можно использовать последовательное включение двух или трех.

Например два включенных последовательно стабилитрона типа Д814А (или КС168) дадут напряжение стабилизации около 15 В. И так далее.  Напряжение на входе (с трансформатора и выпрямителя, как и в схеме на рис.

1) должно быть на 3 … 9 В больше выходного. Резисторы R4, R6 подбираются из расчета: Uвых. среднее х 100 (значение получается в Омах).

Блок питания защищает от перегрузки и К.З. как нагрузку, так и сам себя. Защита отключает оба канала при превышении тока даже в одном из них.

В отключенном состоянии блок может находиться сколь угодно долго, для включения его нужно на несколько секунд выключить. Схема защиты (выделена на рис.2 пунктирной линией) может быть собрана и без тиристора, как показано на рис.3.

В этом случае при срабатывании защиты блок питания будет переходить в рабочее состояние сам, без выключения, после устранения причины перегрузки.

При использовании для транзисторов VT1 и VT4 радиаторов площадью 100 … 200 кв. см. выходной ток блока может быть до 1 А. Транзистор VT1 можно заменить на П201 – П203, КТ816, КТ626, КТ837, а VT4 на КТ817, КТ605АМ, КТ805АМ, КТ603, КТ801.

 Чтобы значительно повысить выходной ток (до 2 … 3 А) можно заменить эти транзисторы на «составные», то есть состоящие из соответствующих пар. Как это сделать, показано на рис.4. Транзисторы в паре обозначены буквами «а», «б», «в» и «г».

При этом транзистор, обозначенный буквой «а» может быть типа :     – П213 – П217,  КТ806,  КТ814,  КТ816,  КТ818; «б» :    – КТ203Б, КТ626Б,В;  КТ209Г-М; «в» :   – П702, КТ805А, КТ803А, КТ817, КТ819; «г» :   – КТ315Г, КТ342А, КТ605А, КТ603А, КТб08А-Б.

Любой из вариантов составного транзистора VT1 может работать совместно с любым вариантом составного VT4.

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнотD1 x2VT1 x2VT2 x2VS1 x2D1-D4 x2VD5 x2VD6 x2VD7 x2VD8, VD9 x2VD10 x2С1 x2C2 x2C3 x2С4 x2С5 x2R1, R12 x2R2 x2R3 x2R4, R5 x2R6 x2R7 x2R8 x2R9 x2R10 x2R11 x2SA1FU1VT1VT2VT3VT4VSVD1VD2, VD2.1VD3, VD3.1VD4, VD4.1VD5, VD5.1VD6, VD6.1С1, С2С3, С4R1, R4, R6R2, R5R3VD1-VD8С1, С1FU1
Рисунок 1.
Микросхема К153УД5 2 Поиск в магазине В блокнот
Биполярный транзистор

КТ805АМ

2 Поиск в магазине В блокнот
Биполярный транзистор

КТ837А

2 Поиск в магазине В блокнот
Тиристор & Симистор

КУ202И

2 Поиск в магазине В блокнот
Диод

Д242

8 Поиск в магазине В блокнот
Светодиод

АЛ307В

2 Или любой другой зеленый Поиск в магазине В блокнот
Диод

Д223

2 Поиск в магазине В блокнот
Стабилитрон

Д814А

2 Поиск в магазине В блокнот
Стабилитрон

Д814В

4 Поиск в магазине В блокнот
Светодиод

АЛ307Б

2 Или любой другой красный Поиск в магазине В блокнот
Электролитический конденсатор 2000 мкФ 2 Поиск в магазине В блокнот
Конденсатор 200 пФ 2 Поиск в магазине В блокнот
Конденсатор 4700 пФ 2 Поиск в магазине В блокнот
Электролитический конденсатор 500 мкФ 2 Поиск в магазине В блокнот
Электролитический конденсатор 200 мкФ 2 Поиск в магазине В блокнот
Резистор

2 кОм

4 0.5 Вт Поиск в магазине В блокнот
Резистор

2 Ом

2 2 Вт Поиск в магазине В блокнот
Подстроечный резистор 4.7 кОм 2 Поиск в магазине В блокнот
Резистор

300 Ом

4 0.5 Вт Поиск в магазине В блокнот
Резистор

910 Ом

2 0.5 Вт Поиск в магазине В блокнот
Резистор

100 Ом

2 0.5 Вт Поиск в магазине В блокнот
Резистор

3.9 кОм

2 0.5 Вт Поиск в магазине В блокнот
Подстроечный резистор 1.5 кОм 2 Поиск в магазине В блокнот
Резистор

1 кОм

2 0.5 В Поиск в магазине В блокнот
Резистор

510 Ом

2 0.5 Вт Поиск в магазине В блокнот
Амперметр 1-3 А 2 Поиск в магазине В блокнот
Вольтметр 15-30 В 2 Поиск в магазине В блокнот
Трансформатор 2×15 В 1 Поиск в магазине В блокнот
Выключатель 1 Поиск в магазине В блокнот
Предохранитель 1 А 1 Поиск в магазине В блокнот
Рисунок 2.
Биполярный транзистор

КТ814Б

1 Поиск в магазине В блокнот
Биполярный транзистор

КТ315Б

1 Поиск в магазине В блокнот
Биполярный транзистор

КТ361Б

1 Поиск в магазине В блокнот
Биполярный транзистор

КТ815Б

1 Поиск в магазине В блокнот
Тиристор & Симистор

КУ101А

1 Поиск в магазине В блокнот
Диод

Д220

1 Поиск в магазине В блокнот
Стабилитрон

КС133А

1 Поиск в магазине В блокнот
Стабилитрон

КС156А

1 Поиск в магазине В блокнот
Стабилитрон

КС168А

1 Можно Д814А Поиск в магазине В блокнот
Стабилитрон

Д814В

1 Поиск в магазине В блокнот
Стабилитрон

Д814Д

1 Можно КС107А, на схеме показан VD6, VD6.1 Поиск в магазине В блокнот
Электролитический конденсатор 500 мкФ 25 В 2 Поиск в магазине В блокнот
Электролитический конденсатор 100 мкФ 16 В 2 Поиск в магазине В блокнот
Резистор

1 кОм

3 0.5 Вт Поиск в магазине В блокнот
Резистор

510 Ом

2 Поиск в магазине В блокнот
Резистор

3.3 кОм

1 Поиск в магазине В блокнот
Сдвоенный галетный переключатель Пять положений 1 Поиск в магазине В блокнот
Рисунок 3.
Биполярный транзистор

КТ814Б

1 Поиск в магазине В блокнот
Диод

Д220

1 Поиск в магазине В блокнот
Резистор

4.7 кОм

1 Поиск в магазине В блокнот
Резистор

5.1 кОм

1 Поиск в магазине В блокнот
Рисунок 5.
Диод

Д242

8 Поиск в магазине В блокнот
Электролитический конденсатор 2000 мкФ 25 В 2 Поиск в магазине В блокнот
Трансформатор 1 Поиск в магазине В блокнот
Предохранитель 1 А 1 Поиск в магазине В блокнот
Добавить все

Скачать список элементов (PDF)

Источник: http://cxem.gq/pitanie/5-220.php

Ссылка на основную публикацию
Adblock
detector
",css:{backgroundColor:"#000",opacity:.6}},container:{block:void 0,tpl:"
"},wrap:void 0,body:void 0,errors:{tpl:"
",autoclose_delay:2e3,ajax_unsuccessful_load:"Error"},openEffect:{type:"fade",speed:400},closeEffect:{type:"fade",speed:400},beforeOpen:n.noop,afterOpen:n.noop,beforeClose:n.noop,afterClose:n.noop,afterLoading:n.noop,afterLoadingOnShow:n.noop,errorLoading:n.noop},o=0,p=n([]),h={isEventOut:function(a,b){var c=!0;return n(a).each(function(){n(b.target).get(0)==n(this).get(0)&&(c=!1),0==n(b.target).closest("HTML",n(this).get(0)).length&&(c=!1)}),c}},q={getParentEl:function(a){var b=n(a);return b.data("arcticmodal")?b:(b=n(a).closest(".arcticmodal-container").data("arcticmodalParentEl"),!!b&&b)},transition:function(a,b,c,d){switch(d=null==d?n.noop:d,c.type){case"fade":"show"==b?a.fadeIn(c.speed,d):a.fadeOut(c.speed,d);break;case"none":"show"==b?a.show():a.hide(),d();}},prepare_body:function(a,b){n(".arcticmodal-close",a.body).unbind("click.arcticmodal").bind("click.arcticmodal",function(){return b.arcticmodal("close"),!1})},init_el:function(d,a){var b=d.data("arcticmodal");if(!b){if(b=a,o++,b.modalID=o,b.overlay.block=n(b.overlay.tpl),b.overlay.block.css(b.overlay.css),b.container.block=n(b.container.tpl),b.body=n(".arcticmodal-container_i2",b.container.block),a.clone?b.body.html(d.clone(!0)):(d.before("
"),b.body.html(d)),q.prepare_body(b,d),b.closeOnOverlayClick&&b.overlay.block.add(b.container.block).click(function(a){h.isEventOut(n(">*",b.body),a)&&d.arcticmodal("close")}),b.container.block.data("arcticmodalParentEl",d),d.data("arcticmodal",b),p=n.merge(p,d),n.proxy(e.show,d)(),"html"==b.type)return d;if(null!=b.ajax.beforeSend){var c=b.ajax.beforeSend;delete b.ajax.beforeSend}if(null!=b.ajax.success){var f=b.ajax.success;delete b.ajax.success}if(null!=b.ajax.error){var g=b.ajax.error;delete b.ajax.error}var j=n.extend(!0,{url:b.url,beforeSend:function(){null==c?b.body.html("
"):c(b,d)},success:function(c){d.trigger("afterLoading"),b.afterLoading(b,d,c),null==f?b.body.html(c):f(b,d,c),q.prepare_body(b,d),d.trigger("afterLoadingOnShow"),b.afterLoadingOnShow(b,d,c)},error:function(){d.trigger("errorLoading"),b.errorLoading(b,d),null==g?(b.body.html(b.errors.tpl),n(".arcticmodal-error",b.body).html(b.errors.ajax_unsuccessful_load),n(".arcticmodal-close",b.body).click(function(){return d.arcticmodal("close"),!1}),b.errors.autoclose_delay&&setTimeout(function(){d.arcticmodal("close")},b.errors.autoclose_delay)):g(b,d)}},b.ajax);b.ajax_request=n.ajax(j),d.data("arcticmodal",b)}},init:function(b){if(b=n.extend(!0,{},a,b),!n.isFunction(this))return this.each(function(){q.init_el(n(this),n.extend(!0,{},b))});if(null==b)return void n.error("jquery.arcticmodal: Uncorrect parameters");if(""==b.type)return void n.error("jquery.arcticmodal: Don't set parameter \"type\"");switch(b.type){case"html":if(""==b.content)return void n.error("jquery.arcticmodal: Don't set parameter \"content\"");var e=b.content;return b.content="",q.init_el(n(e),b);case"ajax":return""==b.url?void n.error("jquery.arcticmodal: Don't set parameter \"url\""):q.init_el(n("
"),b);}}},e={show:function(){var a=q.getParentEl(this);if(!1===a)return void n.error("jquery.arcticmodal: Uncorrect call");var b=a.data("arcticmodal");if(b.overlay.block.hide(),b.container.block.hide(),n("BODY").append(b.overlay.block),n("BODY").append(b.container.block),b.beforeOpen(b,a),a.trigger("beforeOpen"),"hidden"!=b.wrap.css("overflow")){b.wrap.data("arcticmodalOverflow",b.wrap.css("overflow"));var c=b.wrap.outerWidth(!0);b.wrap.css("overflow","hidden");var d=b.wrap.outerWidth(!0);d!=c&&b.wrap.css("marginRight",d-c+"px")}return p.not(a).each(function(){var a=n(this).data("arcticmodal");a.overlay.block.hide()}),q.transition(b.overlay.block,"show",1*")),b.overlay.block.remove(),b.container.block.remove(),a.data("arcticmodal",null),n(".arcticmodal-container").length||(b.wrap.data("arcticmodalOverflow")&&b.wrap.css("overflow",b.wrap.data("arcticmodalOverflow")),b.wrap.css("marginRight",0))}),"ajax"==b.type&&b.ajax_request.abort(),p=p.not(a))})},setDefault:function(b){n.extend(!0,a,b)}};n(function(){a.wrap=n(document.all&&!document.querySelector?"html":"body")}),n(document).bind("keyup.arcticmodal",function(d){var a=p.last();if(a.length){var b=a.data("arcticmodal");b.closeOnEsc&&27===d.keyCode&&a.arcticmodal("close")}}),n.arcticmodal=n.fn.arcticmodal=function(a){return e[a]?e[a].apply(this,Array.prototype.slice.call(arguments,1)):"object"!=typeof a&&a?void n.error("jquery.arcticmodal: Method "+a+" does not exist"):q.init.apply(this,arguments)}}(jQuery)}var debugMode="undefined"!=typeof debugFlatPM&&debugFlatPM,duplicateMode="undefined"!=typeof duplicateFlatPM&&duplicateFlatPM,countMode="undefined"!=typeof countFlatPM&&countFlatPM;document["wri"+"te"]=function(a){let b=document.createElement("div");jQuery(document.currentScript).after(b),flatPM_setHTML(b,a),jQuery(b).contents().unwrap()};function flatPM_sticky(c,d,e=0){function f(){if(null==a){let b=getComputedStyle(g,""),c="";for(let a=0;a=b.top-h?b.top-h{const d=c.split("=");return d[0]===a?decodeURIComponent(d[1]):b},""),c=""==b?void 0:b;return c}function flatPM_testCookie(){let a="test_56445";try{return localStorage.setItem(a,a),localStorage.removeItem(a),!0}catch(a){return!1}}function flatPM_grep(a,b,c){return jQuery.grep(a,(a,d)=>c?d==b:0==(d+1)%b)}function flatPM_random(a,b){return Math.floor(Math.random()*(b-a+1))+a}