Usb зарядка li-ion аккумуляторов на оу lm358

Как работать с ОУ LM358: схемы включения и практическое применение

Операционный усилитель LM358 стал одним из самых популярных типов компонентов аналоговой электроники. Этот небольшой компонент может быть использован в самых разнообразных схемах, осуществляющих усиление сигналов, в различных генераторах, АЦП и прочих полезных устройствах.

Все радиоэлектронные компоненты следует разделять по мощности, диапазону рабочих частот, напряжению питания и прочим параметрам.

А операционный усилитель LM358 относится к среднему классу устройств, которые получили самую широкую сферу применения для конструирования различных устройств: приборы контроля температуры, аналоговые преобразователи, промежуточные усилители и прочие полезные схемы.

Описание микросхемы LM358

Подтверждением высокой популярности микросхемы являются ее рабочие характеристики, позволяющие создавать много различных устройств. К основным показательным характеристикам компонента следует отнести нижеследующие.

Приемлемые рабочие параметры: в микросхеме предусмотрено одно и двухполюсное питание, широкий диапазон напряжений питания от 3 до 32 В, приемлемая скорость нарастания выходного сигнала, равная всего 0,6 В/мкс. Также микросхема потребляет всего 0,7 мА, а напряжение смещения составит всего 0,2мВ.

Описание выводов

Микросхема реализована в стандартных корпусах DIP, SO и имеет 8 выводов для подключения к цепям питания и формирования сигналов. Два из них (4, 8) используются в качестве выводов двухполярного и однополярного питания в зависимости от типа источника или конструкции готового устройства. Входы микросхемы 2, 3 и 5, 6. Выходы 1 и 7.

В схеме операционного усилителя имеются 2 ячейки со стандартной топологией выводов и без цепей коррекции. Поэтому для реализации более сложных и технологичных устройств потребуется предусматривать дополнительные схемы преобразования сигналов.

Микросхема является популярной и используется в бытовых приборах, эксплуатируемых при нормальных условиях, и в особых с повышенной или пониженной температурой окружающей среды, высокой влажностью и прочими неблагоприятными факторами. Для этого интегральный элемент выпускается в различных корпусах.

Аналоги микросхемы

Являясь средним по параметрам, операционный усилитель LM358 имеет аналоги по техническим характеристикам. Компонент без буквы может быть заменен на OP295, OPA2237, TA75358P, UPC358C, NE532, OP04, OP221, OP290.

А для замены LM358D потребуется использовать KIA358F, NE532D, TA75358CF, UPC358G.

Интегральная микросхема выпускается в серии с другими компонентами, которые имеют отличия лишь в температурном диапазоне, предназначенные для работы в суровых условиях.

Встречаются операционные усилители с максимальной температурой до 125 градусов и с минимальной до 55. Из-за чего сильно разнится и стоимость устройства в различных магазинах.

К серии микросхем относятся LM138, LM258, LM458. Подбирая альтернативные аналоговые элементы для применения в устройствах важно учитывать рабочий температурный диапазон.

Например, если LM358 с пределом от 0 до 70 градусов недостаточно, то можно использовать более приспособленные к суровым условиям LM2409. Также довольно часто для изготовления различных устройств требуется не 2 ячейки, а 1, тем более, если место в корпусе готового изделия ограничено.

Одними из самых подходящих для использования при конструировании небольших устройств являются ОУ LM321, LMV321, у которых также есть аналоги AD8541, OP191, OPA337.

Особенности включения

Существует много схем подключения операционного усилителя LM358 в зависимости от необходимых требований и выполняемых функций, которые будут к ним предъявлены при эксплуатации:

  • неинвертирующий усилитель;
  • преобразователь ток-напряжение;
  • преобразователь напряжение-ток;
  • дифференциальный усилитель с пропорциональным коэффициентом усиления без регулировки;
  • дифференциальный усилитель с интегральной схемой регулирования коэффициента;
  • схема контроля тока;
  • преобразователь напряжение-частота.

Популярные схемы на lm358

Существуют различные устройства, собранные на LM358 N , выполняющие определенные функции. При этом это могут быть всевозможные усилители как УМЗЧ, так и в промежуточных цепях измерений различных сигналов, усилитель термопары LM358, сравнивающие схемы, аналого-цифровые преобразователи и прочее.

Неинвертирующий усилитель и источник опорного напряжения

Это самые популярные типы схем подключения, применяемые во многих устройствах для выполнения различных функций. В схеме неинвертирующего усилителя выходное напряжения будет равно произведению входного на пропорциональный коэффициент усиления, сформированный отношением двух сопротивлений, включенных в инвертирующую цепь.

Схема источника опорного напряжения пользуется высокой популярностью благодаря своим высоким практическим характеристикам и стабильности работы в различных режимах.

Схема отлично удерживает необходимый уровень выходного напряжения.

Она получила применение для построения надежных и высококачественных источников питания, аналоговых преобразователей сигналов, в устройствах измерения различных физических величин.

Генератор синусоидальных сигналов

Одной из самых качественных схем синусоидальных генераторов является устройство на мосте Вина.

При корректном подборе компонентов генератор вырабатывает импульсы в широком диапазоне частот с высокой стабильностью.

Также микросхема LM 358 часто используется для реализации генератора прямоугольных импульсов различной скважности и длительности. При этом сигнал является стабильным и высококачественным.

Усилитель

Основным применением микросхемы LM358 являются усилители и различная усилительная аппаратура. Что обеспечивается за счет особенностей включения, выбора прочих компонентов. Такая схема применяется, например, для реализации усилителя термопары.

Усилитель термопары на LM358

Очень часто в жизни радиолюбителя требуется осуществлять контроль температуры каких-либо устройств. Например, на жале паяльника.

Обычным градусником это не сделаешь, тем более, когда необходимо изготовить автоматическую схему регулирования. Для этого можно использоваться ОУ LM 358. Эта микросхема имеется малый тепловой дрейф нуля, поэтому относится к высокоточным.

Поэтому она активно используется многими разработчиками для изготовления паяльных станций, прочих в устройствах.

Схема позволяет измерять температуру в широком диапазоне от 0 до 1000 оС с достаточно высокой точностью до 0,02 оС. Термопара изготовлена из сплава на основе никеля: хромаля, алюмеля.

Второй тип металла имеет более светлый цвет и меньше подвержен к намагничиванию, хромаль темнее, магнитится лучше. К особенностям схемы стоит отнести наличие кремниевого диода, который должен быть размещен как можно ближе к термопаре.

Термоэлектрическая пара хромаль-алюмель при нагреве становится дополнительным источником ЭДС, что может внести существенные коррективы на основные измерения.

Простая схема регулятора тока

Схема включает кремниевый диод. Напряжения перехода с него используется как источник опорного сигнала, поступающий через ограничивающий резистор на неинвертирующий вход микросхемы. Для регулировки тока стабилизации схемы использован дополнительный резистор, подключенный к отрицательному выводу источника питания, к неивертирующему входу МС.

Схема состоит из нескольких компонентов:

  • Резистора, подпирающего ОУ минусовым выводом и сопротивлением 0,8 Ом.
  • Резистивного делителя напряжения, состоящего из 3 сопротивлений с диодом, выступающего источником опорного напряжения.

Резистор номиналом 82 кОм подключен к минусу источника и положительному входу МС. Опорное напряжение формируется делителем, состоящим из резистора 2,4 кОм и диода в прямом включении. После чего ток ограничивается резистором 380 кОм.

ОУ управляет биполярным транзистором, эмиттер которого подключен непосредственно к инвертирующему входу МС, образовав отрицательную глубокую связь. Резистор R 1 выступает измерительным шунтом.

Опорное напряжение формируется при помощи делителя, состоящего из диода VD 1 и резистора R 4.

В представленной схеме при условии использования резистора R 2 сопротивлением 82 кОм ток стабилизации в нагрузке составляет 74мА при входном напряжении 5В. А при увеличении входного напряжения до 15В ток увеличивается до 81мА. Таким образом, при изменении напряжения в 3 раза ток изменился не более, чем на 10%.

Зарядное устройство на LM 358

С использованием ОУ LM 358 часто изготавливают зарядные устройства с высокой стабилизацией и контролем выходного напряжения.

Как пример, можно рассмотреть зарядное устройство для Li — ion с питанием от USB . Эта схема представляет собой автоматический регулятор тока. То есть, при повышении напряжения на аккумуляторе зарядный ток падает.

А при полном заряде АКБ схема прекращает работать, полностью закрывая транзистор.

Источник: https://instrument.guru/elektronika/kak-rabotat-s-ou-lm358-shemy-vklyucheniya-i-prakticheskoe-primenenie.html

Микросхема для зарядного устройства Li-Ion аккумулятора

  • AliExpress
  • Сделано руками
  • Радиотовары

Понравились мне мелкие микросхемы для простых зарядных устройств. покупал я их у нас в местном оффлайн магазине, но как назло они там закончились, их долго везли откуда то.

Глядя на эту ситуацию, я решил заказать себе их небольшим оптом, так как микросхемы довольно неплохие, и в работе понравились. Описание и сравнение под катом.

Я не зря написал в заголовке про сравнение, так как за время пути собачка могла подрасти микрухи появились в магазине, я купил несколько штук и решил их сравнить.

В обзоре будет не очень много текста, но довольно много фотографий. Но начну как всегда с того, как мне это пришло. Пришло в комплекте с другими разными детальками, сами микрухи были упакованы в пакетик с защелкой, и наклейкой с названием.

Данная микросхема представляет собой микросхему зарядного устройства для литиевых аккумуляторов с напряжением окончания заряда 4.2 Вольта. Она умеет заряжать аккумуляторы током до 800мА. Значение тока устанавливается изменением номинала внешнего резистора.

Так же она поддерживает функцию заряда небольшим током, если аккумулятор сильно разряжен (напряжение ниже чем 2.9 Вольта). При заряде до напряжения 4.2 Вольта и падении зарядного тока ниже чем 1/10 от установленного, микросхема отключает заряд. Если напряжение упадет до 4.05 Вольта, то она опять перейдет в режим заряда.

Так же имеется выход для подключения светодиода индикации.

Больше информации можно найти в даташите, у данной микросхемы существует гораздо более дешевый аналог.

Причем он более дешевый у нас, на Али все наоборот. Собственно для сравнения я и купил аналог.Но каково же было мое удивление когда микросхемы LTC и STC оказались на вид полностью одинаковыми, по маркировке обе — LTC4054.Ну может так даже интереснее.

Как все понимают, микросхему так просто не проверить, к ней надо еще обвязку из других радиокомпонетов, желательно плату и т.п. А тут как раз товарищ попросил починить (хотя в данном контексте скорее переделать) зарядное устройство для 18650 аккумуляторов. Родное сгорело, да и ток заряда был маловат.

В общем для тестирования надо сначала собрать то, на чем будем тестировать. Плату я чертил по даташиту, даже без схемы, но схему здесь приведу для удобства.Ну и собственно печатная плата. На плате нет диодов VD1 и VD2, они были добавлены уже после всего.Все это было распечатано, перенесено на обрезок текстолита.

Для экономии я сделал на обрезке еще одну плату, обзор с ее участием будет позже.Ну и собственно изготовлена печатная плата и подобраны необходимые детали.А переделывать я буду такое зарядное, наверняка оно очень известно читателям.

Внутри него очень сложная схема, состоящая из разъема, светодиода, резистора и специально обученных проводов, которые позволяют выравнивать заряд на аккумуляторах. Шучу, зарядное находится в блочке, включаемом в розетку, а здесь просто 2 аккумулятора, соединенные параллельно и светодиод, постоянно подключенный к аккумуляторам.

К родному зарядному вернемся позже.Спаял платку, выковырял родную плату с контактами, сами контакты с пружинами выпаял, они еще пригодятся.Просверлил пару новых отверстий, в среднем будет светодиод, отображающий включение устройства, в боковых — процесс заряда.Впаял в новую плату контакты с пружинками, а так же светодиоды.

Светодиоды удобно сначала вставить в плату, потом аккуратно установить плату на родное место, и только после этого запаять, тогда они будут стоять ровно и одинаково.
Плата установлена на место, припаян кабель питания. Собственно печатная плата разрабатывалась под три варианта запитки.

2 варианта с разъемом MiniUSB, но в вариантах установки с разных сторон платы и под кабель. В данном случае я сначала не знал, какбель какой длины понадобится, потому запаял короткий. Так же припаял провода, идущие к плюсовым контактам аккумуляторов. Теперь они идут по раздельным проводам, для каждого аккумулятора свой.Вот как получилось сверху.

Ну а теперь перейдем к тестированию

Слева на плате я установил купленную на Али микруху, справа купленную в оффлайне. Соответственно сверху они будут расположены зеркально. Сначала микруха с Али. Ток заряда.Теперь купленная в оффлайне.Ток КЗ. Аналогично, сначала с Али.Теперь из оффлайна.
Налицо полная идентичность микросхем, что ну никак не может не радовать 🙂 Было замечено, что при 4.

8 Вольта ток заряда 600мА, при 5 Вольт падает до 500, но это проверялось уже после прогрева, может так работает защита от перегрева, я еще не разобрался, но ведут себя микросхемы примерно одинаково. Ну а теперь немного о процессе зарядки и доработке переделки (да, даже так бывает). С самого начала я думал просто установить светодиод на индикацию включенного состояния.

Вроде все просто и очевидно. Но как всегда захотелось большего. Решил, что будет лучше, если во время процесса заряда он будет погашен. Допаял пару диодов (vd1 и vd2 на схеме), но получил небольшой облом, светодиод показывающий режим заряда светит и тогда, когда нет аккумулятора.

Вернее не светит, а быстро мерцает, добавил параллельно клеммам аккумулятора конденсатор на 47мкФ, после этого он стал очень коротко вспыхивать, почти незаметно. Это как раз тот гистерезис включения повторной зарядки, если напряжение упало ниже 4.05 Вольта. В общем после этой доработки стало все отлично.

Заряд аккумулятора, светит красный, не светит зеленый и не светит светодиод там, где нет аккумулятора.Аккумулятор полностью заряжен.В выключенном состоянии микросхема не пропускает напряжение на разъем питания, и не боится закоротки этого разъема, соответственно не разряжает аккумулятор на свой светодиод.Не обошлось и без измерения температуры.

У меня получилось чуть более 62 градусов после 15 минут заряда.Ну а вот так выглядит полностью готовое устройство. Внешние изменения минимальны, в отличие от внутренних. Блок питания на 5 /Вольт 2 Ампера у товарища был, и довольно неплохой. Устройство обеспечивает тока заряда 600мА на канал, каналы независимые.Ну а так выглядело родное зарядное.

Товарищ хотел попросить меня поднять в нем зарядный ток. Оно и родного то не выдержало, куда еще поднимать, шлак.Резюме. На мой взгляд, для микросхемы за 7 центов очень неплохо. Микросхемы полностью функциональны и ничем не отличаются от купленных в оффлайне. Я очень доволен, теперь есть запас микрух и не надо ждать, когда они будут в магазине (недавно опять пропали из продажи).

Из минусов — Это не готовое устройство, потому придется травить, паять и т.п., но при этом есть плюс, можно сделать плату под конкретное применение, а не использовать то, что есть. Ну и в тоге получить рабочее изделие, изготовленное своими руками, дешевле чем готовые платы, да еще и под свои конкретные условия.

Чуть не забыл, даташит, схема и трассировка — скачать.

Надеюсь, что мой обзор был полезен и интересен. 🙂

Планирую купить +77 Добавить в избранное Обзор понравился +120 +226Похожие обзоры Другие обзоры от @kirich

Источник: https://mysku.ru/blog/aliexpress/28575.html

Зарядное устройство для литий-ионного аккумулятора

Facebook

ВКонтакте

Twitter

Google+

ОК

Сегодня у многих пользователей скопилось по несколько рабочих и неиспользуемых литиевых аккумуляторов, появляющихся при замене мобильных телефонов на смартфоны.

При эксплуатации аккумуляторов в телефонах со своим зарядным устройством, благодаря использованию специализированных микросхем для контроля заряда, проблем с зарядом практически не возникает.

Но при использовании литиевых аккумуляторов в различных самоделках возникает вопрос, как и чем заряжать такие аккумуляторы.

Некоторые считают, что литиевые аккумуляторы уже содержат встроенные контроллеры заряда, но на самом деле в них встроены схемы защиты, такие аккумуляторы называют защищёнными. Схемы защиты в них предназначены в основном для защиты от глубокого разряда и превышения напряжения при зарядке выше 4,25В, т.е. это аварийная защита, а не контроллер заряда.

Некоторые «самодельщики» на сайте тут – же напишут, что за небольшие деньги можно заказать специальную плату из Китая, с помощью которой можно зарядить литиевые аккумуляторы. Но это только для любителей «шопинга».

Нет смысла покупать то, что легко собирается за несколько минут из дешевых и распространенных деталей. Не нужно забывать и о том, что заказанную плату придется ждать около месяца.

Да и покупное устройство не приносит такого удовлетворения, как сделанное своими руками.

Предлагаемое зарядное устройство способен повторить практически каждый. Данная схема весьма примитивна, но полностью справляется со своей задачей.

Все что требуется для качественной зарядки Li-Ion аккумуляторов, это стабилизировать выходное напряжение зарядного устройства и ограничить ток заряда.

Зарядное устройство отличается надежностью, компактностью и высокой стабильностью выходного напряжения, а, как известно, для литий-ионных аккумуляторов это является очень важной характеристикой при зарядке.

Схема зарядного устройства для li-ion аккумулятора

Схема зарядного устройства выполнена на регулируемом стабилизаторе напряжения TL431 и биполярном NPN транзисторе средней мощности. Схема позволяет ограничить зарядный ток аккумулятора и стабилизирует выходное напряжение.В роли регулирующего элемента выступает транзистор Т1.

Резистор R2 ограничивает ток заряда, значение которого зависит лишь от параметров аккумулятора. Рекомендуется использовать резистор мощностью 1 вт. Другие резисторы могут иметь мощность 125 или 250 мВт. Выбор транзистора определяется необходимым зарядным током установленным для зарядки аккумулятора.

Для рассматриваемого случая, зарядки аккумуляторов от мобильных телефонов, можно применить отечественные или импортные NPN транзисторы средней мощности (например, КТ815, КТ817, КТ819). При высоком входном напряжении или использовании транзистора малой мощности, необходимо транзистор установить на радиатор.

Светодиод LED1 (выделен красным цветом в схеме), служит для визуальной сигнализации заряда аккумулятора. При включении разряженного аккумулятора, индикатор светится ярко и по мере заряда тускнеет. Свечение индикатора пропорционально току заряда аккумулятора.

Но следует учесть, что при полном затухании светодиода, батарея все еще будет заряжаться током менее 50ма, что требует периодического контроля над устройством для исключения перезаряда.

Для повышения точности контроля окончания заряда, в схему зарядного устройства добавлен дополнительный вариант индикации заряда аккумулятора (выделен зеленым цветом) на светодиоде LED2, маломощном PNP транзисторе КТ361 и датчике тока R5.

В устройстве возможно использование любого варианта индикатора в зависимости от требуемой точности контроля заряда аккумулятора. Представленная схема предназначается для заряда только одного Li-ion аккумулятора. Но это зарядное устройство можно использовать и для заряда других видов аккумуляторов. Требуется лишь выставить необходимое для этого значение выходного напряжения и ток зарядки.

Изготовление зарядного устройства

1. Приобретаем или подбираем из имеющихся в наличии, комплектующие для сборки в соответствии со схемой.2. Сборка схемы.Для проверки работоспособности схемы и ее настройки, собираем зарядное устройство на монтажной плате.Диод в цепи питания аккумулятора (минусовая шина – синий провод) предназначен для предотвращения разряда литий-ионного аккумулятора при отсутствии напряжения на входе зарядного устройства.3. Настройка выходного напряжения схемы.Подключаем схему к источнику питания напряжением 5…9 вольт. Подстроечным сопротивлением R3 устанавливаем выходное напряжение зарядного устройства в пределах 4,18 – 4,20 вольта (при необходимости, в конце настройки измеряем его сопротивление и ставим резистор с нужным сопротивлением).4. Настройка зарядного тока схемы.Подключив к схеме разряженный аккумулятор (о чем сообщит включившийся светодиод), резистором R2 устанавливаем по тестеру величину зарядного тока (100…300 ма). При сопротивлении R2 менее 3 ом светодиод может не светится.5. Готовим плату для монтажа и пайки деталей. Вырезаем необходимый размер из универсальной платы, аккуратно обрабатываем края платы напильником, очищаем и лудим контактные дорожки.6. Монтаж отлаженной схемы на рабочую платуПереносим детали с монтажной платы на рабочую, паяем детали, выполняем недостающую разводку соединений тонким монтажным проводом. По окончании сборки основательно проверяем монтаж.Зарядное устройство может быть собрано любым удобным способом, в том числе и навесным монтажом. При монтаже без ошибок и исправных деталях оно начинает работать сразу же после включения.При подключении к зарядному устройству, разряженный аккумулятор начинает потреблять максимальный ток (ограниченный R2). При приближении напряжения аккумулятора к заданному, ток заряда будет падать и при достижении напряжения на аккумуляторе 4.2 вольта, зарядный ток будет практически нулевым. Однако оставлять аккумулятор, подключенный к зарядному устройству на продолжительное время, не рекомендуется, т.к. он не любит перезаряда даже малым током и может взорваться или загореться.

Если устройство не работает, то необходимо проверить управляющий вывод (1) TL431 на наличие напряжения. Его значение должно быть не меньше 2,5 В. Это наименьшее допустимое значение опорного напряжения для этой микросхемы. Микросхема TL431 встречается довольно часто, особенно в БП компьютеров.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Идея

Описание

Исполнение

Итоговая оценка: 5.67

Источник: https://USamodelkina.ru/8964-zaryadnoe-ustroystvo-dlya-litiy-ionnogo-akkumulyatora.html

Зарядное устройство для Li-ion на ТР4056

  Заказал на Ali лот из пяти модулей зарядных устройств на чипе TP4056 для Li-ion аккумуляторов (цена лота 68,70 руб, за модуль 13,74 руб, сентябрь 2015). Пришли на одной печатной плате, разделенные скрайбированием (надрезанием).

На печатке логотип kvsun — китайский производитель широкого спектра зарядок Li-ion аккумуляторов различных типоразмеров и применений.Статья в основном является компиляцией разрозненных данных интернета, с целью собрать все в одном месте.

  Модуль основан на чипе TP4056 — контроллере зарядки Li-ion аккумуляторов со встроенным термодатчиком от NanJing Top Power ASIC Corp, это завершенное изделие с линейным зарядом по принципу постоянное напряжение/постоянный ток для одноэлементных литий-ионных аккумуляторов.

Чип от компании из Нанкина, провинция Цзянсу, Китай. Специализация — системы питания игрушек, телефонов, LCD, LCM. Основана в 2003 году.

  Контроллер выполнен в корпусе SOP-8, имеет на нижней поверхности металлический теплосьемник не соединенный с контактами, позволяет заряжать аккумулятор током до 1000 ма (зависит от токозадающего резистора). Требует минимум навесных компонентов.   По сути это более навороченная модификация их же чипа TP4054, у которого в свою очередь куча аналогов (MCP73831, LTC4054, TB4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051). Кто тут кому аналог, судить не берусь.

  Расположение выводов:

  Описание выводов:

  1. TEMP — подключение датчика температуры, встроенного в литий-ионную батарею. Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостановится. Контроль температуры отключается замыканием входа на общий провод.
  2. PROG — Программирование тока зарядки (1.2к — 10к); Постоянный ток зарядки и контроль напряжения зарядки выбираются сопротивлением резистора, между этим пином и GND; Для всех режимов зарядки, зарядный ток может быть выведен из формулы:
  3. GND — Общий;
  4. Vcc — Напряжение питания, если ток потребления (ток зарядки батареи) становится ниже 30mA, контроллер уходит в спячку, потребляя от контакта BAT ~ 2mkA;
  5. BAT — Подключение аккумуляторной батареи (ICR, IMR);
  6. STDBY — Индикация окончания заряда (выход ОК, n-p-n), при слишком низком напряжении питания, или напряжении на входе ТЕМР не в диаппазоне — разомкнут;
    • При подключенной батарее, в течении зарядки — разомкнут, по окончании — замкнут;
    • При неподключенной батарее замкнут;
  7. CHRG — Индикация зарядки (выход ОК, n-p-n), при слишком низком напряжении питания, или напряжении на входе ТЕМР не в диаппазоне — разомкнут;
    • При подключенной батарее, в течении зарядки — замкнут, по окончании — разомкнут;
    • При неподключенной батарее, кратковременно включается с периодом 1-4 сек;
  8. CE — Управление зарядкой. При подаче высокого уровня микросхема находится в рабочем режиме, при низком уровне контроллер в состоянии сна. Вход TTL и CMOS совместим;

Процесс зарядки состоит из нескольких этапов:

  1. Контроль напряжения подключенного аккумулятора (постоянно);
  2. Зарядка током 1/10 от запрограммированного резистором Rprog (100мА при Rprog = 1.2к) до уровня 2.9 В (если требуется);
  3. Зарядка максимальным током (1000мА при Rprog = 1.2к);
  4. При достижении на батарее 4.2 В идет стабилизация напряжения на уровне 4.2В. Ток падает по мере зарядки;
  5. При достижении тока 1/10 от запрограммированного резистором Rprog (100мА при Rprog = 1.2к) зарядное устройство отключается. Переход к п. 1

  Контроллер имеет хороший профиль CC/CV и может быть адаптирован ко многим различным конфигурациям зарядки и типам Li-ion аккумуляторов. Номинальный зарядный ток может быть изменен подбором единственного резистора.   Модуль представляет из себя небольшую платку (19 х 27 мм, рядом элемент ААА) с собранной схемой зарядного устройства.Схема практически идентична схеме из даташита, за исключением подключения термодатчика аккумулятора. На полученных модулях цвет светодиодов окончания зарядки другой, вместо зеленого — синий.Можно (если понадобилось) вывести вход термодатчика отдельным проводком, напаявшись на лапку и отрезав ее от GND. Или же подняв лапку над платой и напаявшись. Если же хочется без паяния, надо просто заказать там же другой модуль:Отличие только в компоновке и габаритах (37×15мм).

Описание:

  • Напряжение питания +4,5…+8,0 вольт (более 5,5 В не рекомендуется, чип перегревается);
  • Разьем Mini-USB на плате, для питания от USB-порта компьютера или универсального блока питания;
  • Ток заряда 1,0 Ампер (1000 мА), легко программируется изменением значения резистора Rprog (от 1,2k до 10k (по даташиту, на самом деле до ~30k));
  • Важно: источник питания (USB порт, USB адаптер, или др.) должен обеспечивать ток заряда с некоторым запасом. Не все порты USB могут обеспечить ток более 500 мА;
  • Напряжение окончания заряда аккумулятора: 4,2 вольта;
  • Светодиод индикации заряда;
  • Светодиод индикации окончания заряда;
  • Готовый модуль;
  • Миниатюрные размеры 19 х 27 мм;
  • Вес модуля 1,9 гр;

Тесты зарядки реальных аккумуляторов: Заявленная емкость 3400mAh:Очень хороший график CC/CV, немного затянуто падение СС, это увеличивает время зарядки, но аккумулятору от этого хуже не будет. Ток зарядки не достиг заявленных 1000мА. Возможно его ограничила температура самого контроллера. Контроллер сначала сильно разогревшись к концу зарядки остывает.Снижение напряжения питания до 4.5 В, увеличивает время зарядки и уменьшает температуру, но итоговое напряжение немного ниже.Увеличение напряжения питания действительно увеличивает температуру, но также и уменьшает ток. Когда чип перегревается, он уменьшает ток.То же, но использован небольшой алюминиевый радиатор на контроллере. И это действительно помогает, температура ниже, чем при питании от 5,0 В.Старый 16340 IMR аккумулятор от видеокамеры также был заряжен успешно. После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора. Ток, потребляемый схемой мониторинга 2-3 mkA. После падения напряжения до 4.0В, зарядка включается снова. При отключении и подключении аккумулятора, зарядка включится только если напряжение аккумулятора ниже 4.0В.

  Внимание!!! Контроллер имеет одну особенность, не описанную в даташите. Он не содержит схемы защиты от переполюсовки батареи. В этом случае контроллер гарантированно выходит из строя из-за превышения максимального тока и теплового пробоя.

Но это только полбеды, контроллер пробивается накоротко, и на его выходе (батарее) появляется полное (!) входное напряжение.

  Это особенно актуально для заряда пальчиковых аккумуляторов типа 18650.

При установке очень легко ошибиться с полярностью.

Можно купить и модули с защитой:

Кроме контроллера зарядки ТP4056 в него добавлены два чипа: DW01 (схема защиты) + ML8205A (сдвоенный ключ MOSFET).

Что эта схема добавляет в характеристики предыдущего модуля:

  • Встроенная защита окончания зарядки: 4,2 вольт (ТP4056 и так это делает);
  • Встроенная защита от короткого замыкания по выходу (ограничение на 3А);
  • Встроенная защита от глубокого разряда аккумулятора (+2,4 вольт);
  • Разьем Micro-USB на плате, в предыдущем Mini-USB;

К сожалению защитить от переполюсовки он надолго не сможет, ограничит ток на 3А. Для DW01 и ML8205A такой ток некритичен, ТP4056 быстро перегреется.

Чего хотелось достичь?

  Ранее я заказал и описАл простую платку с DS1307Z и AT24C32 на борту.

Для резервного питания часов там заложен Li-ion аккумулятор LIR2032. Его подзарядка осуществляется постоянно, через резистор (1,8мкА), от питающего напряжения.

Хотя упоминаний об этом в инете нет, меня убедили, что такая схема зарядки быстро убивает аккумулятор.   Данная зарядка бралась на замену резистору. Такая замена естественно дороже. Хотя если учесть цену данной платы (13,74 руб), плюсов будет больше.

Тестовая работа по подключению маломощного аккумулятора LIR2032 к зарядке на TP4056 была проведена здесь:

Автор изменил сопротивление токозадающего резистора с 1,2к на 33к, зарядный ток уменьшился до 45мА. По словам автора, зарядка разряженного аккумулятора занимает около часа.

  Как это будет выглядеть в теории? Даташит на Li-MnO2 аккумулятор LIR2032 рекомендует зарядку номинальным током 20мА и напряжением 4,2В.

После падения тока до 4мА батарею можно считать полностью заряженной. Максимальный ток зарядки 35-45мА, в зависимости от производителя. Минимальное напряжение разряда аккумулятора до начала деградации ячейки 2,75В. Для аккумулятора гарантируется 500 циклов заряда/разряда с сохранением после них не менее 80% емкости.

  В свою очередь контроллер Tp4056 не сможет обеспечить ток зарядки ниже 30мА, просто уйдет в сон. И ждать пока напряжение на аккумуляторе упадет до 2,75В тоже не будет, включит зарядку уже при падении до 4,0В. Таким образом он будет постоянно поддерживать аккумулятор на ~85-95% заряженным. Наверное это не оптимально для ячейки, но все же лучше, чем через резистор.

Источник: http://we.easyelectronics.ru/part/zaryadnoe-ustroystvo-dlya-li-ion–na-tr4056.html

Схема зарядки li-ion аккумулятора от USB

Сегодня статья будет на тему зарядного устройства для литий ионных аккумуляторов. Так как число заходов на страницы сайта по запросу «схема зарядки li-ion аккумулятора» существенно возросло. Можно даже сказать этих запросов большинство за день. Поэтому дабы удовлетворить информационный спрос, посвятим этой теме отдельную рубрику.

Для начала представляю вам простейшую схему зарядки для 3,7 вольтовых, литий ионных аккумуляторов. Питание  5 вольт, в данной схеме осуществляется от USB компьютера, Адаптера постоянного тока на 5 вольт (например зарядное от мобильного телефона) или маломощной солнечной батареи. Мощность зарядного устройтва предполагается около 1 ампера.

Мозгом и сердцем схемы служит микрочип MCP73831. Весьма легко достать или приобрести в радио магазине. Средняя цена около 1,5 — 2 американских вечнозелёных. Можно заказать у китайцев по ссылке всего за $3.88 за 10 шт.

 MCP73831 является одним из не дорогих микрочипов в линейке контролёров управления заряда для использования на ограниченном пространстве на плате. Даташит на MCP73831 можно посмотреть по ссылке. Эта микросхема использует постоянный ток / постоянный алгоритм заряда.

А так же прекращает зарядку при полностью заряженном аккумуляторе.

Приведу общую схему:

Литий-ионные аккумуляторы стали популярными в портативной электронике, потому что они могут похвастаться самой высокой плотностью энергии среди любой батареи, используемой в коммерческих целях.

Преимущества включают в себя тысячи перезарядок и не возникновение «эффекта памяти», в отличии от никель-кадмиевых аккумуляторов. Тем не менее, Литий-ионные аккумуляторы должны заряжаться при тщательном контроле постоянного тока и постоянного напряжения.

Переизбыток заряда и неосторожное обращение с литий-ионными элементами может привести к повреждению или нестабильной работе батареи.

Итак, как уже говорилось, ток заряда должен быть около 1 ампера. Подаваемое напряжение не должно превышать 5 вольт. Предполагаемые размеры платы зарядного устройства, не велики, около 25 х 19 х 10 мм.

Все необходимые элементы показаны на схеме. В качестве приемника 5 вольт служит гнездо под мини USB, но ваша фантазия не ограничена. Можно хоть напрямую впаять провода от адаптера 5 v.

  • Амперметр может быть подключен, только ко входу +5 v.
  • Ели входное напряжение, всё же будет незначительно больше, то ток заряда соответственно тоже будет больше. Но это ничего страшного, так как микрочип MCP73831 отсечет излишнее напряжение на выходе.
  • Так же микросхема прекратит зарядку при достижении аккумулятором напряжения в 3,7 v.
  • Лучше всего, чтобы зарядный ток составлял 35 — 37 % от ёмкости заряжаемого аккумулятора. Тоесть если АКБ на 1000 мА, то ток заряда должен быть около 400 мА.

Готовые платки под пайку:

Вот так выглядит готовая плата зарядного устройства литий ионных аккумуляторов.

Напомню, размеры должны получиться около  25 х 19 х 10 мм.

Хотя схема крайне проста в разработке и сборке  и собрать её не составит особого труда, считаю за необходимое вас уведомить, что данную схему вы можете приобрести по цене не более $2, как вы уже догадались, у китайцев.
Крепить же саму банку аккумулятора можно, например, с помощью неодимовых магнитов, а так же смотрите другие варианты крепления контактов для баночных аккумуляторов

На этом всё, скоро покажу другие схемы зарядок для нескольких банок и схемы балансирующих зарядный устройств.

Источник: http://silatoka.net/sxema-zaryadki-li-ion-usb

Контроллер заряда на TP4056

Контроллер заряда на TP4056.

Контроллер основан на чипе TP4056 — контроллере зарядки Li-ion аккумуляторов со встроенным термодатчиком от NanJing Top Power ASIC Corp, это завершенное изделие с линейным зарядом по принципу постоянное напряжение/постоянный ток для одноэлементных литий-ионных аккумуляторов.

Чип от компании из Нанкина, провинция Цзянсу, Китай. Специализация — системы питания игрушек, телефонов, LCD, LCM. Основана в 2003 году.

Контроллер выполнен в корпусе SOP-8, имет на нижней поверхности металлический теплосьемник не соединенный с контактами, позволяет заряжать аккумулятор током до 1000 ма (зависит от токозадающего резистора). Требует минимум навесных компонентов.

По сути это более навороченная модификация их же чипа TP4054, у которого в свою очередь куча аналогов (MCP73831, LTC4054, TB4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051). Кто тут кому аналог, судить не берусь.

Расположение выводов:

Описание выводов:

  1. TEMP — подключение датчика температуры, встроенного в литий-ионную батарею. Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостановится. Контроль температуры отключается замыканием входа на общий провод.
  2. PROG — Программирование тока зарядки (1.

    2к — 10к); Постоянный ток зарядки и контроль напряжения зарядки выбираются сопротивлением резистора, между этим пином и GND; Для всех режимов зарядки, зарядный ток может быть выведен из формулы:

  3. GND — Общий;
  4. Vcc — Напряжение питания, если ток потребления (ток зарядки батареи) становится ниже 30mA, контроллер уходит в спячку, потребляя от контакта BAT ~ 2mkA;
  5. BAT — Подключение аккумуляторной батареи (ICR, IMR);
  6. STDBY — Индикация окончания заряда (выход ОК, n-p-n), при слишком низком напряжении питания, или напряжении на входе ТЕМР не в диаппазоне — разомкнут;
    • При подключенной батарее, в течении зарядки — разомкнут, по окончании — замкнут;
    • При неподключенной батарее замкнут;
  7. CHRG — Индикация зарядки (выход ОК, n-p-n), при слишком низком напряжении питания, или напряжении на входе ТЕМР не в диаппазоне — разомкнут;
    • При подключенной батарее, в течении зарядки — замкнут, по окончании — разомкнут;
    • При неподключенной батарее, кратковременно включается с периодом 1-4 сек;
  8. CE — Управление зарядкой. При подаче высокого уровня микросхема находится в рабочем режиме, при низком уровне контроллер в состоянии сна. Вход TTL и CMOS совместим;

Процесс зарядки состоит из нескольких этапов:

  1. Контроль напряжения подключенного аккумулятора (постоянно);
  2. Зарядка током 1/10 от запрограммированного резистором Rprog (100мА при Rprog = 1.2к) до уровня 2.9 В (если требуется);
  3. Зарядка максимальным током (1000мА при Rprog = 1.

    2к);

  4. При достижении на батарее 4.2 В идет стабилизация напряжения на уровне 4.2В. Ток падает по мере зарядки;
  5. При достижении тока 1/10 от запрограммированного резистором Rprog (100мА при Rprog = 1.2к) зарядное устройство отключается. Переход к п.

    1

Контроллер имеет хороший профиль CC/CV и может быть адаптирован ко многим различным конфигурациям зарядки и типам Li-ion аккумуляторов. Номинальный зарядный ток может быть изменен подбором единственного резистора.

Модуль представляет из себя небольшую платку (19 х 27 мм, рядом элемент ААА) с собранной схемой зарядного устройства.

Схема контроллера TP4056 практически идентична схеме из даташита, за исключением подключения термодатчика аккумулятора. На полученных модулях цвет светодиодов окончания зарядки другой, вместо зеленого — синий.

Можно (если понадобилось) вывести вход термодатчика отдельным проводком, напаявшись на лапку и отрезав ее от GND. Или же подняв лапку над платой и напаявшись.

Описание:

  • Напряжение питания +4,5…+8,0 вольт (более 5,5 В не рекомендуется, чип перегревается);
  • Разьем Mini-USB на плате, для питания от USB-порта компьютера или универсального блока питания;
  • Ток заряда 1,0 Ампер (1000 мА), легко программируется изменением значения резистора Rprog (от 1,2k до 10k (по даташиту, на самом деле до ~30k));
  • Важно: источник питания (USB порт, USB адаптер, или др.) должен обеспечивать ток заряда с некоторым запасом. Не все порты USB могут обеспечить ток более 500 мА;
  • Напряжение окончания заряда аккумулятора: 4,2 вольта;
  • Светодиод индикации заряда;
  • Светодиод индикации окончания заряда;
  • Готовый модуль;
  • Миниатюрные размеры 19 х 27 мм;
  • Вес модуля 1,9 гр;

Тесты зарядки реальных аккумуляторов:

Заявленная емкость 3400mAh:

Очень хороший график CC/CV, немного затянуто падение СС, это увеличивает время зарядки, но аккумулятору от этого хуже не будет. Ток зарядки не достиг заявленных 1000мА. Возможно его ограничила температура самого контроллера. Контроллер сначала сильно разогревшись к концу зарядки остывает.

Снижение напряжения питания до 4.5 В, увеличивает время зарядки и уменьшает температуру, но итоговое напряжение немного ниже.

Увеличение напряжения питания действительно увеличивает температуру, но также и уменьшает ток. Когда чип перегревается, он уменьшает ток.

То же, но использован небольшой алюминиевый радиатор на контроллере. И это действительно помогает, температура ниже, чем при питании от 5,0 В.

Старый 16340 IMR аккумулятор от видеокамеры также был заряжен успешно.

После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора. Ток, потребляемый схемой мониторинга 2-3 mkA. После падения напряжения до 4.0В, зарядка включается снова.
При отключении и подключении аккумулятора, зарядка включится только если напряжение аккумулятора ниже 4.0В.

Внимание!!! Контроллер имеет одну особенность, не описанную в даташите. Он не содержит схемы защиты от переполюсовки батареи. В этом случае контроллер гарантированно выходит из строя из-за превышения максимального тока и теплового пробоя. Но это только полбеды, контроллер пробивается накоротко, и на его выходе (батарее) появляется полное (!) входное напряжение.

Это особенно актуально для заряда пальчиковых аккумуляторов типа 18650. При установке очень легко ошибиться с полярностью.

Можно купить и модули с защитой:

Кроме контроллера зарядки ТP4056 в него добавлены два чипа: DW01 (схема защиты) + ML8205A(сдвоенный ключ MOSFET).

Что эта схема добавляет в характеристики предыдущего модуля:

  • Встроенная защита окончания зарядки: 4,2 вольт (ТP4056 и так это делает);
  • Встроенная защита от короткого замыкания по выходу (ограничение на 3А);
  • Встроенная защита от глубокого разряда аккумулятора (+2,4 вольт);
  • Разьем Micro-USB на плате, в предыдущем Mini-USB;

К сожалению защитить от переполюсовки он надолго не сможет, ограничит ток на 3А. Для DW01 и ML8205A такой ток некритичен, ТP4056 быстро перегреется.

Аккумулятор подключается к контактам B+ и B- Нагрузка подключается к контактам OUT+ и OUT-

Все чипы хорошо известны и проверены

Реальная схема устройства
Отсутствует ограничивающий резистор на входе TP4056 — видимо кабель подключения выполняет эту функцию. Реальный ток заряда 0,93А. Зарядка отключается при напряжении на аккумуляторе 4,19В

Потребляемый ток от аккумулятора всего 3мкА, что значительно меньше саморазряда любого аккумулятора.

Описание некоторых элементов

TP4056 — чип контроллера заряда лития на 1А
www.dfrobot.com/image/data/DFR0208/TP4056.pdf Подробно описывал тут

mysku.ru/blog/aliexpress/27752.html

DW01A — чип защиты лития

www.ic-fortune.com/upload/Download/DW01A-DS-11_EN.pdf

FS8205A — электронный ключ 25мОм 4А

www.ic-fortune.com/upload/Download/FS8205A-DS-12_EN.pdf

R3 (1,2кОм) — установка тока зарядки аккумулятора

R5 C2 — фильтр цепи питания DW01A. Через него также осуществляется контроль напряжения на аккумуляторе. R6 — нужен для защиты от переполюсовки зарядки. Через него также измеряется падение напряжения на ключах для нормальной работы защиты. Красный светодиод — индикация процесса заряда аккумулятора

Синий светодиод — индикация окончания заряда аккумулятора

Переполюсовку аккумулятора плата выдерживает лишь кратковременно — быстро перегревается ключ FS8205A. Сами по себе FS8205A и DW01A переполюсовки аккумулятора не боятся из-за наличия токоограничивающих резисторов, но из-за подключения TP4056 ток переполюсовки начинает течь через него.

При напряжении аккумулятора 4,0V, измеренное полное сопротивление ключа 0,052 Ом
При напряжении аккумулятора 3,0V, измеренное полное сопротивление ключа 0,055 Ом

Защита от токовой перегрузки — двухступенчатая и срабатывает, если: — ток нагрузки превышает 27А в течение 3мкс — ток нагрузки превышает 3А в течение 10мс Информация рассчитана по формулам из спецификации, реально это не проверить.

Длительный максимальный ток отдачи получился около 2,5А, при этом ключ заметно нагревается, т.к. на нём теряется 0,32Вт.

Защита от переразряда аккумулятора срабатывает при напряжении 2,39В — маловато будет, не всякий аккумулятор можно безопасно разряжать до такого низкого напряжения.

Контроллеры без защиты

Контроллеры с защитой

Взято с сайта we.easyelectronics.ru

И с сайта mysku.ru

Купить Контроллер заряда на TP4056 . за $0.3

Источник: http://alielectronics.net/2017/02/17/tp4056/

Универсальное зарядное устройство для литий-полимерных аккумуляторов на микросхеме MCP73833

» Схемы » Питание · Силовая электроника

15-11-2009

Microchip » MCP73833

Для своих последних проектов я использовал Li-Pol аккумуляторы от сотовых телефонов. Они действительно замечательны. Высокая энергетическая плотность, низкий уровень саморазряда, нет эффекта памяти. Но Li-Pol аккумуляторы, в отличие от других, требуют более сложных зарядных устройств. Вы должны не допустить превышения зарядного напряжения и перезаряда – это может повредить аккумулятор.

В течение некоторого времени я использовал зарядное устройство Sparkfun LiPoly charger на базе MAX1555, и работало оно действительно хорошо. Единственное что не получалось – управлять током заряда. После проведения нескольких опытов я решил попробовать другой чип – Microchip MCP73833.

Характерные особенности MC73833
(скопировано со спецификации):

  • Высокая точность установки выходного напряжения
  • Опции управления выходным напряжением
  • Программируемый пользователем выходной ток до 1 А
  • Два статусных выхода с открытым стоком
  • Опции предзаряда и завершения заряда
  • Защита от превышения напряжения
  • Выход «заряд завершен»

Мне понравились возможности чипа по установке тока зарядки и статусные выходы, которые в серьезных устройствах исключительно полезны. 

Схема

Схема, в основном, сделана по рекомендациям изготовителя. В ней есть три светодиода – включение, зарядка и заряд завершен.

Резистором R4 устанавливается ток заряда. Я установил этот резистор в контакты от разъема, чтобы удобнее было менять ток для заряда аккумуляторов других типов. При сопротивлении резистора 10 кОм ток заряда аккумулятора равен 100 мА.

Результат
 

Все использованные компоненты – 0805 SMD, кроме чипа MCP73833, который имеет корпус MSOP-10. Это было моей первой попыткой изготовить устройство с применением SMD компонентов. Я использовал паяльную станцию. Оказалось, что требуется очень точная дозировка паяльной пасты. Лишний припой необходимо удалять специальной оплеткой для снятия припоя.

Выводы

Следующая версия должна иметь гнездо для подключения сетевого адаптера. Два штырька неудобны для подключения источника питания.

Замечание: как видите, на плате есть разъем мини-USB, чтобы иметь возможность для подключения зарядного устройства к ноутбуку.

Я настоятельно рекомендую использовать что-типа USB хаба для проверки любого собранного вами USB устройства.
Я не сделал этого, и теперь имею сгоревший первый макет зарядного устройства и единственный уцелевший USB порт в ноутбуке. И хотя ОС предупреждала меня «Большой ток потребления, порт будет отключен», было уже поздно. Короче, вы предупреждены.

tinkerlog.com

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться.
Фрагменты обсуждения: Полный вариант обсуждения »
  • ВЕСЬМА, ВЕСЬМА ПОЛЕЗНАЯ СТАТЬЯ АВТОМАТИЧЕСКАЯ ЗАРЯДКА АККУМУЛЯТОРОВ АКТУАЛЬНА.
  • Мне тоже понравилось, весьма актуально, а главное есть практическая ценность.
  • Как дополнительна информация по аккумуляторам. http://www.compitech.ru/html.cgi/arh…9/stat_116.htm
  • Верно подмечено – именно практическая ценность. И добавка от lllll весьма…
  • Подскажите где 2 часть, Li Ion аккумуляторы для роб. техники?
  • Если имеется в виду статья Литий-ионные аккумуляторы для робототехники. Часть 1. Введение то, во первых, этот вопрос надо было задавать не в этой теме, а в комметнариях имено той статьи во вторых, посмотрите на дату выхода статьи – вчера, 23 июня. Далее смотрим самый низ статьи – Продолжение следует По моему – все логично. Или все не очевидно? Ну дайте переводчикам и редакторам хоть какое то время для подготовки продолжения.
  • Микросхема хорошая, а вот как ее автор статьи использовал мне не понравилось, не мудрено что он порт в ноуте спалил. Приглядитесь к части схемы разъема миниUSB.
  • Подскажите, как изменить схему чтобы обезопасить ЮСБ-порт при зарядке от него? Но можно было питать зарядное и от сетевого адаптера.
  • поставь резистор соответствующий, 3-5кОм, брать будет около 350-200мА от порта, 1кОм потянет 1А току. собрал схему по даташиту и теперь есть два вопроса, которые никак не пойму: почему микросхема заряжает только до 4.10-4.13в? и как подключить лампочку, чтобы она отключалась, когда достигнуто минимальное для аккумулятора напряжение?
Полный вариант обсуждения »

При перепечатке материалов с сайта прямая ссылка на РадиоЛоцман обязательна.

Приглашаем авторов статей и переводов к публикации материалов на страницах сайта.

Источник: https://www.rlocman.ru/shem/schematics.html?di=61371

Ссылка на основную публикацию
Adblock
detector
",css:{backgroundColor:"#000",opacity:.6}},container:{block:void 0,tpl:"
"},wrap:void 0,body:void 0,errors:{tpl:"
",autoclose_delay:2e3,ajax_unsuccessful_load:"Error"},openEffect:{type:"fade",speed:400},closeEffect:{type:"fade",speed:400},beforeOpen:n.noop,afterOpen:n.noop,beforeClose:n.noop,afterClose:n.noop,afterLoading:n.noop,afterLoadingOnShow:n.noop,errorLoading:n.noop},o=0,p=n([]),h={isEventOut:function(a,b){var c=!0;return n(a).each(function(){n(b.target).get(0)==n(this).get(0)&&(c=!1),0==n(b.target).closest("HTML",n(this).get(0)).length&&(c=!1)}),c}},q={getParentEl:function(a){var b=n(a);return b.data("arcticmodal")?b:(b=n(a).closest(".arcticmodal-container").data("arcticmodalParentEl"),!!b&&b)},transition:function(a,b,c,d){switch(d=null==d?n.noop:d,c.type){case"fade":"show"==b?a.fadeIn(c.speed,d):a.fadeOut(c.speed,d);break;case"none":"show"==b?a.show():a.hide(),d();}},prepare_body:function(a,b){n(".arcticmodal-close",a.body).unbind("click.arcticmodal").bind("click.arcticmodal",function(){return b.arcticmodal("close"),!1})},init_el:function(d,a){var b=d.data("arcticmodal");if(!b){if(b=a,o++,b.modalID=o,b.overlay.block=n(b.overlay.tpl),b.overlay.block.css(b.overlay.css),b.container.block=n(b.container.tpl),b.body=n(".arcticmodal-container_i2",b.container.block),a.clone?b.body.html(d.clone(!0)):(d.before("
"),b.body.html(d)),q.prepare_body(b,d),b.closeOnOverlayClick&&b.overlay.block.add(b.container.block).click(function(a){h.isEventOut(n(">*",b.body),a)&&d.arcticmodal("close")}),b.container.block.data("arcticmodalParentEl",d),d.data("arcticmodal",b),p=n.merge(p,d),n.proxy(e.show,d)(),"html"==b.type)return d;if(null!=b.ajax.beforeSend){var c=b.ajax.beforeSend;delete b.ajax.beforeSend}if(null!=b.ajax.success){var f=b.ajax.success;delete b.ajax.success}if(null!=b.ajax.error){var g=b.ajax.error;delete b.ajax.error}var j=n.extend(!0,{url:b.url,beforeSend:function(){null==c?b.body.html("
"):c(b,d)},success:function(c){d.trigger("afterLoading"),b.afterLoading(b,d,c),null==f?b.body.html(c):f(b,d,c),q.prepare_body(b,d),d.trigger("afterLoadingOnShow"),b.afterLoadingOnShow(b,d,c)},error:function(){d.trigger("errorLoading"),b.errorLoading(b,d),null==g?(b.body.html(b.errors.tpl),n(".arcticmodal-error",b.body).html(b.errors.ajax_unsuccessful_load),n(".arcticmodal-close",b.body).click(function(){return d.arcticmodal("close"),!1}),b.errors.autoclose_delay&&setTimeout(function(){d.arcticmodal("close")},b.errors.autoclose_delay)):g(b,d)}},b.ajax);b.ajax_request=n.ajax(j),d.data("arcticmodal",b)}},init:function(b){if(b=n.extend(!0,{},a,b),!n.isFunction(this))return this.each(function(){q.init_el(n(this),n.extend(!0,{},b))});if(null==b)return void n.error("jquery.arcticmodal: Uncorrect parameters");if(""==b.type)return void n.error("jquery.arcticmodal: Don't set parameter \"type\"");switch(b.type){case"html":if(""==b.content)return void n.error("jquery.arcticmodal: Don't set parameter \"content\"");var e=b.content;return b.content="",q.init_el(n(e),b);case"ajax":return""==b.url?void n.error("jquery.arcticmodal: Don't set parameter \"url\""):q.init_el(n("
"),b);}}},e={show:function(){var a=q.getParentEl(this);if(!1===a)return void n.error("jquery.arcticmodal: Uncorrect call");var b=a.data("arcticmodal");if(b.overlay.block.hide(),b.container.block.hide(),n("BODY").append(b.overlay.block),n("BODY").append(b.container.block),b.beforeOpen(b,a),a.trigger("beforeOpen"),"hidden"!=b.wrap.css("overflow")){b.wrap.data("arcticmodalOverflow",b.wrap.css("overflow"));var c=b.wrap.outerWidth(!0);b.wrap.css("overflow","hidden");var d=b.wrap.outerWidth(!0);d!=c&&b.wrap.css("marginRight",d-c+"px")}return p.not(a).each(function(){var a=n(this).data("arcticmodal");a.overlay.block.hide()}),q.transition(b.overlay.block,"show",1*")),b.overlay.block.remove(),b.container.block.remove(),a.data("arcticmodal",null),n(".arcticmodal-container").length||(b.wrap.data("arcticmodalOverflow")&&b.wrap.css("overflow",b.wrap.data("arcticmodalOverflow")),b.wrap.css("marginRight",0))}),"ajax"==b.type&&b.ajax_request.abort(),p=p.not(a))})},setDefault:function(b){n.extend(!0,a,b)}};n(function(){a.wrap=n(document.all&&!document.querySelector?"html":"body")}),n(document).bind("keyup.arcticmodal",function(d){var a=p.last();if(a.length){var b=a.data("arcticmodal");b.closeOnEsc&&27===d.keyCode&&a.arcticmodal("close")}}),n.arcticmodal=n.fn.arcticmodal=function(a){return e[a]?e[a].apply(this,Array.prototype.slice.call(arguments,1)):"object"!=typeof a&&a?void n.error("jquery.arcticmodal: Method "+a+" does not exist"):q.init.apply(this,arguments)}}(jQuery)}var debugMode="undefined"!=typeof debugFlatPM&&debugFlatPM,duplicateMode="undefined"!=typeof duplicateFlatPM&&duplicateFlatPM,countMode="undefined"!=typeof countFlatPM&&countFlatPM;document["wri"+"te"]=function(a){let b=document.createElement("div");jQuery(document.currentScript).after(b),flatPM_setHTML(b,a),jQuery(b).contents().unwrap()};function flatPM_sticky(c,d,e=0){function f(){if(null==a){let b=getComputedStyle(g,""),c="";for(let a=0;a=b.top-h?b.top-h{const d=c.split("=");return d[0]===a?decodeURIComponent(d[1]):b},""),c=""==b?void 0:b;return c}function flatPM_testCookie(){let a="test_56445";try{return localStorage.setItem(a,a),localStorage.removeItem(a),!0}catch(a){return!1}}function flatPM_grep(a,b,c){return jQuery.grep(a,(a,d)=>c?d==b:0==(d+1)%b)}function flatPM_random(a,b){return Math.floor(Math.random()*(b-a+1))+a}