Магнитная петлевая антенна

Балконные Magnetic Loop — схемы, описания

Данная публикация предназначена для начинающих
 радиолюбителей и для тех, у кого нет доступа
на кровлю своего дома. Сушко С.А. (ex.UA9LBG)

Магнитные антенны (Magnetic Loop) типа-ML  ввиду своих малых размеров становятся всё более популярными.   Все они могут размещаться на балконах и подоконниках. Неоспоримо, что классическую популярность завоевали одновитковые магнитные антенны с вакуумным конденсатором и петлей связи, при помощи которых можно проводить радиосвязи даже с другими континентами.

Двух-рамочные антенны в виде восьмёрки сравнительно недавно начали появляться в среде  радиолюбителей, хотя на заре появления Си-Би связи в России, такие антенны с определённым успехом  практиковались в автомобильных радио-охранных системах диапазона 27МГц, см.рис.1.а.

Автомобильная антенна состояла из двух одинаковых рамок (петель) L1;L2 и общего резонансного конденсатора С1, стоящего в пучности напряжения. С периметром антенны около 5 метров радиолюбитель Стерликов А.(RA9SUS) провел связи с 36-ю странами мощность до 30 Вт. Питание антенны производилось непосредственно от коаксиального кабеля.

А подобные антенны практиковались с конца 60-х, начала 70-х годов прошлого века. Эквивалентная схема такой антенны изображена на рис. 1.б.

Хотя одновитковые ML в настоящее время широко применяются  в среде радиолюбителей, особенностью двух-витковой состоит в том, что её апертура в два раза больше по сравнению с классической.

Конденсатором С1 можно изменять резонанс  антенны с перекрытием по частоте в 2-3 раза, а общий периметр окружности двух петель ≤ 0,5λ.  Это соизмеримо с полуволновой антенной, а её малая апертура излучения компенсируется повышенной добротностью.

    Согласование фидера с такой антенной лучше осуществлять посредством индуктивной или емкостной связи.

Теоретическое отступление:  Двойную петлю можно рассматривать как смешанную колебательную систему LL и LC-системы. Здесь для нормальной работы оба плеча нагружены на среду излучения синхронно и синфазно.

Если на левое плечо подается положительная полуволна, то и на правое плечо подается точно такая же.

Зародившаяся в каждом плече ЭДС самоиндукции будет по правилу Ленца противоположна ЭДС индукции, но так как ЭДС индукции каждого плеча противоположны по направлению, то ЭДС самоиндукции будет всегда совпадать с направлением индукции противоположного плеча.

Тогда индукция в катушке L1 будет суммироваться с самоиндукцией от катушки L2, а индукция катушки L2 — с самоиндукцией L1. Так же, как и в LC — контуре, суммарная  мощность излучения может в несколько раз превосходить входную мощность. Подача энергии может осуществляться на любую из катушек индуктивности и любым способом.

Преобразуя антенну из прямоугольной формы в круглую(рис.1.а), мы получаем антенну, изображённую на рис.2.а. Справедливо считается, что круглая форма магнитной антенны эффективнее, чем прямоугольная.    

Постепенно упростился  конструктив рамки L1 и  L2, их стали включать в виде восьмёрки, на рисунках 2.а. и 2.б. Так появилась двух-рамочная ML в виде восьмёрки. Назовём её условно ML-8.

    У ML-8 в отличии от ML  появилась своя особенность, — у неё может быть два резонанса, колебательный контур L1;С1 имеет свою резонансную частоту, а L2;С1 имеет свою.

В задачи конструктора входит добиться единства резонансов и максимального КПД антенны, следовательно, изготовление петель L1 и  L2  должны быть одинаковы.

На практике инструментальная погрешность в несколько сантиметров изменяет ту, или другую индуктивность, частоты настройки резонансов расходятся, а антенна получает определённую дельту по частоте. Иногда конструктором это делается умышленно. Особенно это удобно делать у многовитковых петель.

На практике ML-8  активно используют LZ1AQ ; K8NDS и др. однозначно утверждая, что такая антенна работает значительно лучше одно-рамочной, а изменение её положения в пространстве можно легко управлять пространственной селекцией, что подтверждает фото ниже по тексту антенны на 145МГц.

Предварительные расчёты показывают, что у  ML-8 для диапазона 40 метров, диаметр каждой петли при максимальном КПД составит чуть меньше 3-х метров. Понятно, что такую антенну можно устанавливать только на улице.     А мы мечтаем об эффективной ML-8 антенне для балкона или даже для подоконника.

  Конечно, можно уменьшить диаметр каждой петли до 1 метра и настроить резонанс антенны конденсатором С1 на необходимую частоту, но КПД такой антенны упадёт более чем в 5 раз. Можно пойти другим путём, сохранить расчётную индуктивность петли, используя в ней не один, а два витка, оставив резонансный конденсатор с тем же номиналом.

Несомненно, что апертура антенны уменьшится, но количество витков «N» частично возместит эту потерю, согласно представленной ниже формулы:

Из приведённой формулы видно, что количество витков N является одним из множителей числителя и стоит в одном ряду, как с площадью витка-S, так и, с его добротностью-Q.

К примеру, радиолюбитель OK2ER (см. Рис.3) посчитал возможным использовать 4-х витковой ML  диаметром всего 0,8м в диапазоне 160-40м.

Автор антенны сообщает, что на 160 метров антенна работает номинально и больше используется им для радионаблюдения. В диапазоне 40м. достаточно воспользоваться перемычкой, уменьшающей рабочее количество витков вдвое.

Обратим внимание на используемые материалы, — медная труба петли взята от водяного отопления, клипсы, соединяющие их в общий монолит, используются для монтажа водопроводных пластиковых труб, а герметичный пластиковый ящик приобретён в магазине электрики.

Согласование антенны с фидером емкостное, и наверняка по одной из представленных схем, см. Рис.4.

Кроме выше сказанного, нам нужно понимать, что отрицательно влияет на добротность-Q антенны в целом:

Из приведённой формулы, мы видим, что активное сопротивление индуктивности  Rк и емкость колебательной системы Ск  должны быть минимальными. Именно по этому, все ML делают из медной трубы, как можно большего диаметра, но есть случи, когда полотно петли делают из алюминия, а добротность такой антенны и её КПД падает от 1,1 до 1,4 раза.

Что касаемо емкости колебательной системы, то тут всё сложнее. При неизменном размере петли L, к примеру на резонансной частоте 14МГц, емкость С составит всего 28пФ, а КПД=79%. На частоте 7МГц, КПД=25%.

Тогда как на частоте 3,5МГц при ёмкости в 610 пФ, её КПД=3%. По этому ML используют чаще всего на два диапазона, а третий (самый низкий) считается просто обзорным. Следовательно, при  расчётах мы будем «плясать от печки», т.е.

от выбранного радиолюбителем наивысшего диапазона с минимальной ёмкостью С1.

Диаграмма направленности ML-8 остаётся точно такой, как и у  варианта ML. У обоих вариантов антенн полностью сохраняется восмёрочная диаграмма направленности и соответствующая поляризация. На фото, при помощи газоразрядной лампы наглядно показаны уровни излучения антенны с разных сторон.

Проектируем антенну на диапазон 20м.

Теперь мы вооружены начальными знаниями о проектировании ML-8 и попробуем рассчитать вручную свою антенну.

Длина волны для частоты 14,5 МГц  составляет  (300/14,5)                                                         — 20, 68м.

Длина окружности каждой четверть-волновой петли  L1; L2 составит 5,17м. Примем        -5м.

Диаметр рамки составит: 5/3.14                                                                                                          — 1,6м.

Вывод: Одиночная петля ML может и впишется в интерьер балкона, но ML-8 вряд ли… 

Свернём  каждую петлю  вдвое, но её  диаметр, при сохранении заданной индуктивности (4мкГн) будет несколько отличаться в меньшую сторону.  Прибегнем к достаточно популярному калькулятору радиолюбителя и определим геометрические размеры  двух-витковой петли с такой же индуктивностью.

В соответствии с расчётами параметры каждой петли будут следующими: При диаметре полотна (медной трубы) в 22мм, диаметр двойной петли составит 0,7м, расстояние между витками -0,21м, индуктивность петли составит 4,01мкГн. Необходимые расчётные  параметры петли на другие частоты сведены в таблицу 1.

Таблица 1.

Читайте также:  Информация о наиболее популярных моющих средствах
Частота настройки (МГц) Емкость конденсатора С1 (пФ) Полоса пропускания (кГц) КПД  ML (%)
14,5 17 54 89,6
10,1 48 16 70
7,1 111 6,7 41
3,5 495 2,9 5,6

Примечание: антенна ML-8 имеет не только расширенную полосу пропускания, но и повышенное усиление.

В высоту такая антенна составит всего 1,50-1,60м. Что вполне приемлемо для антенны типа — ML-8  балконного варианта и даже антенны вывешенной за пределы окна  жилого многоэтажного дома. А  её монтажная схема будет выглядеть как на рис. 6.а.

Питание антенны может быть с емкостной или с индуктивной связью. Варианты емкостной связи изображены на рис.4 и могут быть выбраны по желанию радиолюбителя.

Наиболее бюджетный вариант, это индуктивная связь. Не стоит повторяться в схематичном изображении петли связи, она совершенно идентична как у антенн типа- ML за исключением подсчёта её периметра.

Расчёт диаметра(d) петли связи  ML-8 производится из  расчётного диаметра двух петель.

Длина окружности двух петель составляет после пересчёта  4,4*2                      = 8,8 метров.  

Рассчитаем  мнимый диаметр двух петель D = 8,8м /3,14   = 2,8 метра.

Рассчитаем диаметр петли связи-d= D/5.  = 2,8/5             =  0,56 метра. 

Поскольку в данной конструкции мы используем двух-витковую систему, то и петля связи должна иметь тоже две петли. Скручиваем её вдвое и получаем двух-витковую петлю связи диаметром около 28см.

Подбор связи с антенной осуществляется в момент уточнения  КСВ в приоритетном диапазоне частот. Петля связи может иметь гальваническую связь с точкой нулевого напряжения (рис.6.а.

) и располагаться ближе к ней.

Элементы настройки и индикации антенны

1.      Для настройки в резонанс магнитной антенны, лучше всего использовать вакуумные конденсаторы с большим пробивным напряжением и высокой добротностью. Более того, используя редуктор и электропривод, его настройку можно осуществлять дистанционно.

       Мы проектируем бюджетную  балконную антенну, к которой можно подойти в любой момент, изменить её положение в пространстве, перестроить или переключить на другую частоту. Если в точки «а» и «б»(см.Рис.6.а.

) вместо дефицитного и дорогого переменного конденсатора с большими зазорами подключить ёмкость изготовленную из отрезков кабеля RG-213 с погонной ёмкостью 100пФ/м, то можно моментально изменять частоту настройки, а подстроечным конденсатором С1 уточнять резонанс настройки. Кабель-конденсатор можно скрутить в рулон и герметизировать любым из способов.

Такой комплект емкостей можно иметь на каждый диапазон отдельно, а включать в схему посредством обычной  электрической розеткой в паре с электрической вилкой. Примерные ёмкости С1 по диапазонам указаны в таблице1.

2. Индикацию настройки антенны в резонанс лучше производить прямо на самой антенне (так нагляднее). Для этого достаточно не далеко от катушки связи на полотне 1 (точка нулевого напряжения) намотать плотно 25-30 витков провода МГТФ, а индикатор настройки со всеми его элементами герметизировать от осадков. Простейшая схема изображена на рис.7.

Электрический излучатель, это ещё один дополнительный элемент излучения. Если магнитная антенна излучает электромагнитную волну с приоритетом магнитного поля, то электрический излучатель будет выполнять функцию дополнительного излучателя электрического поля-Е.

По сути он должен заменить начальную ёмкость C1, а ток стока, который ранее бесполезно проходил между закрытыми обкладками С1, теперь работает на дополнительное излучение. Теперь доля подводимой мощности дополнительно будет излучаться электрическими излучателями, рис. 6.б.

Полоса пропускания увеличится до пределов полосы радиолюбительского диапазона как в ЕН-антеннах. Емкость таких излучателей невысока (12-16пФ, не более 20-ти), а потому их эффективность на  низкочастотных диапазонах будет невелика.

Ознакомиться с работой ЕН-антенн можно по ссылкам:

http://www.ehant.narod.ru

http://www.qrz.ru/schemes/contribute/antenns/eh2/

Антенна типа ML-8   радио-наблюдателя значительно упрощает конструкцию в целом.

В качестве материала петель L1;L2 можно применять более дешёвые материалы, например трубу ПВХ с алюминиевым слоем внутри для прокладки водопровода диаметром 10-12мм.

Вместо высоковольтных конденсаторов можно применять обычные, с малым ТКЕ, а для плавной настройки на частоту использовать сдвоенные варикапы с управлением с места радионаблюдения.

Заключение

Все мини-антенны, какими бы они небыли, по отношению к простым натяжным и классическим антеннам требуют больших трудо-затрат и слесарных навыков. Но отсутствие возможности устанавливать наружные антенны радиолюбители вынуждены пользоваться как ЕН, так ML-антеннами.

 Конструктив двух-витковых Magnetic Loop удобен тем, что все элементы настройки, согласования и индикации можно разместить в одном герметичном корпусе. Саму антенну от привередливых соседей всегда можно спрятать одним из доступных способов, отличный пример на фото ниже.

73! Сушко С.А.

(ex.UA9LBG)                                                                  

Источник: http://www.qrz.ru/schemes/contribute/antenns/balkony_magnetic_loop.html

Магнитная антенна

Всех приветствую!

Решил ,что будет интересно почитать и посмотреть.

У многих радиолюбителей остро встает вопрос об установки антенны. Многие не имеют доступа на крышу, или даже нет возможности выкинуть кусок провода из окна, например, на дерево.Что делать если вас не покидает идея выхода в эфир?

Есть вариант, это антенна «магнитная рамка».

Собственно, о ней и хочу рассказать. Все,что пишу,- только личный опыт, и если кто-то со мной не согласен, просьба не пинать, а дополнить мою статью.

Зимой, когда на улице холодно, а руки так и чешутся, что-то делать,тщательно изучил литературу на эти темы — здесь, здесь, здесь, здесь, здесь, здесь, здесь и здесь.

Изучив материал, решил попробовать построить.Видео работы в эфире на магнитную рамку не снимал, но посмотреть можно, как на подобную антенну работают, тут. Свои же впечатления опишу ниже.

Итак, все началось с конструкции «тяп-ляп» (на скорую руку).

Взял алюминиевый провод диаметром 4мм, сделал что-то типа круга диаметром 60см, поставил в разрез переменную емкость, сделал из коаксиального кабеля петлю связи и подключил к трансиверу.

Изменяя емкость переменного конденсатора, убедился, что антенна имеет резонанс и даже принимает что-то кроме шумов. Все это «чудо» было хаотично подвешено на окне. «Ух ты!», — обрадовался я и решил все переделать, так сказать, как надо!

Долго не раздумывал, взял кусок кабеля от сотовой компании с оплеткой диаметром 17мм,очистил от оболочки, так как оболочка вносит значительные затухания, согнул круг диаметром 40см и подключил переменную емкость (емкость должна быть без трущихся контактов типа бабочка а еще лучше – переменная емкость в стеклянной вакуумной оболочке). Решил запитать антенну петлей связи из кабеля питания (в дальнейшем перепробовал еще несколько методов питания — все работало как и прежде).

Для более точной настройки резонанса поставил верньер, как на фото выше.

Данная антенна была опробована, как на прием, так и на передачу! В виду того, что зазор конденсатора был 0.5мм, мощность передатчика не превышала 10 ватт.

Емкость позволяла перестраивать антенну в пределах от 10МГц до 52МГц. Полоса пропускания по КСВ=1.5 составляла 7-10 кГц.

Читайте также:  Splan

Антенна находилась на окне 4 этажа и смотрела на юго-запад.На диапазоне 30м антенна работала но (это не серьезно), а, вот, начиная с диапазона 20м, связи на 10 ватт удавались в SSB с Украиной и ближним зарубежьем (дальше не пробовал).

Проводил связи в CW с Европой на диапазоне 17м и 15м вполне уверенно. В момент моих испытаний не было прохождеиня на диапазоне 10м, поэтому попробовал работу антенны на си-би диаппазоне. Вывод — местные связи проводить вполне можно.

Убедившись, что я на верном пути, изготовил рамку бОльшего диаметра – 1 метр, а также взял вакуумный конденсатор, поэтому конструкция получилась на бОльшую мощность. Материал полотна оставил прежним.

Полотно антенны разместил на пластиковых ПВХ-трубах на клипсах (продаются в любом магазине сантехники). Трубки стыковал без каких-либо специальных инструментов: равномерно нагревал над газом и вставлял в крестовину.

Петля связи выполнена из кабеля RG-8X.

вот так получилось в целом:

Пробные замеры показали, что самая нижняя резонансная частота — 5 МГц (обусловлено емкостью конденсатора), а самой верхней резонансной частотой — 30 МГц (обусловлено собственной емкостью рамки). Антенна была установлена на окне 4 этажа.

Сравнения проводились с установленным на крыше вертикалом (штырь HY-GAIN AV-640, антенна установлена на высоте 8м от крыши).

Было замечено, что магнитная рамка имеет ярко выраженную направленность. Магнитная рамка то выигрывала, то проигрывала на прием у штыря на крыше. Причем, показатели почти на все диапазонах от 40м до 10м были похожие.

На передачу ни один из корреспондентов не сообщил о выигрыше рамки: либо она проигрывала, либо мне отвечали одинаково, как на штырь, так и на рамку (переключения производились мгновенные — коммутатором).

У рамки сказывалась острая диаграмма направленности: если корреспондент гремел на вертикал, а рамка была к нему боком, то и слышно было намного слабее.

Далее эксперимент проводил чисто на 5 ватт.Связи с Украиной на диапазоне 40м удавались в 90% случаев. На 20м Украина отвечала всегда (это в SSB),aCW связи с Европой тоже не редкость.

На мой взгляд, самым удачным оказался диаппазон 17м – отвечали не только корреспонденты из Европпы, но и Япония (но не всегда), хотя я слышал их хорошо.На диапазоне 15м работал мало, но отвечали (но не так охотно, как на 20м и 17м).

Пробовал работать на диапазоне 12м, но попадал, когда прохождения не было, а станций было мало (но несколько европейцев ответили).На диапазоне 10м антенна тоже настраивается, но работать там не получилось, т.к. не было прохождения.

Как написал выше, антенна опробована на 27МГц с местными корреспондентами.

Полосу пропускания точно не замерял, но в среднем по диапазонам ширина составила 5-12 киГц по уровню КСВ=1,5. Меня это не напрягало!!! КСВ на резонансной частоте был 1 или 1,1 (замеры проводил прибором MFJ -259B).

В продолжения этой темы есть еще антенна на которую стоит обратить внимание на это, это и это.

Думаю,что эта тема воодушевит тех, кто не имеет доступа на крышу.

73 DE RU3T!

Источник: https://r3t.ru/ru/ru3t/52-magnetic-loop

Магнитные антенны: мифы и реальность

Добрый день! В данной статье я хочу разобрать варианты установок магнитных антенн на примере ML145. В качестве металлической поверхности будет использоваться небольшой металлический стол размерами приблизительно 1 квадратный метр.

Этим будет обеспечено то минимально необходимое, что рекомендуется большинством производителей антенн для её работы. Антенна будет ML145 с немного коротким хлыстом и регулировать антенну я не буду, то есть замеры будут проводиться при одной длине штыря. Настроена антенна в районе 27.

5 МГц, но для исследования это не имеет особого значения. При анализе мифов буду пользоваться антенным анализатором АА-330. Все выводы буду строить исходя из реальных графиков КСВ. Антенна у меня хоть и не новая, но полностью перебрана и проверена. Итак, поехали.

Для сначала немного теории о том, как работает любая магнитная антенна. Если совсем коротенько, то любая антенна не может работать без второй половинки — заземления. И чем лучше эта сеть заземления (тут не надо путать с электрическим заземлением, у нас радиоэлектрическое), тем лучше работает наша антенна.

Это потому, что магнитное поле возникает между вибратором и заземлением. Поэтому, чем длиннее излучатель и больше сеть заземления, тем и излучение больше. Дальше. У нас магнитная антенна и, следовательно, связь с этой самой землей емкостная.

Как известно, любой конденсатор пропускает переменный ток и, поэтому, можно считать, что по переменному току (радиочастоты) мы имеем контакт с землей (кузов машины, иная металлическая поверхность). Зная размеры нашего конденсатора можно легко измерить его емкость. Вот, можно посчитать самостоятельно:

https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%BA%D0%BE%D0%BD%D0%B4%D0%B5%D0%BD%D1%81%D0%B0%D1%82%D0%BE%D1%80

Получается примерно 150 пФ. Зная емкость, можно посчитать сопротивление конденсатора на частоте 27 МГц. Реактивное сопротивление ёмкости XC=1/(2пfC). Исходя из этого мы получаем порядка 30 Ом. Теперь разрушится один из самых главных мифов настройщиков. При работе антенны у нее складываются R излучения и R всех потерь. Теперь, если у нас антенна имеет 50 Ом и потери 30 Ом, то КСВ будет (50+30)/50=1.6. Если КСВ у Вас близко к 1.0, то, наверное, Ваша антенна имеет далеко не 50 Ом и поэтому КСВ близко к единице. (20+30)/50=1.0. Но КПД Вашей системы в первом случае будет 50/(50+30)=62%, а во втором — 20/(20+30)=40%, то есть в первом случае антенна будет излучать в 1.5 раза больше. Вот тебе и КСВ 1.0 и 1.6. Почему так, а не иначе? Всё просто. Величина R потерь неизменна и меньше стать не может, а вот вырасти — запросто. Поэтому КСВ 1.0 говорит о том, что что-то не так в Вашей антенне. А вот КСВ 1.5 — это то, что и должно быть на самом деле. Перейдём, наконец, к самому эксперименту. Всеми производителями рекомендуется устанавливать антенну в геометрический центр крыши автомобиля. Это и проделаем.

Вот и график КСВ:Небольшие пояснения. Красный график — это КСВ (делить вертикальную шкалу на 10). Зеленый график — это активное сопротивление антенны, синий график — это потери. Напомню, что мы как раз посчитали наши потери на магните около 30 Ом и, судя по графику, это именно так.

Возьмем за настройку антенны наш минимум — 27.000 Мгц, как основную для работы на этой частоте, и сравним с тем, что получим при основных ошибках установки антенны. И попробуем разобраться, что и почему именно так.

1) Очень часто антенна в центре крыши совсем не хочет настраиваться в минимум КСВ, но прекрасно настраивается на краю крыши. Объясняется это очень просто. Для антенны всегда лучше один более длинный противовес, нежели несколько коротких.

Многие воскликнут: «А как же диаграмма направленности? Будет перекос!» Перекос будет, но на слух его уловить будет очень сложно. Напомню, что один кубик на S-метре — это 6 ДБ по мощности. А 6 ДБ — это 4-х кратная разница. В реальном эфире трудно уловить разницу между 7 и 8 кубиками.

Читайте также:  Первые цифровые оптические ультрафиолетовые датчики от silicon labs

А 6 ДБ получить таким перекосом я считаю нереальным. Ну, если не так, то растреляйте.Смоделированный в MMAN'е вертикал с одним противовесом имел перекос диаграммы 3-4 ДБ. Вот и график КСВ:

Минимум КСВ стал на 26.600 Мгц. Резонансная частота антенны понижается при улучшении «земли». Очень часто бывает так, что при установке антенны в центр крыши не хватает длины штыря для настройки в районе 26.500 Мгц. А как только поставишь скраю, на угол, то всё становиться нормально. Бывали случаи, что штырь приходилось резать на 20 см. В такой ситуации лучше не укорачивать полотно антенны, а убрать виток/полвитка из удлинняющей катушки в основании антенны и, тем самым, сохранить КПД антенны. 2) Одной из частых ошибок при установке антенны является кусок толстой, как правило, джинсовой ткани под магнит. Некоторые даже предлагают свою модернизацию по замене резиновой галоши на джинсу… При такой установке минимум КСВ смещается в более высокочастотную область. В моем случае КСВ сместилось на 200Кгц. Но на этом все бяки такого использования не заканчиваются. Вот график КСВ с тряпочкой и в центре:НО!!! Страна у нас достаточно дождливая и поэтому тряпочка намокнет:КСВ не изменилось. Всё, вроде бы, хорошо. Но постепенно Ваша тряпочка будет впитывать различные соли, что особенно актуально в зимний период времени. И, как следствие, через непродолжительное время коррозия сделает свое гиблое дело. Тем более что материалы, используемые в антеннах, зачастую несовместимы и при появлении влаги просто начинают разрушаться. Постепенно вода будет попадать под магнит (вода всегда найдет дырочку) и прямиком в кабель. Ну, а тот, в свою очередь, превратится в эквивалент нагрузки, а не в антенну!!! 3) Со временем резиновая галоша под магнитом выходит из строя и её просто выбрасывают. Галоша входит в состав обкладок конденсатора и, в отсутствии галоши, наш конденсатор изменяет емкость. Резонанс становиться очень острым и тут уже сложно угадать, так как вместо галоши будет краска или подстилающая поверхность вашей машины а свойства их неизвестны.4) Самое плохое, что может произойти с вашей антенной — это отсутствие фольги или электрического контакта с оплеткой кабеля. Проверяется просто. Я беру и включаю мультиметр на прозвонку диодов и касаюсь одним щупом юбочки антенного разьема, а другим — к фольге, немного прижав к оной. В идеале должно показать падение 0 вольт. Считаю падение до 0.1 вольта приемлемым. Если показания иные, то разбираем, чистим магнит, проходим мелкой шкуркой. Вот график без фольги и с тряпочкой.Думаю и так понятно. И это даже при условии, что в середине пятачок играет роль. В реальной жизни у него контакта тоже нет и картина будет еще плачевней.

5) А теперь посмотрим, что произойдет, если к условиям выше добавить водичку. Минимум КСВ сместился на 600 Кгц:Немного другой вариант, когда фольга еще работает, но галоша вышла из строя и вы подложили тряпочку:

Это были варианты установки антенны в центр. Теперь ознакомимся с результатами установки на угол.

Без галоши:
КСВ немного понизилось по частоте. Тут изменилась емкость нашего конденсатора за счет того что уменьшилось расстояние между обкладками и тем самым увеличилась емкость. Но тут возможен обратный эффект, в зависимости от свойств покрытия железки. Теперь подложим тряпочку:

Источник: http://www.ark33.ru/articles/magnitnye_antenny_mify_i_realnost

Магнитная антенна

Магнитная антенна – наиболее оптимальный вариант в том случае, когда нет возможности пользоваться наружной антенной. Довольно неплохо зарекомендовали себя комнатные самодельные петлевые антенны для волн, диапазоном 10…80 метров.

В нашем случае возникланеобходимость изготовить в домашних условиях антенну, у которой диапазон волн равен 160 метрам.

Сразу же возник вопрос, какой материал при этом лучше всего использовать? Вначале рассматривался вариант изготовления витков из медной трубки диаметром 18 мм и размером каждого из четырех витков 17 см. В этом случае можно было бы использовать конденсатор, емкостью 400 пФ.

Однако, этот вариант показался несколько дорогим и было принято решение использовать более дешевые, но не менее эффективные материалы. Основным конструктивным элементом является коаксиальный кабель большой толщины.

Материалы для магнитной антенны

Для изготовления простой магнитной антенны понадобились следующие материалы: коаксиальный кабель RG-213 – 12 метров, кабель RG-58 – 4 метра, деревянные планки, размером 20х40 мм – 4 штуки, один конденсатор, емкостью 100 пФ, имеющий расстояние между пластинами 2-3 мм и один коаксиальный разъем.

Порядок сборки магнитной антенны

Сборка конструкции антенны из вышеперечисленных элементов не представляет особой сложности. На кресте из деревянных планок крепятся поперечные дощечки, в которых пропиливаются канавки.

Крест держит на себе резонансную петлю, представляющую собой четыре витка кабеля RG-213. В планках креста, находящихся сверху, по краям просверлены по два отверстия для фиксации концов кабеля, между каждым из них пропилены три канавки. Боковая сторона кабеля равна 67 см.

Размер самого креста значения не имеет, самое главное точно выдержать размеры провода.

Из экранной оболочки провода образуется рамка петли, при этом, жила имеет разрыв на расстоянии 3,5 метра от любого его конца.

В конечном итоге получается емкость около 353 пФ, параллельно подключаемая к конденсатору переменной емкости. Этот конденсатор, в свою очередь подключается к двум концам коаксиального кабеля RG-213.

Все соединения и подключения выполняются с помощью толстого медного провода, площадью сечения от 10мм2

Катушка связи, состоит из четырех витков кабеля RG-58, расположенных на расстоянии 8 см между собой. В целях удобства, она также крепится на деревянных планках. Боковая сторона кабеля RG-58 составляет 20 см. Два конца оплетки соединяются с входным коаксиальным разъемом.

Недостатки

Единственным недостатком магнитной антенны является необходимость подстройки конденсатора переменной емкости, во время перестройки диапазонов. Существующий уровень помех можно значительно уменьшить с помощью изменения местоположения антенны с одновременным ее поворотом. Погодные условия не влияют на её размещение.

Категорически запрещается прикасаться к антенне, когда она работает в режиме передачи, так как при этом можно получить сильные ожоги.

Источник: https://electric-220.ru/news/magnitnaja_antenna/2012-09-22-188

Télécharger la vidéo, regarder gratuitement

8:35

Will Smith Bungee Jumps Out of a Helicopter!

Vues 8 975 805 88%

2:21

New Pokémon Discovered: Introducing Meltan!

Vues 2 179 322 93%

14:34

Vues 400 619 99%

2:49

BTS and Jimmy Fallon Do the Fortnite Dance Challenge

Vues 1 734 240 99%

8:59

Hasan Minhaj's Groupon Proposal Fail

Vues 397 794 98%

7:33

Archery Trick Shots 2 | Dude Perfect

Vues 6 446 928 99%

11:22

Billie Eilish Reacts To Teens React To Billie Eilish

Vues 1 839 098 99%

13:15

Steelers vs. Buccaneers Week 3 Highlights | NFL 2018

Vues 1 606 619 94%

7:05

Why colleges tolerate fraternities

Vues 953 084 78%

10:16

$10 QUEER EYE TRANSFORMATION (w/ Jon Cozart)

Vues 610 968 93%

20:25

Game Theory: How PewDiePie LOST YouTube to T Series

Vues 2 184 977 91%

14:27

Vues 4 032 012 96%

7:22

DIY 7 INGREDIENT SANDWICH STADIUM

Источник: https://frvid.com/video/magnetic-loop-%D0%BC%D0%B0%D0%B3%D0%BD%D0%B8%D1%82%D0%BD%D0%B0%D1%8F-%D0%BF%D0%B5%D1%82%D0%BB%D0%B5%D0%B2%D0%B0%D1%8F-%D0%B0%D0%BD%D1%82%D0%B5%D0%BD%D0%BD%D0%B0-L8rFdRQdWiA.html

Ссылка на основную публикацию