Простой терморегулятор

Простой терморегулятор своими руками

Простой терморегулятор

Иногда дома приходиться иметь с бытовым инкубатором или сушкой для овощей. Зачастую дешевая техника такого рода имеет термореле очень плохого качества, контакты которого быстро выгорают или оно не отличаются хорошей плавностью регулировки. И так, сегодня у нас на повестке дня простой терморегулятор своими руками, мы соберем схему и продемонстрируем его работу.

Простой терморегулятор своими руками – схема

Питание схемы терморегулятора осуществляется с помощью бестрансформаторного блока питания, состоит он из гасящего конденсатора С1 и диодного моста D1. Параллельно мосту включен стабилитрон ZD1, который стабилизирует напряжение в пределах 14В. При желании, можно еще добавить и стабилизатор на 12В.

Основу схемы составляет управляемый стабилитрон TL431. Управление TL431 производиться с помощью делителя напряжения R4, R5 и R6. Датчиком температуры воздуха является NTC терморезистор R4 номиналом 10кОм. При повышении температуры он уменьшает свое сопротивление.

При напряжении более 2,5В на контакте управления TL431, эта микросхема открывается, далее срабатывает  реле, замыкая контакты и включая нагрузку.

При повышении температуры датчика R4, его сопротивление начнет падать. Когда напряжение на контакте управления TL431 станет меньше 2,5В микросхема закроется и отключит реле с нагрузкой.

Подбором резисторов R5 и R6 необходимо добиться необходимого диапазона регулировки температуры. Номинал R5 – отвечает за максимальную температуру, а R6 – за минимальную.

Для устранения эффекта дребезжания контактов реле при включении или отключении параллельно выводам А1 и А2 контактов реле необходимо подключить конденсатор С4. Реле К1 необходимо использовать с как можно меньшим током удержания.

При использовании б/у-шных TL431 и  NTC терморезисторов важно проверить их работоспособность. Для этого желательно ознакомиться с материалами на тему: как проверить TL431 и как проверить термистор.

Вот такой простой терморегулятор своими руками у нас получился.

Фото обратной стороны платы.

Такое устройство сделанное своими руками смело можно использовать, как терморегулятор для инкубатора или сушки. При использовании герметичного терморезистора (датчика температуры), сфера применения его уже расширяется, он неплохо будет играть роль, как терморегулятор аквариума.

Простой терморегулятор своими руками в действии

Источник: http://diodnik.com/prostoj-termoregulyator-svoimi-rukami/

Простой терморегулятор на регулируемом стабилитроне TL431

Автор: admin Vladimir | Опубликовано 23-03-2015

Рубрика: Терморегуляторы

Метки: TL431, терморегулятор

style=”display:block; text-align:center;” data-ad-layout=”in-article” data-ad-format=”fluid” data-ad-client=”ca-pub-2167793600289487″

data-ad-slot=”4187947634″>

Привет всем любителям электронных самоделок. Недавно я по быстрому смастерил электронный терморегулятор своими руками, схема устройства очень проста. В качестве исполнительного устройства используется электромагнитное реле с мощными контактами, которые могут выдержать ток до 30 ампер. Поэтому рассматриваемая самоделка может использоваться для разных бытовых нужд.

По нижеприведенной схеме, терморегулятор можно использовать, например, для аквариума или для хранения овощей. Кому то он может пригодиться при использовании совместно с электрическим котлом, а кто-то его может приспособить и для холодильника.

Электронный терморегулятор своими руками, схема устройства

Как я уже говорил, схема очень проста, содержит минимум недорогих и распространённых радиодеталей. Обычно терморегуляторы строятся на микросхеме компараторе. Из-за этого устройство усложняется. Данная самоделка построена на регулируемом стабилитроне TL431:

Теперь поговорим подробнее о тех деталях, которые я использовал.

Детали устройства:

  • Трансформатор понижающий на 12 вольт
  • Диоды; IN4007, или другие с похожими характеристиками 6 шт.
  • Конденсаторы электролитические; 1000 мк, 2000 мк, 47 мк
  • Микросхема стабилизатор; 7805 или другая на 5 вольт
  • Транзистор; КТ 814А, или другой p-n-p c током коллектора не меньше 0,3 А
  • Регулируемый стабилитрон; TL431 или советский КР142ЕН19А
  • Резисторы; 4,7 Ком, 160 Ком, 150 Ом, 910 Ом
  • Резистор переменный; 150 Ком
  • Терморезистор в качестве датчика; около 50 Ком с отрицательным ТКС
  • Светодиод; любой с наименьшим током потребления
  • Реле электромагнитное; любое на 12 вольт с током потребления 100 мА или меньше
  • Кнопка или тумблер; для ручного управления

Как сделать терморегулятор своими руками

В качестве корпуса был использован сгоревший электронный счётчик Гранит-1. Плата, на которой расположились все основные радиодетали также от счетчика. Внутри корпуса поместились трансформатор блока питания и электромагнитное реле:

В качестве реле я решил использовать автомобильное, которое можно приобрести в любом автомагазине. Рабочий ток катушки приблизительно 100 миллиампер:

Так как регулируемый стабилитрон маломощный, его максимальный ток не превышает 100 миллиампер, непосредственно включить реле в цепь стабилитрона не получится. Поэтому пришлось использовать более мощный транзистор КТ814.

Конечно, схему можно упростить, если применить реле, у которого ток через катушку будет меньше 100 миллиампер, например SRD-12VDC-SL-C или SRA-12VDC-AL. Такие реле можно включить непосредственно в цепь катода стабилитрона.

Немного расскажу о трансформаторе. В качестве, которого я решил использовать нестандартный. У меня завалялась катушка напряжения от старого индукционного счетчика электрической энергии:

Как видно на фотографии там имеется свободное место для вторичной обмотки, я решил попробовать намотать её и посмотреть что получится. Конечно площадь поперечного сечение сердечника у него маленькая, соответственно и мощность небольшая.

Но для данного регулятора температуры этого трансформатора достаточно. По расчётам у меня получилось 45 витков на 1 вольт. Для получения 12 вольт на выходе нужно намотать 540 витков. Чтобы уместить их я использовал провод диаметром 0,4 миллиметра.

Конечно, можно использовать готовый блок питания с выходным напряжением 12 вольт или адаптер.

style=”display:block; text-align:center;” data-ad-layout=”in-article” data-ad-format=”fluid” data-ad-client=”ca-pub-2167793600289487″

data-ad-slot=”7590515336″>

Как вы заметили, в схеме стоит стабилизатор 7805 со стабилизированным выходным напряжением 5 вольт, который питает управляющий вывод стабилитрона. Благодаря этому регулятор температуры получился со стабильными характеристиками, которые не будут изменяться от изменения питающего напряжения.

В качестве датчика я использовал терморезистор, у которого при комнатной температуре сопротивление 50 Ком. При нагревании сопротивление данного резистора уменьшается:

Чтобы защитить его от механических воздействий я применил термоусаживающие трубочки:

Место для переменного резистора R1 нашлось с правой стороны терморегулятора. Так как ось резистора очень короткая пришлось напаять на неё флажок, за который удобно поворачивать. С левой стороны я поместил тумблер ручного управления. При помощи него легко проконтролировать рабочее состояние устройства, при этом, не изменяя выставленную температуру:

Несмотря на то, что клемник бывшего электросчетчика очень громоздкий, убирать его из корпуса я не стал. В него чётко входит вилка, от какого либо прибора, например электрообогревателя. Убрав перемычку (на фотографии желтая справа) и включив вместо перемычки  амперметр можно померить силу тока, отдаваемую в нагрузку:

Теперь осталось проградуировать терморегулятор. Для этого нам понадобится цифровой термометр ТМ-902С. Нужно оба датчика устройства соединить вместе при помощи изоленты:

Термометром произвести замер температуры различных предметов горячих, холодных. При помощи маркера нанести шкалу и разметку на терморегуляторе, момент включения реле. У меня получилось от 8 до 60 градусов Цельсия. Если кому-то нужно сдвинуть рабочую температуру в ту или иную сторону, это легко сделать, изменив номиналы резисторов R1, R2, R3:

Вот мы и сделали электронный терморегулятор своими руками. Внешне выглядит вот так:

Чтобы не было видно внутренности устройства, через прозрачную крышку, я ее закрыл скотчем, оставив отверстие под светодиод HL1. Некоторые радиолюбители, кто решил повторить эту схему, жалуются на то, что реле включается, не очень чётко, как бы дребезжит.

Я ничего этого не заметил, реле включается и отключается очень чётко. Даже при небольшом изменении температуры, никакого дребезга не происходит. Если все-таки он возникнет нужно подобрать более точно конденсатор C3 и резистор R5 в цепи базы транзистора КТ814.

Собранный терморегулятор по данной схеме включает нагрузку при понижении температуры. Если кому то наоборот понадобится включать нагрузку при повышении температуры, то нужно поменять местами датчик R2 с резисторами R1, R3.

Источник: http://radiobezdna.ru/termoregulyatory/prostoj-termoregulyator-na-reguliruemom-stabilitrone-tl431.html

Как самостоятельно сделать терморегулятор?

Перед монтажом аппарата, лучше поближе ознакомиться с принципом его работы. Российский рынок предлагает внушительное количество моделей от разных компаний практически все они функционируют по одной и той же схеме, независимо от своего назначения.

По этому плану, изготавливаются устройства для поддержания атмосферы в аквариуме, инкубаторе, пола и т. д. Он позволяет поддерживать тепловой режим с точностью до ±0,5 0С.

Аппарат включает в себя сильфон для жидкого состава, золотник, шток и регулируемый клапан.

схема простого терморегуляторасхема терморегулятора для инкубатора

Инструкция по сборке

Необходимые материалы, детали и инструменты:

  • лупа;
  • плоскогубцы;
  • паяльник;
  • изолирующая лента;
  • несколько отвёрток;
  • провода медные;
  • полупроводники;
  • стандартные красные светодиоды;
  • плата;
  • текстолит форгированный;
  • лампы;
  • стабилитрон;
  • терморезистор;
  • тиристор.
  • дисплей и генератор внутреннего типа мощностью в 4Мгу (для создания цифровых устройств на микроконстроллере);

Пошаговая инструкция:

  1. Прежде всего, необходима соответствующая микросхема, к примеру, К561ЛА7, CD4011
  2. Плату необходимо подготовить к прокладыванию путей.
  3. К подобным схемам неплохо подходят терморезисторы с мощностью 1 kOm до 15 kOm, и он обязан находиться внутри самого объекта.
  4. Нагревающий прибор обязан быть включен в цепь резистора, из-за того, что перемена мощности, напрямую зависящая от снижения градусов, оказывает влияние на транзисторы.
  5. Впоследствии, такой механизм будет согревать систему до того момента, пока мощность внутри термодатчика не возвратится к первоначальному значению.
  6. Датчики регулятора подобного плана нуждаются в настройке. Во время значительных перепадов в окружающей атмосфере, необходимо контролировать нагрев внутри объекта.

Сборка цифрового прибора:

  1. Микроконтроллер следует соединить вместе с датчиком температуры. Он должен иметь выходы портов, которые необходимы для установки стандартных светодиодов, работающих совместно с генератором.
  2. После подключения устройства в сеть с напряжением в 220V, светодиоды будут автоматически включаться. Это будет свидетельством о том, что прибор находится в рабочем состоянии.
  3. В конструкции микроконтроллера находиться память. Если настройки прибора сбиваются, память автоматически их возвращает в изначально оговоренные параметры.

Собирая конструкцию, нельзя забывать о техники безопасности. Во время применения термодатчика в водянистой или влажной атмосфере, его выводы обязаны герметично изолироваться. Значение терморезистора R5 может обозначаться от 10 до 51 кОм. При этом, сопротивление резистора R5 обязано иметь аналогичное значение.

Взамен обозначенных микросхемы К140УД6 можно использовать К140УД7, К140УД8, К140УД12, К153УД2. В роли стабилитрона VD1 можно внедрять любой инструмент с мощностью стабилизации 11…13 V.

В случае, когда нагреватель превышает напряжение в 100 ВТ, тогда диоды VD3-VD6 обязаны превосходить по мощности (к примеру, КД246 или их аналоги, с обратной мощностью минимум в 400В), при этом тринистор необходимо монтировать на маленькие радиаторы.

Значение FU1 также следует сделать более большим. Управление аппаратом сводится к подбору резистора R2, R6 с целью безопасного закрывания и открывания тринистора.

Устройство

схема механического терморегулятора

Температура всегда остаётся на одном уровне благодаря включению и выключению нагревательного прибора (ТЭН). Подобный принцип управления используется на всех незамысловатых конструкциях.

Читайте также:  Программатор полива

Может показаться, что схема терморегулятора очень проста, но как только дело доходит для сбора прибора, появляется масса вопросов, связанных с технической частью.

Устройство терморегулятора включает в себя:

  1. Температурный датчик — создаётся на основе компаратора DD1.
  2. Ключевой схемой терморегулятора является компаратор DA1, изготовленный на операционном усилителе.
  3. Нужный температурный показатель выставляется резистором R2, который присоединяется к инвертирующему входу 2 платы DA1.
  4. В роли термодатчика выступает терморезистор R5 (вида ММТ-4), присоединённый ко входу 3- го устройства.
  5. Схема конструкции не имеет гальванической развязки с сетью, и берёт энергию от параметрического стабилизатора на деталях R10, VD1.
  6. В роли блока питания для аппарата можно взять дешёвый сетевой адаптер. Во время его подключения нужно руководствоваться правилами и требованиями к новой проводке, так как условия помещения могут быть электроопасны.

Незначительный запас конденсатора C1 способствует постепенному нарастанию мощности, что приводит к плавному (не более 2 секунд) включению электрических ламп.

Затраты при самостоятельной сборке

Сегодня любой подобный гаджет можно приобрести в магазине. Диапазон цен довольно велик, а стоимость многих моделей свыше 1000 рублей. В плане финансовых вложений, это является довольно не выгодным, поэтому намного дешевле сделать его своими руками.

Затраты при самостоятельной сборке ниже в несколько раз, а именно:

  • плата К561ЛА7 обойдутся не более 50 рублей;
  • терморезистор мощностью в 1 kOm до 15 kOm — около 5 рублей;
  • светодиод (2 шт) — 10 руб.;
  • стабилитрон — 50 руб;
  • тиристор — 20 руб;
  • дисплей — 200 руб (для создания цифровых устройств на микроконстроллере);

На покупку ламп, фольги и других материалов уйдёт не более 100 рублей. Выходит, затраты на самостоятельную сборку придётся потратить не более 430 рублей и немного личного времени. Владелец может полностью адаптировать прибор для своих нужд, использую для этого незамысловатую схему.

Принцип действия

Схема терморегулятора многофункциональна. Отталкиваясь от её основания, можно создать любой адаптированный аппарат, который будет максимально удобным и простым. Мощность питания выбирается в соответствии с имеющимся напряжением катушки реле.

В принципе работы регулировочного прибора лежит особенность газов и жидкостей сжиматься или расширяться во время остывания или нагревания. Поэтому в основе действия водяных и газовых комплектаций положена одна и та же суть.

Между собой они отличаются только в быстроте реакции на перемену температуры в доме.

Принцип действия аппарата основан на следующих этапах:

  1. В результате изменения температуры обогреваемого объекта, происходит перемена работы теплоносителя в отопительном механизме.
  2. Вместе с этим, это заставляет сифон увеличивать или уменьшать свои габариты.
  3. После этого, происходит смещение золотника, который балансирует впуск теплоносителя.
  4. Внутренняя часть сифона заполнена газом, способствуя равномерной регулировке температуры. Встроенный термодатчик следит за внешней температурой.
  5. Каждому значению уровня тепла приравнивается конкретное значение силы давления рабочей атмосферы внутри сифона. Недостающее давление возмещает при помощи пружины, которая контролирует работу штока.
  6. В результате повышения градусов конус клапана начинает передвигаться в сторону закрытия до того момента, пока уровень рабочего давления в сифоне не станет уравновешенным благодаря усилиям пружины.
  7. В случае понижения градусов, работа пружины носит обратный характер.

Результат работы зависит от вида и функциональности регулирующего клапана, находящегося в прямом подчинении от контура обогрева и диаметра подводящей трубы.

Виды

Компании-изготовители предлагают клиентам 3 вида терморегуляторов, каждый из которых имеет различные внутренние сигналы. Они контролируют процесс нагревания теплоносителя и выравнивают температурный порядок.

Способы расширения сигналов:

  1. Непосредственно от теплоносителя. Считается недостаточно эффективным, поэтому используется нечасто. Его работа основана на погружном датчике или подобным ему механизмам. В сравнении с другими видами, он относится к числу самых дорогостоящих.
  2. Внутренних воздушных волн. Является наиболее надёжным и экономичным вариантом. Он балансирует воздух во время его перепадов, а не уровень нагрева воды. Легко монтируется в квартире. Связывается с отопительными коммуникациями при помощи кабеля, по которому передаётся сигнал. Терморегуляторы этого вида непрерывно дополняются новыми функциями и достаточно удобны в использовании.
  3. Внешних воздушных волн. Высокая эффективность достигается за счёт уличного датчика, давая незамедлительный ответ на любые погодные изменения. Знаки в виде сигнала, посылающие диафрагмой, дают системе команду на открытие или закрывание трубы с отеплительным прибором.

Помимо этого, аппараты могут быть электрическими и электронными.

По схеме и варианту получения сигнала, устройства разделяются на полуавтоматические и автоматические, которые, в свою очередь могут:

  1. Контролировать уровень нагрева радиатора и ветки магистрали.
  2. Следить за мощностью котла.

Обзор терморегуляторов на рынке

Терморегулятор IWarm 710

К числу наиболее популярных моделей на сегодняшний день относятся E 51.716 и IWarm 710. Их негорючий, выполненный из пластполимера корпус имеет небольшие размеры, но большое число полезных задач и встроенный аккумулятор. Имеет довольно большой встроенный дисплей, который отображает соответствующие температурные характеристики.

Стоимость этих моделей представлена в пределах 2700 тыс. рублей.

К особенностям E 51.716 можно отнести то, что он имеет кабель длиной в 3 м, способен балансировать температуру одновременно от самого пола, и то, что прибор может встраиваться в стену в любом положении.

Единственное о чём следует подумать перед его монтажом, как именно он будет располагаться, чтобы кнопки переключения не закрывались посторонними предметами, и были легко доступны.

К недостаткам терморегулятора относится незначительных набор функций, однако аналогичные приборы выполняют их довольно легко. В эксплуатации это может вызвать дискомфорт. Также, в памяти E 51.716 и IWarm 710 нет функции автоматического нагревания, поэтому это придётся делать самостоятельно.

Электронные регуляторы с механическим принципом работы:

  1. Регулирование работы основано на автоматике, и осуществляются при помощи кнопок, расположенных на панели.
  2. Включают в себя дисплей, на котором обозначается прежние и заданные градусы.
  3. Есть возможность настраивать прибор самостоятельно: число, время работы, цикличность подогрева с сохранением конкретного режима, также можно указывать степень нагрева.
  4. В сравнении с механическими аналогами, температура электрических моделей легко регулируется приблизительно на 0,5 значений.

На покупку такой модели уйдёт не более 4 тысяч.

Электронные комплектации:

  1. Самостоятельно управляют температурой.
  2. Всего один прибор может контролировать атмосферу на несколько дней вперёд и отдельно для каждой комнаты.
  3. Позволяют устанавливать режим «отсутствие», и не затрачивать на это лишние средства, если никого нет дома.
  4. Система автоматически анализирует качество работы устройства в каждой комнате. Владельцу не придётся догадываться о возможных неисправностях в работе, так как все недочёты система выдаст самостоятельно.
  5. Производители дорогих моделей предусмотрели возможность управления режимами, находясь далеко от дома. Регулировка осуществляется при помощи встроенного Wi-Fi роутера.

Стоимость подобных аппаратов зависит от набора встроенных функций, поэтому варьируется от 6000 до 10000 тыс. рублей и выше.

Источник: http://slarkenergy.ru/oborudovanie/schetchik/termoregulyatory-svoimi-rukami.html

Простая и надёжная схема терморегулятора для инкубатора | Мастер Винтик. Всё своими руками!

С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.

Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.

Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.

Простая, потому что кучу транзисторов заменила одна микросхема.

Надёжная, потому что в схеме используются некоторые моменты:

  1. Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
  2. Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
  3. При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
  4. Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.

На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.

На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.

Третий элемент DD1.3 — сумматор.

Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.

Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.

Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.

Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.

Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт.

Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.

Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.

Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.

Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.

Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать  R3 можно по таблице ниже.

Терморезистор R3
1 kОм 2,7 кОм
2 кОм 4,3 кОм
3,6 кОм 7,5 кОм
10 кОм 10 кОм
15 кОм 15 кОм

Следует учитывать: чем больше сопротивление терморезистора или больше сопротивление R1 — R5, тем меньше диапазон регулирования переменными резисторами.

Можно использовать терморезисторы как с отрицательным, так и с положительным ТКС. С отрицательным ТКС, как сейчас на схеме, а с положительным терморезистор следует установить в низ делителя (например, в разрыв между R3 и R4).

Схема терморегулятора построена на логической микросхеме, а между уровнями логической 0 и 1 есть неопределенное состояние (см. рис), поэтому в данной схеме есть определенный гистерезис (запаздывание между включением и отключением).

Читайте также:  Обработка нажатия пользовательской кнопки, используя внешние прерывания

Гистерезис очень сильно зависит от типа применяемого терморезистора.

Если Вам ненужно быстрое реагирование схемы на температуру, используйте терморезистор в металлическом корпусе. Типа MMT-4. Гистерезис в данном случае 2,5 — 3 гр.

Если нужна быстрая реакция схемы на температуру, то используйте терморезисторы в неметаллическом корпусе. Гистерезис 0,1 — 0,5 гр. Лампочки включаются и отключаются в несколько раз чаще.

Таблица напряжений по постоянному току микросхемы К561ЛА7

(измеряется цифровым мультиметром в рабочей схеме)

№ вывода Нагреватель выкл / включен
1, 2 4,3 / 5,5
3 0,2 / 8,9
4 3,8 / 8,9
5, 6 4,1 / 0
7
8 7 / 8,9
9 0,2 / 8,9
10 ~
12, 13
14 9 / 7,5

Фото собранной платы

Примечание: маркировка некоторых деталей согласно схемы изменилась.

Фото печатной платы

Благодаря использованию резистора (R13, а не конденсатора) для понижения напряжения, стабилизации и фильтрации питающего микросхему напряжения, а также других «фишек» данная схема терморегулятора используется в инкубаторе более 10 лет и не разу не подвела!

А. Зотов. Волгоградская обл.

P.S. Если Вы решили сделать вышеизложенный терморегулятор, но у вас нет платы или некоторых эл. компонентов, то Вы можете приобрести у нас НАБОР ДЛЯ САМОСТОЯТЕЛЬНОЙ СБОРКИ ТЕРМОРЕГУЛЯТОРА ДЛЯ ИНКУБАТОРА.

Фото готовой платы, собранной из набора

Вы можете купить готовый цифровой модуль терморегулятора со встроенным цифровым термометром в нашем магазине.

 Наш «Магазин Мастера«

  • Таблица определения флешки и программы её восстановления
  • Мы привыкли к тому, что объектом возобновления информации наиболее часто считается жёсткий диск, но часто бывает, что флешки тоже оказываются испорчены, а восстанавливать их и не пробуют. В статье ниже мы попытаемся рассказать как восстановить flash-ку. При неисправности флешки можно воспользоваться приведённой ниже таблицей и определить её модель, CHIPа, MEMORY, VID, PID, CHIP VENDOR, размер и утилиту для её восстановления.Подробнее…

  • Как быстро и просто самому отремонтировать радиоаппаратуру?
  • Ремонт аппаратуры своими руками

    Рано или поздно перестаёт работать телевизор, приёмник, модем и т.д. Большая часть процента выхода из строя радиоаппаратуры происходит из за высыхания электролитических конденсаторов.Из за этого прибор начинает долго включаться или не включаться совсем, происходят изменения в работе, зависания и сбои.Устранить такую неисправность легко и быстро может даже начинающий радиолюбитель.Подробнее…

  • Как заменить сенсорную панель своими руками?
  • Не работает или плохо работает сенсор в телефоне или планшете? Одна из частых неисправностей современных сенсорных устройств — повреждение сенсорного экрана.  Его ещё называют «тачскрином», просто «тачем» или «сенсором». Не стоит отчаиваться — его можно заменить самому. Стоит такая панель не дорого, намного дешевле, чем покупать новый телефон.Подробнее…

Источник: http://www.MasterVintik.ru/prostaya-i-nadyozhnaya-sxema-termoregulyatora-dlya-inkubatora/

Схема терморегулятора

   Поводом для сборки этой схемы послужила поломка терморегулятора в электрическом духовом шкафу на кухне.

Поискав в интернете, особого изобилия вариантов на микроконтроллерах не нашел, конечно есть кое-что, но все в основном рассчитаны на работу с термодатчиком типа DS18B20, а он очень ограничен в температурном диапазоне верхних значений и для духовки не подходит. Задача ставилась измерять температуры до 300°C, поэтому выбор пал на термопары К-типа. Анализ схемных решений привел к паре вариантов. 

Схема терморегулятора – первый вариант

   Термостат собраный по этой схеме имеет заявленный предел верхней границы 999°C. Вот что получилось после его сборки:

   Испытания показали, что сам по себе термостат работает достаточно надежно, но не понравилось в данном варианте отсутствие гибкой памяти. Пошивка микроконтроллера для обеих вариантов – в архиве.

Схема терморегулятора – второй вариант

   Немного поразмыслив пришел к выводу, что возможно сюда присоединить тот же контроллер, что и на паяльной станции, но с небольшой доработкой. В процессе эксплуатации паяльной станции были выявлены незначительные неудобства: необходимость перевода таймеров в 0, и иногда проскакивает помеха которая переводит станцию в режим SLEEP.

Учитывая то, что женщинам ни к чему запоминать алгоритм перевода таймера в режим 0 или 1 была повторена схема той же станции, но только канал фен. А небольшие доработки привели к устойчивой и “помехонекапризной” работе терморегулятора в части управления. При прошивке AtMega8 следует обратить внимание на новые фьюзы.

На следующем фото показана термопара К-типа, которую удобно монтировать в духовке.

   Работа регулятора температуры на макетной плате понравилась – приступил к окончательной сборке на печатной плате.

   Закончил сборку, работа тоже стабильная, показания в сравнении с лабораторным градусником отличаются порядка на 1,5°C, что в принципе отлично. На печатной плате при настройке стоит выводной резистор, пока что не нашел в наличии SMD такого номинала.

   Светодиод моделирует ТЭНы духовки. Единственное замечание: необходимость создания надежной общей земли, что в свою очередь сказывается на конечный результат измерений. В схеме необходим именно многооборотный подстроечный резистор, а во-вторых обратите внимание на R16, его возможно тоже необходимо будет подобрать, в моём случае стоит номинал 18 кОм. Итак, вот что имеем:

   В процессе экспериментов с последним терморегулятором появились ещё незначительные доработки, качественно влияющие на конечный результат, смотрим на фото с надписью 543 – это означает датчик отключен или обрыв.

   И наконец переходим от экспериментов до готовой конструкции терморегулятора. Внедрил схему в электроплиту и пригласил авторитетную комиссию принимать работу 🙂 Единственное что жена забраковала – маленькие кнопки на управлении конвекцией, общее питание и обдув, но это решаемо со временем, а пока выглядит вот так.

   Регулятор заданную температуру держит с точностью до 2-х градусов. Происходит это в момент нагрева, из-за инертности всей конструкции (ТЭНы остывают, внутренний каркас выравнивается температурно), в общем в работе схема мне очень понравилась, а потому рекомендуется для самостоятельного повторения. Автор – ГУБЕРНАТОР.

   Форум по регуляторам температуры на МК

Источник: http://radioskot.ru/publ/bp/skhema_termoreguljatora/7-1-0-787

Терморегулятор своими руками: пошаговая инструкция изготовления самодельного устройства

Среди разнообразных полезных штуковин, способных добавить комфорта в нашу жизнь, много таких, которые легко можно сделать самостоятельно.

В эту категорию входит и термостат, также называемый терморегулятором, — прибор, включающий и отключающий нагревательное или холодильное оборудование в соответствии с температурой среды, в которой он установлен.

Такое устройство может, к примеру, во время сильных холодов включать обогреватель в подвале, где хранятся овощи. Из нашей статьи вы узнаете о том, как можно сделать терморегулятор своими руками (для котла отопления, холодильника и других систем) и какие детали подходят для этого лучше всего.

Устройство термостата особой сложностью не отличается, поэтому многие начинающие радиолюбители оттачивают на изготовлении этого прибора свое мастерство. Схемы предлагаются самые разные, но наибольшее распространение получил вариант с применением особой микросхемы, называемой компаратором.

У этого элемента есть два входа и один выход. На один вход подается некое эталонное напряжение, которое соответствует требуемой температуре, а на второй – напряжение от термодатчика.

Схема терморегулятора для теплых полов

Компаратор сравнивает поступающие данные и при определенном их соотношении генерирует на выходе сигнал, открывающий транзистор или включающий реле. При этом подается ток на нагреватель или холодильный агрегат.

Детали устройства регулятора температуры своими руками

В роли датчика температуры обычно выступает терморезистор – элемент, электрическое сопротивление которого меняется в зависимости от температуры.

Используют и полупроводниковые элементы – транзисторы и диоды, на характеристики которых температура также оказывает влияние: при нагреве увеличивается ток коллектора (у транзисторов), при этом наблюдается смещение рабочей точки и транзистор перестает работать, не реагируя на входной сигнал.

Но у таких сенсоров есть существенный недостаток: их довольно сложно откалибровать, то есть «привязать» к определенным значениям температуры, из-за чего точность самодельного терморегулятора оставляет желать лучшего.

Между тем промышленность давно освоила выпуск недорогих термодатчиков, калибровка которых осуществляется в процессе изготовления.

К таковым относится прибор марки LM335 от компании National Semiconductor, которым мы и рекомендуем воспользоваться. Стоимость этого аналогового термодатчика составляет всего 1 доллар.

«Тройка» на первой позиции цифрового ряда в маркировке означает, что прибор ориентирован на применение в бытовой технике. Модификации LM235 и LM135 предназначены для использования, соответственно, в промышленности и в военной сфере.

Имея в своем составе 16 транзисторов, этот датчик работает как стабилитрон. При этом его напряжение стабилизации зависит от температуры.

Зависимость следующая: на каждый градус по абсолютной шкале (по Кельвину) приходится 0,01 В напряжения, то есть при нуле по Цельсию (273 по Кельвину) напряжение стабилизации на выходе составит 2,73 В. Производитель калибрует датчик по температуре в 25С (298К). Рабочий диапазон лежит в пределах от -40 до +100 градусов Цельсия.

Таким образом, собирая терморегулятор на базе LM335, пользователь избавляется от необходимости подбирать методом проб и ошибок эталонное напряжение, при котором прибор обеспечит требуемую температуру.

Его можно рассчитать, используя несложную формулу:

V = (273 + T) x 0.01,

Где Т – интересующая пользователя температура по шкале Цельсия.

Помимо термодатчика нам понадобится компаратор (подойдет марки LM311 от того же производителя), потенциометр для формирования эталонного напряжения (настройка требуемой температуры), выходное устройство для подключения нагрузки (реле), индикаторы и блок питания.

Электропитание терморегулятора

Температурный датчик LM335 подключается последовательно с резистором R1. Так вот, сопротивление этого резистора и напряжение питания должны быть подобраны таким образом, чтобы величина протекающего через термодатчик тока находилась в пределах от 0,45 до 5 мА.

Превышать максимальное значение этого диапазона не следует, так как характеристики сенсора будут искажаться из-за перегрева.

Запитать терморегулятор можно от стандартного блока питания на 12 В либо от изготовленного собственными силами трансформатора.

Включение нагрузки

В качестве исполнительного устройства, подающего питание на нагреватель, можно применить автомобильное реле. Оно рассчитано на напряжение в 12 В, при этом через катушку должен протекать ток в 100 мА.

Напомним, что ток в цепи термодатчика не превышает 5 мА, поэтому для подключения реле нужно применить транзистор с большей мощностью, например, КТ814.

Можно применить реле с меньшим током включения, такое как SRA-12VDC-L или SRD-12VDC-SL-C – тогда транзистор не понадобится.

Рассмотрим, как изготавливаются терморегуляторы (термореле) с датчиком температуры воздуха своими руками на 12 В. Сборка прибора осуществляется в такой последовательности:

  1. Прежде всего, нужно подготовить корпус. Подойдет отслуживший свое счетчик, например, «Гранит-1».
  2. Схему можно собрать на плате от того же счетчика. К прямому входу компаратора (помечен знаком «+») подключается потенциометр, позволяющий задавать температуру. К инверсному входу (знак «-») – термодатчик LM335. Если напряжение на прямом входе окажется более высоким, чем на инверсном, на выходе компаратора установится высокий уровень (единица) и транзистор подаст питание на реле, а оно — на нагреватель. Как только напряжение на инверсном входе окажется большим, чем на прямом, уровень на выходе компаратора станет низким (ноль) и реле отключится.
  3. Чтобы обеспечить перепад температур, то есть срабатывание терморегулятора, к примеру, при 23-х градусах, а отключение – при 25-ти, необходимо при помощи резистора создать отрицательную обратную связь между выходом и прямым входом компаратора.
  4. Трансформатор для питания терморегулятора можно изготовить из катушки от старого электросчетчика индукционного типа. На ней имеется место для вторичной обмотки. Чтобы получить напряжение в 12 В, необходимо намотать 540 витков. Их удастся уместить, если использовать провод диаметром 0,4 мм.

Простой самодельный термостат

Для включения нагревателя удобно использовать клеммник счетчика.

Каким должен быть нагреватель?

Мощность нагревателя зависит от того, какой ток могут выдержать контакты используемого реле. Если это значение составляет, к примеру, 30 А (на такой ток рассчитано автомобильное реле), то обогреватель может иметь мощность до 30 х 220 = 6,6 кВт. Только необходимо сначала убедиться, что проводка и автомат в щитке способны выдержать такую нагрузку.

Монтаж

Рассмотрим, как правильно должен быть установлен прибор.

Терморегулятор следует устанавливать в нижней части помещения, где скапливается холодный воздух.

При этом важно предотвратить воздействие тепловых помех, которые могут сбить прибор с толку.

Так, например, не стоит размещать терморегулятор на сквозняке или вблизи электрооборудования, излучающего тепло.

Настройка терморегулятора

Как уже говорилось, терморегулятор на базе датчика LM335 в настройке не нуждается. Достаточно знать напряжение, подаваемое потенциометром на прямой вход компаратора.

Измерить его можно при помощи вольтметра. Необходимое значение напряжения определяется по приведенной выше формуле.

Если нужно, к примеру, чтобы прибор срабатывал при температуре в 20 градусов, оно должно составлять 2,93 В.

Если в качестве термодатчика применяется какой-либо иной элемент, эталонное напряжение придется проверять опытным путем. Для этого необходимо воспользоваться цифровым термометром, например, ТМ-902С. Для точности настройки датчики термометра и терморегулятора можно соединить посредством изоленты, после чего их помещают в среду с различной температурой.

Терморегулятор из подручных материалов

Ручку потенциометра нужно плавно вращать, пока терморегулятор не сработает. В этот момент следует посмотреть на шкалу цифрового термометра и отображаемую на ней температуру нанести на шкалу терморегулятора. Можно определить крайние точки, например, для температуры в 8 и 40 градусов, а промежуточные значения отметить, разделив диапазон на равные части.

Если цифрового термометра под рукой не оказалось, крайние точки можно определять по воде с плавающим в ней льдом (0 градусов) или по кипящей воде (100 градусов).

Видео на тему

Источник: https://microklimat.pro/otopitelnoe-oborudovanie/otopitelnye-pribory/termoregulyator-svoimi-rukami.html

:: САМОДЕЛЬНЫЙ ПРОСТОЙ ТЕРМОРЕГУЛЯТОР ::

   Делаем терморегулятор своими руками на основе регулируемого стабилитрона TL431.

Логика работы стабилитрона такова: когда на управляющем электроде напряжение превышает 2,5 В (задается внутренним опорным напряжением) стабилитрон, по сути дела являющийся микросхемой, открыт.

В этом состоянии через него и нагрузку протекает ток. Если же это напряжение становится чуть меньше указанного порога, стабилитрон закрывается и отключает нагрузку.

   В предлагаемом для самостоятельного повторения терморегуляторе стабилитрон используется в качестве компаратора. При этом у него только один вход: второго входа для подачи опорного напряжения не требуется, так как оно вырабатывается внутри данной микросхемы. Такое решение позволяет предельно упростить конструкцию и уменьшить количество деталей. Принципиальная схема простого треморегулятора на рисунке ниже:

   Работа устройства. Напряжение на управляющем электроде 1 задается с помощью делителя R1, R2 и R4. В качестве R4 используется терморезистор с отрицательным ТКС, поэтому при нагревании его сопротивление уменьшается. Когда на выводе 1 напряжение выше 2,5В микросхема открыта, реле включено. Контакты реле включают симистор D2, который включает нагрузку. С повышением температуры сопротивление терморезистора падает, за счет чего напряжение на выводе 1 становится ниже 2,5В – реле отключается, отключается нагрузка. С помощью резистора R1 производится настройка температуры срабатывания терморегулятора. Датчик температуры должен быть расположен в зоне измерения температуры: если это, например, электрокотел, то датчик должен быть закреплен на трубе, выходящей из котла. Включение симистора с помощью реле обеспечивает гальваническую развязку терморезистора от сети. Терморезистор берётся типа КМТ, ММТ, СТ1. Реле можно взять типа РЭС-55А с обмоткой на напряжение 10…12В.
Поделитесь полезными схемами

    Провел множество экспериментов и обнаружил много интересных вещей: Один провод заземлен на батарею, второй подключен к обычной лампочке. Внутри ионизируется аргон, которым она заполнена, создавая красивые эффекты. Также ее можно брать руками — ионизация еще сильнее.
     Двоично-десятичный дешифратор. Данное устройство иллюстрирует перевод чисел из двоичной системы в десятичную, что необходимо при получении конечного результата вычислений. В дешифраторе применены 4 тумблера, символизирующие разряды двоичных чисел, индикаторная лампа высвечивает числа от 1 до 10 десятичной системы счисления.  
    По сути, жало паяльника закаляется из-за короткого замыкания. Вторичная обмотка содержит пол витка, напряжение прядка 1 вольта, но сила тока доходит до 15 Ампер! Именно из-за пониженного напряжения, нагрузка не столь велика, в ходе работы детали почти холодные.

Источник: http://samodelnie.ru/publ/samodelnyj_prostoj_termoreguljator/1-1-0-86

Терморегулятор для инкубатора своими руками: схема самодельного цифрового регулятора температуры, как сделать на микроконтроллере

Регулятор температуры внутри автоматического инкубатора для яиц, независимо от того, как прибор изготовлен, самостоятельно или заводского производства, относится к одному из самых важных элементов этого изделия.

Природой предусмотрено, что для выведения молодняка птицы разных пород, нужны подходящие условия. Например, температура выведения гусиных яиц в инкубаторе, отличается от параметров выведения уток. Куриные яйца инкубируют при температуре 37,7°, гусиным нужна 38,8°.

Строить инкубаторы отдельно для каждой породы птиц нецелесообразно, поэтому в них предусмотрено регулирование и поддержание нужных условий с помощью терморегуляторов. Если принято решение о создании самодельного терморегулятора для инкубатора, отнеситесь к этому со всей серьёзностью.

Выполнить такую работу под силу тем, кто освоил азы радиоэлектроники, умеет обращаться не только с паяльником, но и измерительными приборами. Кроме того, в работе пригодятся навыки по изготовлению печатных плат, сборке и настройке радиоэлектронных устройств.

В этой статье мы постараемся рассказать о том, как можно самостоятельно изготовить и отрегулировать терморегулятор для инкубации яиц.

Выбор схемы регулятора

Если взять за основу для изготовления терморегулятора заводские изделия, можно столкнуться с непреодолимыми трудностями по сборке, а особенно по настройке таких изделий.

Чтобы обойти лишние проблемы, лучше всего выбрать схему изделия доступную для изготовления в домашних условиях.

Важно: внимательно изучите описание конструкции выбранного устройства, особенно её элементную базу. Простая на вид схема может содержать дефицитные радиокомпоненты.

Главным критерием для любого типа терморегуляторов является обеспечения высокой чувствительности к перепадам внутренней температуры внутри инкубатора, а также мгновенное реагирование на эти изменения. «Самодельщики» в большинстве случаев применяют два варианта построения регуляторов:

  1. Построение прибора на основе электрической схемы и радиодеталей. Способ сложный и доступный для подготовленных специалистов;
  2. Изготовление регулятора на основе термостата от бытовой техники.

Давайте кратко рассмотрим оба варианта изготовления.

Изготовление терморегулятора на основе схемы и радиодеталей

На рисунке ниже показана принципиальная схема самодельного регулятора температурного режима при инкубации.

Если внимательно рассмотреть схему этого прибора, то можно убедиться, то для его сборки требуются широко распространённые радиокомпоненты.

Внимание: все элементы находятся под напряжением сети 220 Вольт, поэтому требуется строгое соблюдение правил техники безопасности при работе с электроприборами.

Для самостоятельного изготовления прибора потребуется приобрести следующие радиодетали:

  • Стабилитрон любого типа, который сможет обеспечить стабилизацию напряжения в пределах 7-9 Вольт;
  • Два транзистора, один из них из МП 42 с любой буквой или аналогичный ему, второй из серии КТ 315, буквенный индекс прибора может быть любой;
  • Тиристор из серии КУ 201-КУ 202, буква в обозначении должна быть Н;
  • Четыре диода серии КД 202, желательно с буквенными обозначениями Н или НС. Можно использовать и другие полупроводниковые приборы, при условии их допустимой мощности не менее 600 Вт;
  • Регулировка режима производится переменным резистором любого типа сопротивлением от 30 до 50 кОм;
  • Резистор R5 должен иметь рассеиваемую мощность не менее 2Вт, остальные по 0,5 Вт;
  • Также нужно приобрести реле типа МКУ (многоконтактное унифицированное).

В схеме, представленной на рисунке, датчиком температуры выступает транзистор VT1, который размещают в стеклянной трубке и укладывают непосредственно на лоток с яйцами. При включении регулятора в сеть, срабатывает реле, его контакты размыкаются и инкубатор обогревается от ламп, которые подключаются к сети 220 Вольт.

При отключении от сети, контакты реле замыкаются и подключают в работу аккумулятор и автомобильные лампы для обогрева.

При возобновлении подачи напряжения, реле снова срабатывает и подключает второй парой контактов зарядное устройство для подзаряда аккумулятора. Переменным резистором устанавливается порог требуемой температуры.

Особых требований к зарядному устройству нет, можно использовать любое имеющееся в наличии.

Термостат в качестве регулятора

Этот вариант более прост в изготовлении и в то же время весьма надёжен в эксплуатации. Для его изготовления потребуется найти любой термостат от бытовой техники, например, от утюга.

Его нужно определённым образом подготовить к работе. Для этого любым доступным способом наполняют корпус термостата эфиром и хорошо запаивают.

Важно знать: эфир сильное летучее вещество, поэтому работать с ним нужно быстро и аккуратно.

Эфир очень чутко реагирует на малейшее изменение наружной температуры, что приводит к изменению состояния корпуса термостата. Винт, который припаян к корпусу, жёстко связан с контактами. В нужный момент происходит включение или отключение нагревательного элемента. Нужную температуру выставляют при вращении регулировочного винта (под номером 6 на рисунке).

Обращаем Ваше внимание, что перед закладкой яиц, нужно произвести настройку нужной температуры и прогреть инкубатор.

Итак, как видно из описания, изготовить терморегулятор в инкубатор не сложно. Это может выполнить даже школьник, который увлекается радиоэлектроникой. Схема не содержит дефицитных радиокомпонентов. Элементы устанавливают на печатную плату или монтируют навесным монтажом.

Если самостоятельно изготавливается «электрическая наседка», полезно для увеличения процентов вывода молодняка птицы, предусмотреть устройство для автоматического поворота яиц в инкубаторе.
Из этого видео Вы узнаете как сделать терморегулятор для инкубатора своими руками:

Источник: https://6sotok-dom.com/uchastok/ferma/termoregulyator-dlya-inkubatora-svoimi-rukami.html

Ссылка на основную публикацию
Adblock
detector