Проверочное устройство транзистора, измеряем hfe.

Мультиметр. Измерения и конструктивные особенности

Многие люди до сих пор не знают, что за прибор – мультиметр, как его применять, и для чего он необходим. Чтобы ответить на эти вопросы, постараемся создать подробную инструкцию.

Мультиметром называют универсальный измерительный прибор, включающий в себя устройство нескольких приборов, и способный измерять целый ряд электрических параметров, проверить исправность многих радиодеталей, целостность электрической цепи. Удобно иметь для себя компактный прибор, способный выполнить многие измерения.

Принципы измерений

Прежде чем начинать изучение мультиметра, следует ознакомиться с существующими понятиями, и принципами применения этого прибора при следующих видах измерений:

  • Прямые. Проводятся непосредственным соединением щупов прибора с измеряемой цепью, либо отдельным элементом, с мгновенным отображением информации на шкале или цифровом дисплее прибора. Например, при измерении силы тока, на дисплее отображается эта величина в амперах, если измеряется напряжение, то виден результат в вольтах, а при замерах сопротивлений – значение в Омах.
  • Косвенные. Производятся несколькими последовательными шагами разных величин, с дальнейшим расчетом зависимого результата. Например, необходимо определить мощность подключенного устройства в цепи постоянного тока. Для решения этой задачи необходимо измерить напряжение, далее – силу тока, затем перемножить между собой полученные данные измерений. Таким образом, определяют индуктивность катушки, с помощью генератора переменного напряжения. При повышении частоты тока будет возрастать активное сопротивление катушки, а значит, будет снижаться сила тока. Чаще всего для проведения косвенных измерений требуется наличие нескольких приборов.
  • Измерение неэлектрических величин выполняется с помощью различных преобразователей в виде датчиков, усилителей, шунтов и т.д. Например, многие мультиметры имеют функцию измерения освещенности, температуры, давления. Используя специальные электроды, можно измерить влажность деревянных досок, кислотность почвы и т.д. Эти вспомогательные преобразователи обычно приобретаются отдельно, но иногда имеются в комплекте в виде термометров, люксметров или клещей для измерения величины тока в кабеле без контакта с ним.

Такой универсальный измеритель стал хорошим помощником для электромонтеров и радиолюбителей. Несмотря на наличие множества режимов, работать с мультиметром довольно просто.

Конструктивные особенности

Большинство мультиметров похожи между собой по расположению индикаторов, управляющих элементов, а также по внешнему виду. В центре обычно находится главный переключатель в виде круглого диска с удобной ручкой, которая при вращении указывает, какой режим в данный момент включен.

Надписи диапазонов и названий режимов нанесены вокруг переключателя. Режимы, расположенные рядом друг с другом, объединены в группы и обведены в рамку.

Мультиметр оснащен жидкокристаллическим экраном, вокруг которого могут находиться вспомогательные кнопки для включения подсветки и другие дополнительные опции. Кнопки также могут располагаться по бокам корпуса.

Внизу лицевой панели находятся гнезда для подключения измерительных щупов. Гнездо «СОМ» является общей отрицательной клеммой для подключения щупа черного цвета. Другие два гнезда применяются для подключения щупа красной расцветки. Одно из них для широко распространенных измерений параметров, а другое – для измерения большой силы тока.

Измерение напряжения

Чтобы измерить с помощью мультиметра такой параметр, как напряжение, достаточно воспользоваться двумя группами режимов для постоянного и переменного тока, которые обозначены соответственно DCV и ACV. Для замера напряжения в сети переменного тока нет необходимости в соблюдении полярности, так как переменный ток не имеет ее.

Диапазон измерений у разных исполнений приборов отличается. Чаще всего диапазон измерений для постоянного напряжения не более 1000 В, для переменного – до 750 В. Весь диапазон делится на несколько режимов измерений.

Если, например, на режиме «до 20 вольт» измерять более высокое значение, то прибор выдаст ошибку. А если попытаться измерить величину, больше максимально допустимого предела, например, 2000 вольт, то прибор выйдет из строя.

Некоторые модели выдерживают небольшое превышение пределов измерений, но вряд ли стоит рисковать своими деньгами.

Соблюдение полярности подключения щупов необходимо при измерении постоянного и импульсного тока. Так можно определить полярность источника, у которого неизвестно где плюс, а где минус.

Если щупы будут подключены наоборот, то есть, красный щуп на минус, а черный на плюс, то на дисплее перед цифрами будет изображен знак «минуса».

Напряжение измеряется путем параллельного подключения щупов к измеряемому объекту.

Как измерять сопротивление

Наиболее популярной функцией в мультиметре является измерение сопротивления. Чаще всего группа интервалов для омметра расположена внизу круга изображения режимов, и маркирована символом «Ω». Имеется несколько диапазонов замера сопротивлений.

При неизвестной величине резистора необходимо начинать измерения от меньшего предела. Точность замеров прибора невысока, и отклонения могут составлять до 2%. Чем больше интервал измеряемой величины, тем больше будет отклонение от номинала, особенно для больших сопротивлений.

Если аккумуляторная батарея в приборе разряжена, то точность значительно снижается. При измерениях малых сопротивлений в несколько Ом, следует учитывать сопротивление щупов и измерительных проводов.

После касания щупов к измеряемой детали, необходимо подождать несколько секунд, для более точных показаний.

Измерение тока

Мультиметр можно также использовать для измерения силы тока. Гнездо для таких замеров ограничено небольшими значениями – обычно от 0,2 до 0,5 ампер, в зависимости от исполнения прибора. Имеется отдельное гнездо для определения большого тока (до 10 ампер), однако в таком случае допускаемое напряжение уменьшается на 50% от наибольшего предела измерений.

Чтобы измерить силу тока, нужно переключатель поставить в соответствующее положение. В бюджетных моделях обычно имеется возможность измерять только постоянный ток, в отличие от дорогих моделей.

Для постоянного и переменного тока группы интервалов отличаются. Если их перепутать, с прибором ничего не случится, просто показания будут некорректными.

Если превысить наибольшие допустимые значения, то может сгореть предохранитель, либо выйдет из строя электронная плата.

В дешевых моделях из Китая два «плюсовых» гнезда могут быть соединены вместе, что приводит к невозможности измерения больших токов.

Как прозвонить диоды и проверить целостность цепи

Для таких измерений существует отдельный режим для диодов с изображением его значка. Для его прозвонки необходимо прикоснуться к выводам щупами, затем изменить положение щупов между собой. В одном из вариантов на экране прибора будут иметься показания, в другом не должно быть никакой реакции, так как диод проводит ток только в одну сторону.

Если на экране показываются определенное значение, то черный щуп соответствует катоду диода, а красный – аноду. При таких измерениях мультиметр можно считать источником тока величиной 1 миллиампер, а значение, изображенное на экране — падение напряжения в милливольтах.

Диоды можно прозванивать также и в режиме сопротивлений. При этом в одном направлении показания будут, а в другом нет.

Но лучше проверять диоды в специально предназначенном для этого режиме, так как при этом определяется падение напряжения, по которому судят о параметрах диода, если он не имеет маркировки.

Многие модели таких приборов имеют опцию звуковой прозвонки цепи. Она включается при достижении наименьшего значения сопротивления (около 100 Ом). Звуковой сигнал может появляться с некоторой задержкой.

Как мультиметр измеряет температуру

Многие модели таких приборов имеют в комплекте специальный датчик для измерения температуры – термопару. Максимальное значение измеряемой температуры может достигать 800 градусов.

Термопара оснащена двойным штекером, который вставляется в гнездо «СОМ» и другой разъем, расположенный рядом, либо отдельную пару разъемов с маркировкой «С», в зависимости от варианта исполнения прибора.

На цифровом дисплее отображается температура в градусах Цельсия. Мультиметр может не иметь специального режима и разъемов для измерения температуры. В этом случае температуру можно определить на наименьшем пределе режима DCV, пользуясь графиком зависимости температуры от ЭДС.

Точность измерений при этом будет небольшой, так как при определении температуры будет рассчитана не фактическая температура, а разница температур прибора и измеряемого объекта. Эта погрешность может компенсироваться с помощью специальной функции, присутствующей во многих измерительных устройствах.

Проверка биполярных и полевых транзисторов

На самых простых и бюджетных моделях можно проверить цоколевку транзисторов.

Специальный режим имеется для биполярных транзисторов (hFE), а также отдельное контактное гнездо, которое разделено на две части, для транзисторов с P-N-P и N-P-N переходами. Контакты промаркированы буквами Е (эмиттер), С (коллектор) и В (база).

Гнезда контактов расположены в таком виде, чтобы транзистор, у которого неизвестна цоколевка, можно было оперативно переставлять и изменять положения выводов. Когда цоколевка будет определена правильно, то на экране появится отображение коэффициента передачи полупроводника.

В гнездах контакты утоплены глубоко, поэтому проверить транзисторы с короткими выводами не получится. Мощные транзисторы также нельзя проверить таким прибором, так как создаваемого мультиметром тока будет недостаточно для открытия полупроводникового перехода.

Полевые транзисторы можно тестировать в диодном режиме, если цоколевка транзистора заранее известна. Сначала «минусовым» щупом касаются стока, а «плюсовым» — истока. Таким образом, определяется целостность внутреннего диода. Если щупы подключить, поменяв их между собой, то падения напряжения не будет.

Если прикоснуться «плюсовым» щупом затвора, при этом, не убирая «минусового» щупа от стока, то транзистор должен открыться, и падение напряжения уменьшится, и возникнет в двух направлениях. Транзистор закроется, если прикоснуться черным щупом к затвору, не отнимая красный щуп от истока.

Функции и кнопки

Дорогостоящий мультиметр может быть оснащен важной кнопкой «HOLD», которая дает возможность закрепить текущее положение на экране.

У «навороченных» приборов могут быть специальные кнопки, нажав на которые, прибор покажет только минимальные или максимальные значения. Если включить какой-либо вспомогательный режим измерения, то на экране отобразится соответствующий символ.

Также существуют мультиметры с функциями проверки конденсаторов, частоты сигнала, индуктивности, функциями осциллографа.

Похожие темы:

Источник: https://tehpribory.ru/glavnaia/pribory/multimetr.html

Мультиметр dt-830b

Мультиметр dt-830b
Исключительно всем необходимо уметь пользоваться измерительными приборами.
Вольтамперомметр – универсальный прибор (коротко-'тестер”, от слова “тест”).Разновидностей очень много.все мы их рассматривать не будем.возьмем самый легкодоступный для всех мультиметр китайского производства DT-830B.

МУЛЬТИМЕТР DT-830B состоит из: -дисплей ж/к -переключатель многопозиционный -гнезда для подключения щупов -панель для проверки транзисторов -задняя крышка(будет нужна для замены элемента питания прибора, элемент типа “Крона” 9 вольт) Положения переключателя разделены на сектора:

OFF/on -выключатель питания прибора

DCV – измерение напряжения постоянного тока(вольтметр)
ACV– измерение напряжения перепенного тока(вольтметр)
hFe – сектор включения измерения транзисторов
1.5v-9v– проверка элементов питания.
DCA – измерение постоянного тока (амперметр).
10А  – сектор  амперметра  для  измерения  больших значений  постоянного  тока(по  инструкции измерения проводятся в течение нескольких секунд).

Диод -сектор для проверки диодов.

Ом -сектор измерения сопротивления.

Сектор DCV
На данном приборе сектор разделен на 5 диапазонов. Проводятся измерения от 0 до 500 вольт. Напряжение постоянного тока большой величины нам встретится только при ремонте телевизора. Этим      прибором      при      больших      напряжениях     нужно      работать      крайне      осторожно.

При включении в положение “500” вольт на экране в левом верхнем углу загорается предупреждение HV. о том, что включен самый верхний уровень измерения и при появлении больших значений нужно быть предельно внимательным.

Обычно измерение напряжения ведется переключением больших положений диапазона на меньшие, если вы не знаете величину измеряемого напряжения. Например, перед измерением напряжения на аккумуляторной батареи сотового телефона или автомобиля, на которых написано максимальное напряжение 3 или 12 вольт,то ставим смело сектор в положение “20” вольт.

Если поставим на меньшую, например, на “2000” милливольт прибор может выйти из строя. Если поставим на большую-показания прибора будут менее точными. Когда вы не знаете величину измеряемого напряжения (конечно же в рамках бытового электрооборудования, где оно не превышает величин прибора),тогда выставляете на верхнее положение “500” вольт и делаете замер.

Вообщем-то, грубо замерять, с точностью до одного вольта, можно на положении “500” вольт.

Если требуется большая точность, переключите на нижнее положение, только чтобы величина измеряемого напряжения не превышала значения на положении выключателя прибора.

Этот прибор удобен в измерении именно напряжения постоянного тока в том, что не требует обязательного соблюдения полярности.

Если полярность щупов (“+” – красный,”-“-черный) не будет совпадать с полярностью измеряемого напряжения/го в левой части экрана появится знак “-“, а величина будет соответствовать измеряемой.

Сектор ACV Сектор имеет на данной разновидности  прибора 2 положения – “500” и “200” вольт. С большой осторожностью обращайтесь с измерениями 220-380 вольт.

Порядок измерений и установки положений аналогичен сектору DCV.

Сектор DCA. Является миллиамперметром постоянного тока и применяется для измерения маленьких токов, в основном в радиоэлектронных схемах. Нам пока не пригодиться.

Во избежание поломки прибора, не ставьте переключатель на этот сектор, если забудете и начнете измерять напряжение, то прибор выйдет из строя.

В связи с этим нужно обязательно рассказать поучительную историю. Будучи любопытным ребенком и уже знающим как прозвонить электрическую цепь, например, нить накала лампы или провод на обрыв, с помощью прибора, я не различал, что такое напряжение и ток.

Не помню, что случилось с прибором который, у меня был, но потребовался “тестер” что-то “прозвонить” на обрыв. Попросил у друга. Вася взял у папы. Хороший стрелочный русский Ц – 2 …,не помню уже какой, Вася дал мне. Измерив, то что надо было, я отложил прибор в сторону и забыл про       него.

       А      вспомнил      тогда,       когда      увидел,       что      на       розетке      в      стене написано 220 В   6А. То-ли я захотел убедиться в точности прибора, то-ли в соответствии написанного на розетке, короче, напряжение я померил, оно соответствовало.

Конечно переключатель стоял на измерении напряжения, как положено. Теперь не долго думая ставлю переключатель в положение 10 а измерения тока и вставляю щупы в загадочные дырочки в стене. Такого взрыва не помню за всю свою жизнь.

Прибор разорвало на почерневшие осколки, лицо было как у негера в темноте, уши золожило на пол-часа, хорошо дома не было никого, так бы получил по “полной программе”.

Так вот, прежде чем пытаться что-то делать, при малейшем подозрении на присутсвии напряжения, нужно знать элементарные вещи: что такое ток, напряжение, сопротивление. Можете прочитать на первой странице книги:

Так идем дальше. Есть еще положение 10 А измерения постоянного тока (ампереметр). Измерения производятся с перестановкой провода из второго гнезда в гнездо 10 А. Если вам необходимо измерять ток какого – либо электроприбора, можно воспользоваться амперметром, но опять же с большой осторожностью.

В инструкции по прибору написано, что измерения тока производить несколько секунд, но я бы не рекомендовал бы лишний раз пользоваться этой возможностью. Если вы будите читать домашние уроки, то узнаете, что есть другие способы узнать примерную величину силы тока и этого будет нам более предостаточно.

Сектор измерения сопротивления (омметр). Разделен на положение от 200 Ом до 2 Мом (2000000 Ом). Можно измерять сопротивление от 1 Ома до 2 Мом со следующими нюансами: Во-первых: китайский мультиметр не является точным прибором и погрешность его показаний довольно велика.

Во-вторых: непредсказуемая большая чувствительность при точных измерениях. В связи с этим, при замыкании щупов между собой, прибор указывает на сопротивление цепи, которой не следует принебрегать. а считать её за сопротивление провода на щупах, т.е.

при измерении маленьких сопротивлений из результата нужно отнять значение, полученное при замыкание щупов. Например: замеряем сопротивление лампы, т.к. лампа имеет маленькое сопротивление, ставим в положение 200 Ом.

Сначала замкнем щупы между собой. У меня прибор показал 0.9 Ом – это значит мы и отнимим, после измерения нужного нам сопротивления.   Замеряем на лампе получаем 70.8 – 0,9 = 69.9 Ом.

Учтите, что показания приблизительны, но в наших случаях с бытовыми электроприборами этого достаточно. Работа вверх по диапазону сектора не представляет ничего сложного.Если у вас на экране слева показана единица, то сопротивление больше, чем установленное положение переключателя, а если единица на экране при положении выключателя 2000КОм,то можно считать цепь оборванной.

При появлении цифр имеет присутствие некое сопротивление в цепи. Опять же чтобы разобраться в значениях сопротивлений прочитайте первую страничку книги:

Замена батареи: Как только вы заметите сбой на дисплее, пропадают цифры или показания не соответствуют с примерными значениями, значит пришла пора заменить батарею. Маленькая крестовая отвертка – задняя крышка – новый элемент 9 V.

Сектор Диод.

Одно         положение        для         проверки        диодов         на         пробой         (на         маленькое

сопротивление) и на обрыв ( бесконечное сопротивление). Принципы измерения основаны на работе Омметра. Также как и hFE.

Сектор hFE Для измерения транзисторов имеется панелька с указанием в какое гнездо какую ножку транзистора помещать. Проверяются транзисторы обеих п – р – п и р – п -р проводимостей на пробой, обрыв и на большее отклонение от стандартных сопротивлений переходов.

Источник: 

           Как пользоваться мультиметром Этот вопрос часто задаётся на форуме, поэтому и был написан этот краткий гайд. Для примера был взят самый распространённый и дешевый китайский мультиметр за 150 рублей. Точности от такого приборчика ожидать не стоит, но со своими обязанностями он вполне справляется. Начну с расшифровки переключателя.

DCV – измерение постоянного напряжения

ACV– измерение переменного напряжения
DCA – измерение постоянного тока
hfe – измерение параметров транзистора temp – измерение температуры, при помощи специального датчика Измерение сопротивления – значок Омы, у меня нет его на клавиатуре) На нормальных приборах бывает знак HZ – измерение частоты, АСА – измерение переменного тока, память результатов и.т. д

Измеряем постоянное напряжение, проверяем батарейку типа Крона. Для этого выбираем соответствующий предел измерения переключателем, 20 вольт в этом, конкретном случае, вполне подходит. На бедующее, если напряжение(ток, сопротивление) неизвестно даже примерно, начинаем измерение с максимальной величины, иначе прибор может выйти из строя..

На приборчике есть красный и чёрный провод. Красный, как и всегда в электротехнике, принято считать плюсом. Включаем его в плюсовой коннектор мультиметра. который не трудно найти, если прочитать надписи около гнёзд прибора.

Если полярность измеряемого напряжения перепутать, ничего страшного не произойдёт, просто перед величиной на дисплее возникнет минус.

Вот она китайская точность, в дохлой Кроне обнаружилось почти 10 вольт…

Теперь проведём измерение переменного напряжения бытовой электросети. Выбираем нужное положение переключателя и меряем. К этой процедуре всегда надо относиться внимательно, при неверном положении прибор выйдет из строя. Излишне говорить, что перед такими опытами надо убедиться в исправности изоляции проводов и щупов тестера.

Измерение сопротивления. Тут всё по такому же сценарию. Устанавливаем предел измерения мультиметра и мерим. 677 Ом, почти суперская точность, номинал резистора 680!

Тут же и есть возможность проверки диодов, но в этом приборчике функция не работала с рождения. При её помощи можно определить полярность диода, проверить р-n переходы транзистора. Измерение постоянного тока проводится включением мультиметра в разрыв цепи. Не путать с измерением напряжения!

Есть и ещё одна тонкость, которую надо знать. Для измерения тока свыше 0.2А(лампочка от карманного фонарика), помимо установки переключателя, надо ещё и поменять гнездо на самом приборе! Иначе что? Да. угадали, из китайской мыльницы пойдёт дым)

Мы будем измерять ток потребления маленькой лампочки, поэтому предела 200ма должно хватить.

Для измерения больших токов существуют вот такие забавные мультиметры с клипсой-прищепкой.

Работает такой прибор просто, по принципу трансформатора, где первой обмоткой является провод, в котором надо измерить ток. Следует заметить одно, прицеплять эту прищепку надо только на один провод.

Таким девацсом можно безопасно измерить ток более 1000 Ампер в промышленном проводе, толщиной с детскую руку.

оригинал

Источник: http://radio-hobby.org/modules/news/article.php?storyid=229

Как проверить транзистор мультиметром?

Обычным цифровым мультиметром можно не только измерять напряжения, токи и сопротивления, но и определять исправность полупроводниковых приборов, а также оценивать некоторые их технические характеристики. Прежде чем разбираться, как проверить транзистор мультиметром, следует понять структуру и принцип работы этого элемента электрических схем.

Содержание статьи

Биполярный транзистор, часто называемый просто транзистором, – это полупроводниковый электронный компонент, имеющий три или более вывода, который может выполнять функции устройства, управляющего током в электрической цепи. Он используется в усилительных каскадах, генераторах и преобразователях электрических сигналов.

Работа транзистора основана на взаимодействии двух электронно-дырочных переходов. Они образуются между тремя участками полупроводников, соседние из которых обладают различной проводимостью: p-типа (от английского positive – положительный) и n-типа (negative – отрицательный).

Также данную структуру можно представить в виде упрощенной аналогии: транзистор образован двумя встречно включенными диодами с выводом их общей точки. Средняя область именуется базой, две крайние – коллектором и эмиттером. В зависимости от порядка чередования участков биполярные транзисторы могут быть двух типов: n-p-n и p-n-p.

Их обозначения на электрических схемах, структуры и диодные аналогии представлены на картинке.

Если между двумя выводами транзистора подключить постоянное напряжение так, чтобы p-выводу соответствовал положительный полюс, а n-выводу – отрицательный, то данный переход будет пропускать электрический ток или находиться в открытом состоянии.

При обратной полярности переход закрывается, то есть характеризуется очень большим сопротивлением. Иными словами, работоспособный транзистор между базой и коллектором, а также базой и эмиттером должен обладать проводимостью только в одном направлении.

Но при подключении к выводам эмиттер–коллектор с любой полярностью существование тока в цепи невозможно.

к содержанию ↑

Проверка исправности транзистора мультиметром

Для проверки транзистора необходимо переключить мультиметр в режим измерителя сопротивлений (омметра) с пределом 2 кОм или включить функцию «прозвонки» цепи.

Далее требуется определить, где у тестируемого прибора выводы базы, эмиттера и коллектора. Для этих целей можно воспользоваться справочниками или технической документацией.

Теперь осталось лишь оценить проводимость переходов транзистора. Рассмотрим порядок проверки компонента p-n-p типа.

  1. Отрицательный щуп мультиметра (как правило, он черного цвета) нужно подсоединить к выводу базы, положительный (красный) – сначала к коллектору, затем к эмиттеру. Если транзистор исправен, измеренные значения сопротивления должны быть от 500 до 1200 Ом.
  2. Красный щуп переместить на базу, черным поочередно коснуться двух других выводов. Мультиметр должен показать «1», что означает выход измеряемой величины за границу диапазона, то есть достаточно высокое сопротивление перехода.
  3. Коснуться щупами ножек транзистора, соответствующих коллектору и эмиттеру. При любой полярности измерительный прибор должен показывать «1».
  4. Если сопротивление хотя бы одного из переходов в обоих направлениях стремится к бесконечности (на экране мультиметра отображается «1») или почти равно нулю, транзистор неисправен. В первом случае, скорее всего, произошел обрыв, во втором – пробой перехода.

Проверка n-p-n транзистора осуществляется аналогично, но для его открытия и определения сопротивления перехода в пределе 2 кОм к базе необходимо подключать положительный щуп прибора.

А как проверить транзистор мультиметром, если неизвестно назначение выводов компонента? В этом случае можно выполнить измерение сопротивлений между всеми возможными комбинациями ножек в обоих направлениях – итого шесть вариантов.

Здесь проще всего найти базу: по парам контактов, при подключении к которым проводимость наблюдается только в одном направлении.

Чтобы определиться с назначением двух других выводов, следует запомнить, что тот переход, сопротивление которого меньше, будет коллекторным.

к содержанию ↑

Определение коэффициента усиления по току

Кроме проверки исправности транзистора, иногда возникает задача определения коэффициента усиления по току, обозначаемого h21. Этот параметр показывает отношение приращения тока коллектора к изменению вызвавшего его тока базы.

В технических характеристиках прибора, как правило, указывается диапазон значений коэффициента, который может быть достаточно широк.

Если потребуется подобрать несколько транзисторов, наиболее близких по свойствам, окажется полезной функция измерения указанного параметра.

Для определения коэффициента h21 мультиметр должен иметь специальное гнездо – как на картинке.

Нужно установить переключатель в режим «hFE» и вставить выводы транзистора в соответствующие разъемы (B – база, E – эмиттер, C – коллектор). На экране прибора появится значение коэффициента усиления по постоянному току.

Таким образом, проверить исправность транзистора и определить его параметры совсем несложно, если знать принцип работы этого полупроводникового компонента и иметь обычный цифровой мультиметр.

Источник: https://TheDifference.ru/kak-proverit-tranzistor-multimetrom/

Учимся пользоваться мультиметром

Наши первые шаги в освоении этого прибора будем производить на распостраненном китайском мультиметре DT 830.Стоит он относительно недорого около 4 у.е.

Включение прибора осуществляется автоматически при установке переключателя в нужный предел измерений. Итак выясним что это за пределы:

DCV – измерение постоянного напряжения

ACV – измерение переменного напряжения

DCA – измерение постоянного тока

hFE – измерение коэффициента передачи транзистора

– генератор прямоугольных импульсов

o))) – прозвонка

-измерение сопротивления

Приступим к измерениям.

При измерении постоянного напряжения ставим переключатель в положение (DCV), и так как у нас батарейка типа Крона выбираем предел 20 вольт.На будущее, если нам даже приблизительно неизвестна величина напряжения или тока, то лучше начинать с максимальной величины предела. Берем щупы прибора и соответственно касаемся выводов батареи.Красным к плюсу, а черным к минусу.рис 1.

Рис. 1.

На дисплеи высветится значение напряжения, в нашем случаи это 8.59 В. Если же вы перепутаете полярность(подключили красный щуп к минусу, а черный к плюсу) то ничего страшного не произойдет просто на индикаторе высветится знак “-” рис 2.

Рис. 2.

Если же на индикаторе высветилась 1 рис 3.

Рис. 3.

значит измеряемое вами напряжение или ток выше того предела который вы установили.В этом случаи вам необходимо переключить переключателем предел выше того который выставлен в данный момент.Если этого не сделать то через некоторый момент времени прибор подаст звуковой сигнал, и если после этого ничего не сделать то прощай мой любимый мультиметр.

Измерение переменного напряжения аналогично измерению постоянного напряжения описанного выше с той лишь разницей, что всеравно куда подключать красный, а куда черный щупы.

Для измерения постоянного тока собираем простую цепь состоящую из блока питания и какой нибудь нагрузки (возьмем к примеру обычную лампочку). Подключаем щупы как показано на рис 4.

Рис. 4.

На дисплее высветилось 0.34 .Значит в нашей цепи протекает ток порядка 340 мА.
Примечание. Для измерения токов выше 200 мА необходимо переключателем выставить предел на 10 А, а красный щуп вставить в верхнее гнездо.

Генератор.

Генератор мультиметра генерирует прямоугольные импульсы с частотой следования 50 Гц и амплитудой примерно 5 В. Эта функция необходима для проверки каскадов усилителей т.е пропускает и усиливает ли он сигнал или нет. Простой пример: Нету звука в комп. колонках.

Подключаем мультиметр к колонкам и если слышим жужжащий звук, радуемся колонки целы.Значит проверяем Sound Card и т.д.

Прозвонка.Эта функция необходима для прозвонки проводов.Берем два длинных провода подсоеденяем щупы к началу и концу провода. Если слышим сигнал значит мы нашли начало и конец этого провода, если нет то подсоеденяем щуп к другому концу.Услушили звук? Нет! Тогда провод переломан.

Режим hFE- измерение коэффициента передачи транзистора. Для измерения берем транзистор в корпусе КТ-26 и вставляем в специальный разъем рис 5.

Рис. 5.

напротив дырок которого нанесены надписи E B C (эмиттер , база , коллектор), а снизу NPN(слева) и PNP(справа) (структура транзистора). Если структура и цоколевка транзистора вам известна то вставляем его в соответствующие дырочки, если же нет то методом научного тыка добиваемся показаний прибора.

https://www.youtube.com/watch?v=erf-mcvW5_o

Измерение сопротивления тоже не требует особых навыков, для этого необходимо лишь подключить исследуемый резистор к щупам
и установлением необходимого предела добиться показаний прибора рис 6. В данном случаи сопротивление исследуемого  резистора 8.3 кОм.

Рис. 6.

Постскриптум.

Если на дисплее высвечивается значок батареи рис. 7,

Рис.7.

ее необходимо заменить в противном случае возрастет погрешность и мультиметр будет вам бессовестно врать.

В некоторых случаях для удобства пользованием щупами советую надеть на них “крокодилы” рис. 8.

Рис. 8.

Если у вас перестал работать генератор , а у меня это было несколько раз из-за того, что я подал большое напряжение на щупы в пределе измерений сопротивления, то посмотрите предохранитель который находиться внутри корпуса на плате в 100% случаях он сгорает.

Напоследок.
Если пределов измерений данного мультиметра вам не хватает (мне лично не хватило), то советую приобрести мультиметр типа DT 9208 A рис.9 и рис. 10,

Рис. 9.

Рис. 10.

стоит он правда в 3,5 раза дороже.Но помимо того, что может измерить описанный выше DT 830, его старший брат может измерить: Переменный ток до 20 А Емкость до 20 мкФ Сопротивление до 200 МОм Частоту до 20 кГц Логические уровни (1 и 0)

Температуру

Плюс имеется, кнопка включения/выключения, кнопка HOLD нажатие которой позволяет удержать показания, поднимающийся на 80 град дисплей, силиконовый чехол с подставкой и держателями щупов и автоматическое выключение при неактивности прибора.

© Савицкий А. 2006 г.

Данная статья является собственностью сайта HamLab(Схематехник). Перепечатка запрещена!

Источник: http://hamlab.net/begun/mult.html

Как пользоваться цифровым мультиметром. Часть 3 (ток, диоды, транзисторы, емкость)

Здравствуйте, уважаемые читатели сайта «Заметки электрика».

Сегодня Вашему вниманию я представляю третью часть статьи о том, как пользоваться мультиметром.

В этой части мы поговорим об измерении переменного и постоянного тока, сопротивления диодов, коэффициента усиления транзисторов и емкости конденсаторов.

А вот предыдущие части статей:

Как пользоваться мультиметром при измерении тока

При измерении с помощью мультиметра («тестера») значения постоянного или переменного тока в цепи, необходимо красный измерительный щуп вставить в гнездо «mA», если ток в измеряемой цепи не превышает 200 (мА), или в гнездо «20Аmax», если ток в цепи превышает 200 (мА). Черный щуп вставляем в гнездо «com».

При замере в цепи переменного тока переключатель мультиметра устанавливаем в диапазон  переменного тока (~А). Этот диапазон выделен красным цветом и в нем имеются следующие пределы измерения: 20  (мА) и 20 (А).

При замере постоянного тока в цепи переключатель мультиметра устанавливаем в диапазон  постоянного тока (-А). Этот диапазон выделен зеленым цветом и в нем имеются следующие пределы измерения: 2 (мА), 20 (мА), 200 (мА) и 20 (А).

Если Вы перепутаете пределы измерения тока, то мультиметр выйдет из строя. Также не стоит забывать о режиме, который у Вас включен.

Расскажу случай из практики. Один мой коллега проводил измерение переменного тока в цепи катушки контактора, а затем решил провести измерение напряжения питающей сети.

Переключатель мультиметра он установил на измерение напряжения, а вот щупы переставить забыл. При касании щупами потенциалов питающего напряжения произошло короткое замыкание.

В итоге: мультиметр сгорел, коллега не пострадал, но отделался серьезным испугом.

А вообще я не рекомендую Вам пользоваться мультиметром при измерении токов больше 200 (мА). Для этих целей можно, более безопасно (без разрыва силовой цепи), применять электроизмерительные клещи.

Проверка диодов с помощью мультиметра

Чтобы проверить с помощью мультиметра диод, необходимо измерительные щупы подключить следующим образом:

Переключатель мультиметра («тестера») устанавливаем в положение «прозвонка».  В качестве примера проверим диод Д226Б.

Красный щуп соединяем с анодом «+» диода, а черный с катодом «-» (прямое подключение). На дисплее мультиметра отобразиться значение прямого сопротивления диода, равное 597 (Ом).

Если щупы поменять местами (обратное подключение), то на дисплее появится значение «1», при условии, что диод исправный.

Измерение емкости конденсаторов

Перейдем сразу к примеру. Берем электролитический конденсатор емкостью 10 (мкФ) и подсоединяем его выводы (ножки) к гнезду Сх.

Переключатель мультиметра должен находиться в диапазоне (Сх), у которого существует 5 пределов измерения: 20 (мкФ), 2 (мкФ),  200 (нФ), 20 (нФ) и 2000 (пФ).

Зная емкость нашего конденсатора, устанавливаем переключатель мультиметра на предел 20 (мкФ) и смотрим величину измеренной емкости. На дисплее фиксируем полученное значение емкости конденсатора, которое равно 9,43 (мкФ).

Как пользоваться мультиметром при проверке транзисторов

Для проверки коэффициента усиления транзистора по постоянному току, необходимо переключатель мультиметра поставить в положение «hFE». В качестве примера проверим биполярный транзистор МП42Б с проводимостью P-N-P.

Вывода этого транзистора (эмиттер, база, коллектор) вставляем в соответствующие разъемы на мультиметре: E, B и С.

На дисплее мультиметра отобразится коэффициент усиления нашего транзистора.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

Источник: http://zametkielectrika.ru/kak-polzovatsya-multimetrom-chast-3-tok-diody-tranzistory-emkost/

Как проверить транзисторы мультиметром — алгоритм действий

В процессе ремонта электроники зачастую приходится проверять работоспособность самых распространенных радиодеталей — транзисторов.

Существует специально предназначенный для этого прибор — R/L/C/Transistor-metr, но далеко не всегда он имеется в наличии.

Потому полезно знать, как проверить транзисторы мультиметром, о чем будет рассказано далее.

Виды транзисторов

Транзистор состоит из материалов с особыми электрическими свойствами — полупроводников. Последние бывают двух типов:

  1. с n-проводимостью (электронной);
  2. с p-проводимостью (дырочной).

Простейшим представителем полупроводниковых элементов является диод, содержащий один p-n переход.

Транзисторы устроены сложнее. Существует две их разновидности: биполярные и полевые.

Биполярные

Также делятся на две подгруппы:

  1. с n-p-n переходом;
  2. с p-n-p переходом.

Составляющие биполярного транзистора называются эмиттером, коллектором и базой. Если представить данный элемент в виде двух соединенных диодов, то базой будет их точка сопряжения.

Для проверки биполярного прибора требуется распознать его тип (n-p-n или p-n-p) и — определить назначение выводов (база, эмиттер и коллектор).

Полевые

Также делятся на два вида:

  1. n-канальные;
  2. p-канальные.

В полевом транзисторе сопротивление токопроводящего участка регулируется электрическим полем.

Составляющие элемента называются истоком, стоком и затвором. Ток движется из истока в сток, регулировка осуществляется затвором.

Конструкция современных полевых транзисторов дополнена диодом, установленным между истоком и стоком.

Определение вывода базы (затвора)

Наиболее простой способ определить назначение выводов транзистора (цоколевку) — скачать на него документацию. Поиск ведется по маркировке на корпусе. Этот буквенно-цифровой код набирают в строке поиска и далее добавляют «даташит».

Если документацию обнаружить не удается, базу и прочие выводы биполярного транзистора распознают исходя из его особенностей:

  • p-n-p транзистор: открывается приложением к базе отрицательного напряжения;
  • n-p-n транзистор: открывается приложением к базе положительного напряжения.

Действуют так:

  1. Настраивают мультиметр: красный щуп подсоединяют к разъему со значком «V/» (плюсовой потенциал), черный — к разъему COM (минусовой потенциал), а  переключатель устанавливают в режим «прозвонка» или, если такого нет, в сектор измерения сопротивления (значок «») на верхнюю позицию (обычно «2000 Ом»).
  2. Определяют базу. Красный щуп подсоединяют к первому выводу транзистора, черный — поочередно к остальным. Затем красный подсоединяют ко второму выводу, черный снова по очереди к 1-му и 3-му. Признак того, что красный подсоединен к базе, — одинаковое поведение прибора при контакте черного щупа с другими выводами. Прибор оба раза пискнул или показал на дисплее некое конечное сопротивление — транзистор относится к n-p-n типу; прибор оба раза промолчал или отобразил на дисплее «1» (отсутствие проводимости) — транзистор принадлежит p-n-p типу.
  3. Распознают коллектор и эмиттер. Для этого к базе подсоединяют щуп, соответствующий типу проводимости: для n-p-n транзистора – красный, для p-n-p транзистора: черный.

Конструкция полевого транзистора с управляющим p-n-переходом и канлом n-типа а) с затвором со стороны подложки; b) с диффузионным затвором

Второй щуп поочередно подсоединяют к другим выводам. При контакте с коллектором на дисплее отображается меньшее значение сопротивления, чем с эмиттером.

Выводы полевого транзистора обычно промаркированы:

  • G: затвор;
  • S: исток;
  • D: сток.

Если маркировки нет, затвор обнаруживают по той же схеме, что и у биполярного транзистора.

Полевые транзисторы чувствительны к статическому электричеству. Из-за этого их выводы при хранении закорачивают фольгой, а перед началом манипуляций надевают антистатический браслет или хотя бы касаются заземленного металлического предмета (приборный шкаф), чтобы снять статический заряд.

Проверка транзистора мультиметром

Если назначение выводов известно, биполярный транзистор проверяют так:

  1. Готовят мультиметр, как описывалось выше: переключатель переводят на позицию «2К» в секторе «» (измерение сопротивления) или в режим прозвонки, черный щуп включают в разъем «COM», красный — в «V/».
  2. Подсоединяют щупы к эмиттеру и коллектору, затем меняют их местами. В норме в обоих случаях прибор сигнал не подает и отображает «1». Некое конечное сопротивление свидетельствует о пробое.
  3. Подсоединяют к базе щуп, соответствующий ее типу проводимости:«дырочная» база (транзистор n-p-n типа) — красный щуп, «электронная» (транзистор p-n-p типа) — черный.
  4. Второй щуп по очереди подсоединяют к эмиттеру и коллектору. Результаты теста:  мультиметр издает сигнал, на дисплее отображается сопротивление от 500 до 1200 Ом — транзистор исправен; сигнала нет и на дисплее единица — обрыв внутренней цепи.
  5. Подсоединяют к базе другой щуп, а второй по очереди коротят с эмиттером и коллектором. Результаты: сигнала нет, на дисплее «1» — транзистор исправен; прибор пищит, на дисплее некое конечное значение сопротивления — транзистор пробит.

Полевой прибор проверяется так:

  1. С элемента снимают статическое электричество.
  2. Настраивают мультиметр по обычной схеме: черный щуп — в порт «COM»; красный — в порт «V/»; переключатель — на позицию «2К» сектора «» (измерение сопротивления).
  3. Проверяют сопротивление между стоком и истоком: в норме тестер отображает 400 – 700 Ом.
  4. Закорачивают исток и сток с целью обнулить емкости переходов, после чего меняют полярность и повторяют измерения. Если транзистор исправен, показания меняются в большую или меньшую сторону на величину порядка 10% (40 – 70 Ом). Бесконечно большое сопротивление между истоком и стоком (на дисплее отображается «1») свидетельствует о неисправности прибора.
  5. Проверяют наличие односторонней проводимости между истоком и затвором, затем — между стоком и затвором. При одной полярности измерений мультиметр покажет сопротивление в 400 – 700 Ом, при другой — единицу. Какой именно щуп при этом подсоединяется к затвору — зависит от типа транзистора (n-канальный или p-канальный). Если проводимость на линиях «сток-затвор» или «исток-затвор» двусторонняя, то есть прибор при любой полярности отображает некое конечное значение сопротивления, транзистор пробит.
  6. При проверке n-канального полевика черный щуп подсоединяют к стоку, красный — к истоку. Величину сопротивления канала записывают.
  7. Красный щуп подсоединяют к затвору, что приведет к частичному открытию перехода.
  8. Возвращают красный щуп к истоку и замеряют сопротивления канала. Если транзистор исправен, сопротивление понизится (из-за частичного открытия).
  9. Черный щуп подсоединяют к затвору, что приведет к закрытию перехода.
  10. Возвращают черный щуп к стоку и замеряют сопротивление. Если транзистор исправен, оно приобретает первоначальное значение, которое было записано.

Схема проверки транзистора

Пункты 6 – 10 проверки для p-канального полевого транзистора выполняют с противоположной полярностью — меняя красный и черный щупы местами.

Для открытия силовых транзисторов создаваемого мультиметром напряжения недостаточно. В этом случае применяют источник питания на 12 В, подключаемый через резистор с сопротивлением 1500 – 2000 Ом.

Проверка без выпаивания

Биполярный транзистор можно проверять без выпаивания, если схема не зашунтирована низкоомными резисторами. В противном случае мультиметр вместо сопротивления в 500 – 1200 Ом покажет всего несколько десятков или даже единиц. Тогда выпаивание требуется обязательно.

Полевые транзисторы зашунтированы почти всегда, поэтому их перед проверкой приходится выпаивать.

Определение коэффициента усиления

При выходе прибора из строя ему на замену подбирают другой с аналогичным коэффициентом усиления. Для определения данного параметра нужен мультиметр с функцией проверки транзисторов. На панели переключателя такого прибора имеется сектор с пометкой «hFE». В нем есть два ряда портов по три в каждой, которые обозначаются следующим образом:

Схема проверки полевого транзистора

Это тип биполярного транзистора, который нужно подключать к данному ряду портов.  О назначении каждого порта судят по буквенному обозначению:

  • B: база;
  • C: коллектор;
  • E: эмиттер.

Подключив выводы транзистора в соответствующие порты подобающего ряда, на дисплее пользователь видит значение коэффициента усиления.

Проверка составного транзистора

Составной транзистор включает в себя два обычных биполярных транзистора, а иногда и больше. Стандартная методика проверки мультиметром к нему неприменима.

Необходимо собрать электросхему, запитанную от постоянного источника питания на 12 В. «Плюс» подключается через лампочку к коллектору, «минус» — к эмиттеру.

База через резистор подключается к переключателю, позволяющему подать на нее то «плюс», то «минус».

Сопротивление резистора рассчитывается по формуле:

R = U х h21Э /I,

где

  • U — входное напряжение, В;
  • H21Э — минимальный коэффициент усиления данного транзистора;
  • I — ток нагрузки, А.

Рассмотрим следующий пример:

  • проверяемый составной транзистор: КТ827А (h21Э = 750);
  • мощность лампы: 5 Вт.

Ток нагрузки составит: I = 5 / 12 = 0.42 А.

Тогда сопротивление резистора: R = 12 * 750 / 0.42 = 21600 Ом, принимаем R = 21 кОм.

Проверка осуществляется в два этапа:

  1. При помощи переключателя на базу подается «плюс». Если он исправен, загорится лампочка.
  2. Переключателем закорачивают базу на «минус».

Если он исправен, лампочка потухнет.

Даже самый простой мультиметр, не оснащенный функцией определения параметров полупроводниковых приборов, поможет проверить работоспособность транзистора. Если же требуется подобрать вместо сгоревшего транзистора эквивалентный, придется искать модель тестера с упомянутой функцией.

Источник: https://proprovoda.ru/instrument/izmeritelnyj/multimetr/kak-proverit-tranzistory.html

Как проверить работоспособность разных видов биполярных транзисторов мультиметром?

Перед тем как собрать какую-то схему или начать ремонт электронного устройства необходимо убедиться в исправности элементов, которые будут установлены в схему. Даже если эти элементы новые, необходимо быть уверенным в их работоспособности. Обязательной проверке подлежат и такие распространенные элементы электронных схем как транзисторы.

Для проверки всех параметров транзисторов существуют сложные приборы. Но в некоторых случаях достаточно провести простую проверку и определить годность транзистора. Для такой проверки достаточно иметь мультиметр.

Виды транзисторов и их применение

В технике используются различные виды транзисторов – биполярные, полевые, составные, многоэмиттерные, фототранзисторы и тому подобные. В данном случае будут рассматриваться наиболее распространенные и простые — биполярные транзисторы.

Такой транзистор имеет 2 р-n перехода. Его можно представить как пластину с чередующимися слоями с разными типами проводимости.

Если в крайних областях полупроводникового прибора преобладает дырочная проводимость (p), а в средней – электронная проводимость (n), то прибор называется транзистор р-n-p. Если наоборот, то прибор называется транзистором типа n-p-n.

Для разных видов биполярных транзисторов меняется полярность источников питания, которые подключаются к нему в схемах.

Наличие в транзисторе двух переходов позволяет представить в упрощенном виде его эквивалентную схему как последовательное соединение двух диодов.

При этом для p-n-p прибора в эквивалентной схеме между собой соединены катоды диодов, а для n-p-n прибора – аноды диодов.

В соответствии с этими эквивалентными схемами и производится проверка биполярного транзистора мультиметром на исправность.

Порядок проверки устройства — следуем по инструкции

Процесс измерений состоит из следующих этапов:

  • проверка работы измерительного прибора;
  • определение типа транзистора;
  • измерение прямых сопротивлений эмиттерного и коллекторного переходов;
  • измерение обратных сопротивлений эмиттерного и коллекторного переходов;
  • оценка исправности транзистора.

Перед тем, как проверить биполярный транзистор мультиметром, необходимо убедиться в исправности измерительного прибора. Для этого вначале надо проверить индикатор заряда батареи мультиметра и, при необходимости, заменить батарею.

При проверке транзисторов важна будет полярность подключения. Надо учитывать, что у мультиметра на выводе «COM» имеется отрицательный полюс, а на выводе «VΩmA» – плюсовой.

Для определенности к выводу «COM» желательно подключить щуп черного цвета, а к выводу «VΩmA» -красного.

Чтобы к выводам транзистора подключить щупы мультиметра правильной полярности, необходимо определить тип прибора и маркировку его выводов. С этой целью необходимо обратиться к справочнику или найти описание транзистора в Интернете.

На следующем этапе проверки переключатель операций мультиметра устанавливается в положение измерения сопротивлений. Выбирается предел измерения в «2к».

Перед тем, как проверить pnp транзистор мультиметром, надо минусовой щуп подключить к базе устройства. Это позволит измерить прямые сопротивления переходов радиоэлемента типа p-n-p. Плюсовой щуп подключается по очереди к эмиттеру и коллектору. Если сопротивления переходов равны 500-1200 Ом, то эти переходы исправны.

При проверке обратных сопротивлений переходов к базе транзистора подключается плюсовой щуп, а минусовой по очереди подключается к эмиттеру и коллектору.

Если эти переходы исправны, то в обоих случаях фиксируется большое сопротивление.

Проверка npn транзистора мультиметром происходит по такой же методике, но при этом полярность подключаемых щупов меняется на противоположную. По результатам измерений определяется исправность транзистора:

  1. если измеренные прямое и обратное сопротивления перехода большие, то это значит, что в приборе имеется обрыв;
  2. если измеренные прямое и обратное сопротивления перехода малы, то это означает, что в приборе имеется пробой.

В обоих случаях транзистор является неисправным.

Оценка коэффициента усиления

Характеристики транзисторов обычно имеют большой разброс по величине. Иногда при сборке схемы требуется использовать транзисторы, у которых имеется близкий по величине коэффициент усиления по току. Мультиметр позволяет подобрать такие транзисторы. Для этого в нем имеется режим переключения «hFE» и специальный разъем для подключения выводов транзисторов 2 типов.

Подключив в разъем выводы транзистора соответствующего типа можно увидеть на экране величину параметра h21.

Выводы:

  1. С помощью мультиметра можно определить исправность биполярных транзисторов.
  2. Для проведения правильных измерений прямого и обратного сопротивлений переходов транзистора необходимо знать тип транзистора и маркировку его выводов.
  3. С помощью мультиметра можно подобрать транзисторы с желаемым коэффициентом усиления.

Видео о том, как проверить транзистор мультиметром

Источник: http://elektrik24.net/instrumentyi/izmeritelnyie/multimetr/kak-proverit-tranzistor.html

Расшифровка обозначений на мультиметре. Что означают кнопки и значки?

Всем привет! Сегодня мы снова  поговорим о таком приборе, как мультиметр.

Этот прибор, который еще называют тестером предназначен для измерения основных характеристик электрической цепи, электроприборов, в автомобилях – в общем везде, где есть электричество.

 Мы уже немножко разбирали в этой статье про мультиметры, сегодня более подробно коснемся того, что и как им можно мерить.  Когда-то мультиметр был уделом лишь электриков. Однако сейчас им пользуются многие.

Существует много различных моделей мультиметров. Есть класс приборов для измерений только определенных характеристик, есть универсальные тестеры для проверки деталей и их харакеристик. Мультиметры условно сводятся к двум типам:

  1. аналоговые мультиметры – данные отображаются стрелкой. Это мультиметры, которые до сих пор используют люди старой закалки, они часто не могут  или не хотят работать с современными приборами;
  2. цифровые мультиметры – данные отображаются цифрами. Этот вид тестеров пришел на смену стрелочным, я например, предпочитаю пользоваться таким прибором.

Поскольку цифровые приборы являются сейчас самыми распространенными, то описание этого прибора мы и рассмотрим на его примере. Ниже приведены основные обозначения, которые встречаются, практически на любой модели мультиметра.

Если осмотреть переднюю панель мультиметра, то на ней можно выделить восемь блоков с различными обозначениями:

Что показывает мультиметр при выборе различных режимов работы?

Они располагаются вокруг круглого переключателя, с помощью которого можно устанавливать необходимый режим. На переключателе место контакта обозначено точкой или рельефным треугольничком. Обозначения разделены на сектора. Практически все современные мультиметры имеют подобную разбивку и круглый переключатель.

 сектор OFF. Если установить переключатель в это положение – прибор выключен. Есть и модели, которые автоматически выключаются через некоторое время. Это очень удобно, потому что я например во время работы его забываю выключать, да и не удобно когда меряешь, потом паяешь все время выключать его. Батареи хватает надолго.

2 и  8 – два сектора с обозначением V, этим символом обозначается напряжение в вольтах.

Если просто символ V – то измеряется постоянное напряжение, если V~, измеряется переменное напряжение. Стоящие рядом цифры показывают диапазон измеряемого напряжения.

Причем постоянное измеряется от 200m (милливольт) до 1000 вольт, а переменное от 100 до 750 вольт.

3 и 4 – два сектора для измерения постоянного тока. Красным выделен всего один диапазон для измерения тока до 10 ампер. Остальные диапазоны составляют: от 0 до 200, 2000 микроампер, от 0 до 20, 200 миллиампер.

В обычной жизни  десяти ампер вполне хватает, при измерении силы тока мультиметр включается в цепь путем подключения щупов в нужное гнездо, специально предназначенное для измерения силы тока.

Как-то раз я  впервые попробовал измерить силу тока в розетке своим первой простенькой моделью тестера. Пришлось менять щупы на новые — штатные выгорели.

5  (пятый) сектор.  Значок похож на Wi-Fi

Источник: https://fast-wolker.ru/rasshifrovka-oboznachenij-na-multimetre.html

Ссылка на основную публикацию
Adblock
detector
",css:{backgroundColor:"#000",opacity:.6}},container:{block:void 0,tpl:"
"},wrap:void 0,body:void 0,errors:{tpl:"
",autoclose_delay:2e3,ajax_unsuccessful_load:"Error"},openEffect:{type:"fade",speed:400},closeEffect:{type:"fade",speed:400},beforeOpen:n.noop,afterOpen:n.noop,beforeClose:n.noop,afterClose:n.noop,afterLoading:n.noop,afterLoadingOnShow:n.noop,errorLoading:n.noop},o=0,p=n([]),h={isEventOut:function(a,b){var c=!0;return n(a).each(function(){n(b.target).get(0)==n(this).get(0)&&(c=!1),0==n(b.target).closest("HTML",n(this).get(0)).length&&(c=!1)}),c}},q={getParentEl:function(a){var b=n(a);return b.data("arcticmodal")?b:(b=n(a).closest(".arcticmodal-container").data("arcticmodalParentEl"),!!b&&b)},transition:function(a,b,c,d){switch(d=null==d?n.noop:d,c.type){case"fade":"show"==b?a.fadeIn(c.speed,d):a.fadeOut(c.speed,d);break;case"none":"show"==b?a.show():a.hide(),d();}},prepare_body:function(a,b){n(".arcticmodal-close",a.body).unbind("click.arcticmodal").bind("click.arcticmodal",function(){return b.arcticmodal("close"),!1})},init_el:function(d,a){var b=d.data("arcticmodal");if(!b){if(b=a,o++,b.modalID=o,b.overlay.block=n(b.overlay.tpl),b.overlay.block.css(b.overlay.css),b.container.block=n(b.container.tpl),b.body=n(".arcticmodal-container_i2",b.container.block),a.clone?b.body.html(d.clone(!0)):(d.before("
"),b.body.html(d)),q.prepare_body(b,d),b.closeOnOverlayClick&&b.overlay.block.add(b.container.block).click(function(a){h.isEventOut(n(">*",b.body),a)&&d.arcticmodal("close")}),b.container.block.data("arcticmodalParentEl",d),d.data("arcticmodal",b),p=n.merge(p,d),n.proxy(e.show,d)(),"html"==b.type)return d;if(null!=b.ajax.beforeSend){var c=b.ajax.beforeSend;delete b.ajax.beforeSend}if(null!=b.ajax.success){var f=b.ajax.success;delete b.ajax.success}if(null!=b.ajax.error){var g=b.ajax.error;delete b.ajax.error}var j=n.extend(!0,{url:b.url,beforeSend:function(){null==c?b.body.html("
"):c(b,d)},success:function(c){d.trigger("afterLoading"),b.afterLoading(b,d,c),null==f?b.body.html(c):f(b,d,c),q.prepare_body(b,d),d.trigger("afterLoadingOnShow"),b.afterLoadingOnShow(b,d,c)},error:function(){d.trigger("errorLoading"),b.errorLoading(b,d),null==g?(b.body.html(b.errors.tpl),n(".arcticmodal-error",b.body).html(b.errors.ajax_unsuccessful_load),n(".arcticmodal-close",b.body).click(function(){return d.arcticmodal("close"),!1}),b.errors.autoclose_delay&&setTimeout(function(){d.arcticmodal("close")},b.errors.autoclose_delay)):g(b,d)}},b.ajax);b.ajax_request=n.ajax(j),d.data("arcticmodal",b)}},init:function(b){if(b=n.extend(!0,{},a,b),!n.isFunction(this))return this.each(function(){q.init_el(n(this),n.extend(!0,{},b))});if(null==b)return void n.error("jquery.arcticmodal: Uncorrect parameters");if(""==b.type)return void n.error("jquery.arcticmodal: Don't set parameter \"type\"");switch(b.type){case"html":if(""==b.content)return void n.error("jquery.arcticmodal: Don't set parameter \"content\"");var e=b.content;return b.content="",q.init_el(n(e),b);case"ajax":return""==b.url?void n.error("jquery.arcticmodal: Don't set parameter \"url\""):q.init_el(n("
"),b);}}},e={show:function(){var a=q.getParentEl(this);if(!1===a)return void n.error("jquery.arcticmodal: Uncorrect call");var b=a.data("arcticmodal");if(b.overlay.block.hide(),b.container.block.hide(),n("BODY").append(b.overlay.block),n("BODY").append(b.container.block),b.beforeOpen(b,a),a.trigger("beforeOpen"),"hidden"!=b.wrap.css("overflow")){b.wrap.data("arcticmodalOverflow",b.wrap.css("overflow"));var c=b.wrap.outerWidth(!0);b.wrap.css("overflow","hidden");var d=b.wrap.outerWidth(!0);d!=c&&b.wrap.css("marginRight",d-c+"px")}return p.not(a).each(function(){var a=n(this).data("arcticmodal");a.overlay.block.hide()}),q.transition(b.overlay.block,"show",1*")),b.overlay.block.remove(),b.container.block.remove(),a.data("arcticmodal",null),n(".arcticmodal-container").length||(b.wrap.data("arcticmodalOverflow")&&b.wrap.css("overflow",b.wrap.data("arcticmodalOverflow")),b.wrap.css("marginRight",0))}),"ajax"==b.type&&b.ajax_request.abort(),p=p.not(a))})},setDefault:function(b){n.extend(!0,a,b)}};n(function(){a.wrap=n(document.all&&!document.querySelector?"html":"body")}),n(document).bind("keyup.arcticmodal",function(d){var a=p.last();if(a.length){var b=a.data("arcticmodal");b.closeOnEsc&&27===d.keyCode&&a.arcticmodal("close")}}),n.arcticmodal=n.fn.arcticmodal=function(a){return e[a]?e[a].apply(this,Array.prototype.slice.call(arguments,1)):"object"!=typeof a&&a?void n.error("jquery.arcticmodal: Method "+a+" does not exist"):q.init.apply(this,arguments)}}(jQuery)}var debugMode="undefined"!=typeof debugFlatPM&&debugFlatPM,duplicateMode="undefined"!=typeof duplicateFlatPM&&duplicateFlatPM,countMode="undefined"!=typeof countFlatPM&&countFlatPM;document["wri"+"te"]=function(a){let b=document.createElement("div");jQuery(document.currentScript).after(b),flatPM_setHTML(b,a),jQuery(b).contents().unwrap()};function flatPM_sticky(c,d,e=0){function f(){if(null==a){let b=getComputedStyle(g,""),c="";for(let a=0;a=b.top-h?b.top-h{const d=c.split("=");return d[0]===a?decodeURIComponent(d[1]):b},""),c=""==b?void 0:b;return c}function flatPM_testCookie(){let a="test_56445";try{return localStorage.setItem(a,a),localStorage.removeItem(a),!0}catch(a){return!1}}function flatPM_grep(a,b,c){return jQuery.grep(a,(a,d)=>c?d==b:0==(d+1)%b)}function flatPM_random(a,b){return Math.floor(Math.random()*(b-a+1))+a}