Универсальный выпрямитель для зарядки аккумуляторов с электронным регулированием

Зарядные выпрямители

Компания ООО РМЗ занимается разработкой и производством различных зарядных выпрямителей для зарядки всех типов автомобильных аккумуляторов. В этом разделе, Вы сможете подобрать или купить зарядный выпрямитель нашего производства по выгодной цене.

Зарядные выпрямители для аккумуляторных батарей

Предназначение зарядных выпрямителей это использование как источник постоянного напряжения или стабилизированного тока, который питает различных приборы и аппаратуру радиотехнической направленности. Также могут быть использованы как источник зарядки свинцово-кислотных стартерных и других аккумуляторных батарей.

Зарядные выпрямители обладают ручным фазовым регулированием выпрямленного выходного напряжения. Диапазон температуры окружающей среды, при котором устройство пригодно для эксплуатации, составляет от -40 до +40 градусов. Зарядные выпрямители безопасно используются при 80%-ной влажности воздуха.

Предельная влажность воздуха, при которой возможна эксплуатация, составляет 98%. Верхний температурный предел составляет +50, нижний -50 градусов. Основная часть конструкции аппарата это шасси со смонтированными на нем радиатором охлаждения, трансформатором, тиристорами и автоматами в цепи постоянного и переменного тока.

В приборной панели отображаются вольтметр и амперметр.

С помощью зарядного выпрямителя обеспечивается плавная регулировка выпрямленного напряжения, которая осуществляется путем вращения регуляторной ручки на панели управления.

Встроенный выключатель аппарата автоматически защищает от коротких замыканий, а светодиоды на управляющей панели подают сигнал о вхождении устройства в аварийный режим.

Условия безопасной эксплуатации зарядного выпрямителя предусматривают наличие свободного доступа воздуха при работе аппарата, который не должен содержать агрессивных паров и газов.

Работающее устройство требуется расположить как можно дальше от источников тепла, а перед началом использования рекомендуется внимательно осмотреть зарядный выпрямитель и, если того требует ситуация, тщательно просушить его.

Особенно актуален данный совет, если аппарат долго находился в пути или же хранился на складе. Также необходимо провести предварительную проверку исправности оборудования под напряжением. Стоит обратить внимание на то, что выпрямитель функционирует только при подключенной нагрузке.

Выпрямленное напряжение на аккумуляторную батарею при его работе может повыситься на 10-15%. Если устройство используется при температуре воздуха выше 35 градусов Цельсия, требуется снижение нагрузки на выпрямителе на 20%.

Стандартный временной ресурс зарядного выпрямителя составляет около 7000 часов при сроке эксплуатации в 10 лет.

В каталоге нашей компании подобрать и купить зарядные выпрямители можно обратившись в отдел продаж и получив подробную консультацию по всем интересующимся вопросам. Все товары хранятся на главном складе в Ростове-на-Дону, клиентам других регионов предоставляется доставка любым удобным способом.

Выпрямители для заряда – устройства, преобразовывающие переменный ток в постоянный. Используются для заряда и десульфатации аккумуляторных батарей различных типов.

Выпрямители для заряда могут быть классифицированы по нескольким типичным признакам:

  • по схеме выпрямления – мостовые, однополупериодные, двухполупериодные, многофазные, с умножением напряжения
  • по элементу – ламповые, полупроводниковые, газотронные
  • по величине напряжения – низкого и высокого напряжения comment=1

Источник: http://www.4AKB.ru/p/category/zaryadnye-vypryamiteli/

Тиристорное импульсное зарядное устройство 10А на КУ202

Здравствуйте ув. читатель блога «Моя лаборатория радиолюбителя».

В сегодняшней статье речь пойдет о давно «заюзаной», но очень полезной схеме тиристорного фазоимпульсного регулятора мощности, которое мы будем использовать как зарядное устройство для свинцовых аккумуляторных батарей.

Начнем с того, что зарядное на КУ202 имеет целый ряд преимуществ: — Способность выдерживать ток заряда до 10 ампер — Ток заряда импульсный, что, по мнению многих радиолюбителей, помогает продлить жизнь аккумулятору — Схема собрана с не дефицитных, недорогих деталей, что делает ее очень доступной в ценовой категории

— И последний плюс- это легкость в повторении, что даст возможность ее повторить, как новичку в радиотехнике, так и просто владельцу автомобиля, вообще не имеющего знания в радиотехнике, которому нужна качественная и простая зарядка.

Со временем попробовал доработанную схему с автоматическим отключением аккумулятора, рекомендую почитать Зарядное для автомобильного аккумулятора
В свое время я собирал эту схему на коленке за 40 минут вместе с травкой платы и подготовкой компонентов схемы. Ну хватит рассказов, давайте рассмотрим схему.

Схема тиристорного зарядного устройства на КУ202

Перечень используемых компонентов в схеме
C1 = 0,47-1 мкФ 63В

R1 = 6,8к — 0,25Вт R2 = 300 — 0,25Вт R3 = 3,3к — 0,25Вт R4 = 110 — 0,25Вт R5 = 15к — 0,25Вт R6 = 50 — 0,25Вт R7 = 150 — 2Вт FU1 = 10А VD1 = ток 10А, желательно брать мост с запасом. Ну на 15-25А и обратное напряжение не ниже 50В VD2 = любой импульсный диод, на обратное напряжение не ниже 50В VS1 = КУ202, Т-160, Т-250 VT1 = КТ361А, КТ3107, КТ502

VT2 = КТ315А, КТ3102, КТ503

Как было сказано ранее схема является тиристорным фазоимпульсным регулятором мощности с электронным регулятором тока зарядки.
Управление электродом тиристора осуществляется цепью на транзисторах VT1 и VT2. Управляющий ток проходит через VD2, необходимый для защиты схемы от обратных скачков тока тиристора.

Резистором R5 определяется ток зарядки аккумулятора, который должен быть 1/10 от емкости АКБ. К примеру АКБ емкостью 55А надо заряжать током 5.5А. Поэтому на выходе перед клемами зарядного устройства желательно поставить амперметр, для контроля за током зарядки.

По поводу питания, для данной схемы подбираем трансформатор с переменным напряжением 18-22В, желательно по мощности без запаса, ведь используем тиристор в управлении. Если напряжение больше- R7 поднимаем до 200Ом.

Так же не забываем что диодный мост и управляющий тиристор надо ставить на радиаторы через теплопроводящую пасту. Так же если вы используете простые диоды типа как Д242-Д245, КД203, помните что их надо изолировать от корпуса радиатора.

На выход ставим предохранитель на нужные вам токи, если вы не планируете заряжать АКБ током выше 6А, то предохранителя на 6,3А вам хватит с головой.

Так же для защиты вашего аккумулятора и зарядного устройства, рекомендую поставить мою схему защиты от переполюсовки на реле или схему на компараторе, которая помимо защиты от переполюсовки защитит зарядное от подключения дохлых аккумуляторов с напряжением менее 10,5В.
Ну вот в принципе рассмотрели схемку зарядного на КУ202.

Печатная плата тиристорного зарядного устройства на КУ202

В собранном виде от Сергея

Прочитайте Получить пароль от архива

Удачи вам с повторением и жду ваших вопросов в комментариях

Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую универсальное зарядное устройство
Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Зарядное устройство 12В 1.3А

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20Ач, АКБ 9Ач зарядит за 7 часов, 20Ач — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Полностью автоматическое зарядное устройство 12В 6А для мото и авто АКБ

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80АЧ. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%. На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.

Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк  количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку

Универсальное зарядное устройство 12-24В 10А

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и САСА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150Ач

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк  количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
С ув .Admin-чек

Задайте свой вопрос тут или в одной из социальных сетей. Так же просто подписывайтесь на обновления с блога

Получите от меня 250 рублей на счет YandexMoney или счет мобильного телефона за обзор на вашу покупку. Узнать подробности можно в статье

Источник: http://rustaste.ru/thyristor-impulse-charger-10a-ku202.html

Зарядное на однополупериодном выпрямителе

Читать все новости ➔

Простое в изготовлении зарядное устройство позволяет вос­становить техническое состояние автомобильного аккумулятора за ночь.

Введение

Длительное хранение или эксплу­атация автомобильных аккумулято­ров приводит к возникновению на пластинах и на клеммах кристалли­ческого сульфата свинца, который препятствует нормальной эксплуата­ции аккумулятора. При плохом контак­те клеммы аккумулятора, покрытые сульфатом, можно почистить напиль­ником с крупной насечкой или наж­дачной бумагой, а вот снять сульфат с пластин аккумулятора таким мето­дом невозможно.

Из за высокого внутреннего со­противления, созданного плохой про­водимостью кристаллов сульфата, машина, возможно, и заведется, но не более одного раза.

В зимнее время, при повышенной вязкости масел заводка двигателя практически невыполнима.

Высокое внутреннее сопротивле­ние снижает напряжение на клеммах аккумулятора, при подключении на­грузки – ниже допустимых пределов, стартер при таком напряжении источ­ника тока не в состоянии провернуть вал двигателя.

Надеяться что аккумулятор вос­становится в пути, при таком состоя­нии пластин нереально.

Если рассматривать генератор автомобиля как источник питания, зарядить аккумулятор возможно, а вот снять кристаллизацию пластин он не сможет в полном объеме из-за не­достаточного напряжения генератора и постоянного, по форме, тока трех­фазного генератора.

Поверхностная (рабочая) сульфи­тация пластин снимается при рабочем напряжении зарядки аккумулятора в 13,8-14,2 В, а внутренняя кристалли­зация пористой структуры пластин на такое напряжение слабо реагирует из-за высокого сопротивления кристал­лов и низкого напряжения заряда.

Для восстановления пластин – снятия кристаллизации – требуется нестандартное напряжение источника тока заряда с возможностью регене­рации пластин.

Добавлять напряжение генерато­ра автомобиля ни в коем случае нельзя – из-за опасности поврежде­ния электрического и электронного оборудования автомобиля нестандар­тным напряжением.

Выход прост – восстановить ак­кумулятор внешним зарядным уст­ройством с повышенным напряжени­ем источника тока. К таким приборам относятся импульсные зарядные ус­тройства.

Хорошо ускоряет восстановление пластин аккумуляторов наличие раз рядной составляющей тока величи­ной, не превышающей 10% от заряд­ного тока.

Средний ток заряда при снятии сульфатации пластин не превышает рекомендуемый для заряда заводом – изготовителем, а напряжение заряда в импульсе превышает стандартное по­чти в два раза, что ускоряет перевод кристаллов сульфата свинца в амор­фный свинец. Время импульса невели­ко и такая зарядка с восстановлени­ем не приводит к излишнему нагреву аккумулятора и короблению пластин.

Импульсное восстановление по­зволяет продлить срок эксплуатации аккумулятора и восстановить его ра­бочее состояние. Устранение круп­нокристаллической сульфатации элементов аккумулятора снижает внутреннее сопротивление до рабо­чего состояния, устраняется само­разряд и межэлектродные замыка­ния, повышается напряжение под нагрузкой, что облегчает запуск ав­томобиля.

Предлагаемое зарядное устрой­ство позволяет выполнить эти усло­вия. Данное устройство не предназ­начено для питания радиоэлектрон­ных устройств.

Принципиальная схема

Принципиальная схема зарядного устройства (рис. 1) состоит из сило­вого трансформатора Т1 с внешними цепями коммутации SA1 и защиты от перегрузки FU1.

Выходные обмотки трансформа­тора коммутируются переключателем SA2 в зависимости от напряжения за­ряжаемого аккумулятора GB1. Выпря­митель импульсного тока VD1 выпол­нен на одном диоде для выполнения требуемой технологии восстановле­ния пластин аккумулятора.

Разрядный ток небольшой ампли­туды создается цепью, состоящей из диода VD2, обратной полярности и ограничительного резистора R1, на­значение котсрого – ускоренное вос­становление пластин аккумулятора.

Второе назначение этой цепи в схеме – устранение перемагничивания железа трансформатора Т1 от действия однополупериодного выпря­мителя на диоде VD1.

При этом снижается необходи­мость в установке в схеме трансфор­матора повышенной мощности, уст­раняется перегрев, повышается КПД.

Двухполупериодные диодные мо­сты, используемые в заводских заряд­ных устройствах, из-за отсутствия временного разрыва между импуль­сами зарядного тока не позволяют вести рекристаллизацию пластин, что приводит к преждевременному элек­тролизу электролита, кипению и на­греву аккумулятора. При использова­нии аккумуляторов с гелиевым напол­нителем или отсутствием воздушных пробок (закрытого типа) это недопус­тимо, из-за возможной разгерметиза­ции корпуса.

Однополупериодная импульсная схема восстановления, с перерывами между импульсами, равными по вре­мени периоду положительного им­пульса тока, снижает температуру электролита и увеличивает время на рекомбинацию (перестроение) ионов электролита. Разрядная составляю­щая тока восстановления позволяет ионам электролита накапливать по­тенциальную энергию, направленную на расплавление “застарелых” крис­таллов сульфата свинца.

Контроль зарядного тока выпол­нен на гальваническом приборе РА1 с внутренним шунтом.

Индикация включения выполнена на светодиоде красного свечения HL1, по его яркости также можно судить о напряжении заряда и наличии тока в цепи заряда.

Конденсатор С1 в первичной цепи обмотки трансформатора и конденса­тор С2 в цепи нагрузки снижают уро­вень помех, возникающих при пере­ключении тока выпрямительным ди­одом VD1, VD2.

Аккумулятор GB1 подключается к зарядному устройству с помощью за­жимов типа “Крокодил”.

Восстановление аккумулятора возможно производить без снятия с автомобиля, предварительно положи­тельную клемму питания автомобиля нужно отключить.

Детали устройства

В схеме зарядного устройства на однополупериодном выпрямителе от­сутствуют покупные радиодетали, используются от отслуживших свой срок электронных приборов.

Силовой трансформатор Т1 ис­пользован от ламповых радиоприем­ников: железо предварительно разби­рается, сетевая обмотка использует­ся без изменений, повышающая и накальная аккуратно удаляются по­слойно – перекусыванием кусачками витков, вместо них наматывается но­вая обмотка проводом сечением 0,5- 0,6 мм до заполнения с отводом (при­мерно) от середины. Проводится об­ратная сборка железа. Несколько Ш- образных листов не войдут из-за от­сутствия стяжки – это не повлияет на характеристики трансформатора. При подключенном сетевом напряже­нии вторичное напряжение на отво­дах должно быть в пределах 8-10 В и 16-20 В.

Коммутационные переключатели SA1, SA2 использованы от сетевых тумблеров на ток в 3 А.

Импульсный диод VD1 – диоды КД202-248.

Диод VD2 – Д7, Д226, КД226.

В крайнем случае, используются кремневые выпрямительные диоды от компьютерных блоков питания.

Конденсатор С1 типа К17 с напря­жением 250-400 В.

Светодиод индикации HL1 допус­тимо установить любого свечения.

При отсутствии в наличии ампер­метра указанного тока, использует­ся любой гальванометр от магнито­фонов (индикация выходного сигна­ла) с искусственным шунтом в виде спирали из проволоки диаметром 0,6-1 мм – 10 витков на каркасе диа­метром 1,6 см. В разрыв положитель­ной шины зарядного тока подключа­ется временно тестер и сверяются по­казания зарядного тока. Количество витков обмотки шунта необходимо по­догнать по показаниям действующе­го амперметра.

Зарядка аккумулятора

Наличие амперметра позволяет отследить процесс рекристаллизации пластин – в начальный момент ток заряда имеет минимальное значение, далее по мере очистки пластин элек­тродов от кристаллизации ток возра­стет до максимального значения и через время, определяемое состояни­ем аккумулятора, ток начнет падать практически до нулевого значения, что и будет индикацией окончания восстановления аккумулятора.

При неверной полярности подклю­чения аккумулятора GB1 светодиод гореть не будет, стрелка амперметра повернется влево – на разряд. Про­должительно, в неверном подключе­нии, аккумулятор держать нельзя, незаряженное состояние может при­вести к переполюсовке электродов и полной невозможности дальнейшего использования аккумулятора.

После нескольких часов восста­новления емкости аккумулятора эле­менты схемы проверяются на нагрев, при удовлетворительных результатах восстановление продолжают.

Ввиду небольшого количества элементов схема собрана в корпусе от блока питания компьютера или типа БП-1 навесным монтажом с ус­тановкой тумблеров, светодиода HL1, гальванометра РА1 на передней па­нели, предохранитель крепится на задней стенке. Диод VD1 устанавли­вается на радиатор размерами 50*30*20 мм.

Соединение зарядного устройства с аккумулятором выполнено много­жильным проводом в виниловой изо­ляции сечением 2,5 мм.

По окончании зарядки в первую оче­редь отключается сеть, затем снимают­ся зажимы с клемм аккумулятора

Владимир Коновалов, Александр Вантеев

г. Иркутск-43, а/я 380

Возможно, Вам это будет интересно:

Источник: http://meandr.org/archives/8599

Выпрямитель для зарядки аккумулятора

   Каждый автолюбитель мечтает иметь в своем распоряжении выпрямитель для зарядки аккумулятора. Без сомнения, это очень нужная и удобная вещь. Попробуем рассчитать и изготовить выпрямитель для зарядки аккумулятора на 12 вольт.
     Обычный аккумулятор для легковой автомашины имеет параметры:

  • напряжение в обычном состоянии 12 вольт;
  • емкость аккумулятора 35 — 60 ампер часов.

Соответственно ток заряда составляет 0,1 от емкости аккумулятора, или 3,5 — 6 ампер.
    Схема выпрямителя для зарядки аккумулятора изображена на рисунке.

     Прежде всего нужно определить параметры выпрямительного устройства.


     Вторичная обмотка выпрямителя для зарядки аккумулятора должна быть рассчитана на напряжение:  
U2 = Uак + Uo + Uд     где:

 — U2 — напряжение на вторичной обмотке в вольтах;
 — Uак — напряжение аккумулятора равно 12 вольт;
 — Uo — падение напряжения на обмотках под нагрузкой равно около 1,5 вольт;
 — Uд — падение напряжения на диодах под нагрузкой равно около 2 вольт.

Всего напряжение:   U2 = 12,0 + 1,5 + 2,0 = 15,5 вольт.

Примем с запасом на колебание напряжения в сети:  U2 = 17 вольт.

Ток заряда аккумулятора примем I2 = 5 ампер.

Максимальная мощность во вторичной цепи составит:
P2 = I2 х U2 = 5 ампер х 17 вольт = 85 ватт.


     Мощность трансформатора в первичной цепи (мощность, которая будет потребляться от сети) с учетом КПД трансформатора, составит:
 P1 = P2 / η = 85 / 0,9 = 94 ватт.

     где:
 — Р1 — мощность в первичной цепи;
 — Р2 — мощность во вторичной цепи;
 -η = 0,9 — коэффициент полезного действия трансформатора, КПД.

Примем Р1 = 100 ватт.

    Рассчитаем стальной сердечник Ш — образного магнитопровода, от площади поперечного сечения которого зависит передаваемая мощность.
    S = 1,2√ P где:
 — S площадь сечения сердечника в см.кв.

;
 — Р = 100 ватт мощность первичной цепи трансформатора.
S = 1,2√ P = 1,2 х √100 = 1,2 х 10 = 12 см.кв.
 Сечение центрального стрежня, на котором будет располагаться каркас с обмоткой   S = 12 см.кв.

Определим количество витков, приходящихся на 1 один вольт, в первичной и вторичной обмотках, по формуле:
n = 50 / S = 50 / 12 = 4,17 витка.

 Возьмем n = 4,2 витка на 1 вольт.

    Тогда количество витков в первичной обмотке будет:
 n1 = U1 · n = 220 вольт · 4,2 = 924 витка.

    Количество витков во вторичной обмотке:
n2 = U2 · n = 17 вольт · 4,2 = 71,4 витка.

Возьмем 72 витка.

    Определим ток в первичной обмотке:
I1 = P1 / U1 = 100 ватт / 220 вольт = 0,45 ампер.

  Ток во вторичной обмотке:
I2 = P2 / U2 = 85 / 17 = 5 ампер.

    Диаметр провода определим по формуле:
d = 0,8 √I.

     Диаметр провода в первичной обмотке:
d1=0,8 √I1 = 0,8 √ 0,45 = 0,8 · 0,67 = 0,54 мм.

    Диаметр провода во вторичной обмотке:
d2 = 0,8√ I2 = 0,8  5 = 0,8 · 2,25 = 1,8 мм.

    Провод вторичной обмотки может быть как с эмалевой, так и с хлопчатобумажной изоляцией.
Сначала на каркас наматывается первичная обмотка.

Затем два слоя лакоткани или миткалевой ленты. Затем наматывается вторичная обмотка.


 Пример намотки каркаса трансформатора можно посмотреть в статье: «Как намотать трансформатор на Ш — образном сердечнике»

Вторичная обмотка наматывается с отводами.
Первый отвод делается от 52 витка, затем от 56 витка, от 61, от 66 и последний 72 виток.

    Вывод делается петелькой, не разрезая провода. затем с петельки счищается изоляция и к ней припаивается отводящий провод.

Регулировка зарядного тока выпрямителя производится ступенчато, переключением отводов от вторичной обмотки. Выбирается переключатель с мощными контактами. 

    Если такого переключателя нет, то можно применить два тумблера на три положения рассчитанных на ток до 10 ампер (продаются в авто-магазине).
 Переключая их, можно последовательно выдавать на выход выпрямителя, напряжение 12 — 17 вольт.

Положение тумблеров на выходные напряжения 12 — 13 — 14,5 — 16 — 17 вольт.

    Диоды должны быть рассчитаны, с запасом, на ток 10 ампер и стоять каждый на отдельном радиаторе, а все радиаторы изолированы друг от друга.

    Радиатор может быть один, а диоды установлены на нем через изолированные прокладки.

    Площадь радиатора на один диод около 20 см.кв., если один радиатор, то его площадь 80 — 100 см.кв.
Зарядный ток выпрямителя можно контролировать встроенным амперметром на ток до 5 -8 ампер.

    Можно использовать данный трансформатор, как понижающий, для питания аварийной лампы на 12 вольт от отвода 52 витка. (смотрите схему).
     Если нужно питать лампочку на 24 или на 36 вольт, то делается дополнительная обмотка, из расчета на каждый 1 вольт 4,2 витка.

    Эта дополнительная обмотка включается последовательно с основной (смотреть верхнюю схему). Нужно только сфазировать основную и дополнительную обмотки (начало — конец), чтобы общее напряжение сложилось.

Между точками: (0 – 1) — 12 вольт; (0 -2) — 24 вольта; между (0 – 3) — 36 вольт.
     Например.

Для общего напряжения в 24 вольта нужно к основной обмотке добавить 28 витков, а для общего напряжения 36 вольт, еще 48 витков провода диаметром 1,0 миллиметр.

Возможный вариант внешнего вида корпуса выпрямителя для зарядки аккумулятора, изображен на рисунке.

 Далее посмотрите новую статью:  «Зарядное устройство на тиристорах для зарядки аккумулятора».

Источник: http://domasniyelektromaster.ru/prakticheskie-primery/vypryamitel-dlya-zaryadki-akkumulyatora/

Простое регулируемое автомобильное зарядное

Источник: http://radioskot.ru/publ/zu/prostoe_reguliruemoe_avtomobilnoe_zarjadnoe/8-1-0-1009

Мощное зарядное устройства для любых аккумуляторов

Простое, но очень мощное и качественное зарядное устройство естественно можно изготовить в домашних условиях. Представленная ниже зарядка является более крутым вариантом, чем многие промышленные. 

Система состоит из двух основных частей — импульсного источника питания и схемы стабилизатора.
Такая зарядка может быть использована в качестве универсального зарядного устройства для многих аккумуляторов, поскольку диапазон выходных напряжений довольно широк и составляет от 1,5 до 25-28 Вольт.

Имеется возможность ограничения/стабилизации выходного тока от 300 мА до 8/9 Ампер.
Фишка зарядки в том, что процесс осуществляется методом CV/CC иными словами ток заряда будет держаться стабильным не зависимо от нагрузки, притом имеется возможность регулировки тока.

В качестве схемы управления использован готовых понижающий DC-DC стабилизатор, построенный на базе микросхем XL4016, заявленный максимальный ток до 10-12 Ампер.

Это довольно неплохой импульсный стабилизатор напряжения и тока. На плате имеется двухцветный индикатор, который показывает режим работы стабилизатора.

Выходной выпрямительный диод (сборка шоттки) и микросхема стабилизатора установлены на небольшие радиаторы, если собираетесь эксплуатировать зарядку под большие токи, то советуется заменить радиаторы на более массивные, либо организовать хорошее активное охлаждение.

Первым делом подстроечные резисторы заменил на переменные и вывел проводами, светодиодный индикатор тоже был выведен, позже они будут укреплены к лицевой панели устройства.

Импульсный источник питания собран по полумостовой схеме, на базе самотактируемого драйвера IR2153. Выход микросхемы был дополнен повторителем. Такое решение разгружает выход микросхемы, а также появляется возможность управления несколькими парами ключей, за счет большого тока управления.

Блок питания снабжен системой плавного пуска на базе реле, имеется функция защиты от КЗ с возможностью регулировки тока срабатывания защиты.

Силовой импульсный трансформатор намотан на сердечнике от ATХ450W, параметры намотки не скажу, поскольку все ровно вам придется сделать расчет под ваш сердечник. Для расчета была использована программа ExcellentIT

Расчетное выходное напряжение около 24 Вольт, поскольку на модуль китайского стабилизатора нельзя подавать напряжение выше  32-х вольт, учитывайте, что на конденсаторе будет напряжение больше расчетного.

Тип выпрямителя блока питания — однополупериодный со средней точкой, использован такой выпрямитель исключительно с целью экономии на диодах.

Расчетный ток диодной сборки 30 Ампер и более.

Систему дополнил дешевым вольт-амперметром (0-100В, 0-10А), а корпус позаимствован у китайской автомобильной зарядки на 8 Ампер.

Видео с процессом сборки.

Печатка — скачать…

Автор; АКА Касьян

Источник: https://xn--100–j4dau4ec0ao.xn--p1ai/moshhnoe-zaryadnoe-ustrojstva-dlya-lyubyx-akkumulyatorov/

Схема зарядного устройства для автомобильного аккумулятора – от простого к сложному

При нормальных условиях эксплуатации, электрическая система автомобиля самодостаточна.

Речь идет об энергоснабжении – связка из генератора, регулятора напряжения, и аккумуляторной батареи, работает синхронно и обеспечивает бесперебойное питание всех систем.
Это в теории.

На практике, владельцы автомобилей вносят поправки в эту стройную систему. Или же оборудование отказывается работать в соответствии с установленными параметрами.

Например:

  1. Эксплуатация аккумуляторной батареи, которая исчерпала свой ресурс. Элемент питания «не держит» заряд
  2. Нерегулярные поездки. Длительный простой автомобиля (особенно в период «зимней спячки») приводит к саморазряду АКБ
  3. Автомобиль используется в режиме коротких поездок, с частым глушением и запуском мотора. АКБ просто не успевает подзарядиться
  4. Подключение дополнительного оборудования увеличивает нагрузку на АКБ. Зачастую приводит к повышенному току саморазряда при выключенном двигателе
  5. Экстремально низкая температура ускоряет саморазряд
  6. Неисправная топливная система приводит к повышенной нагрузке: автомобиль заводится не сразу, приходится долго крутить стартер
  7. Неисправный генератор или регулятор напряжения не позволяет нормально заряжать аккумулятор. К этой проблеме относятся изношенные силовые провода и плохой контакт в цепи заряда
  8. И наконец, вы забыли выключить головной свет, габариты или музыку в автомобиле. Для полного разряда аккумулятора за одну ночь в гараже, иногда достаточно неплотно закрыть дверь. Освещение салона потребляет достаточно много энергии.

Любая из перечисленных причин приводит к неприятной ситуации: вам надо ехать, а батарея не в силах провернуть стартер. Проблема решается внешней подпиткой аккумулятора: то есть, зарядным устройством.

Его совершенно несложно собрать своими руками. Пример зарядного устройства сделанного из бесперебойника.

Любая схема автомобильного зарядного устройства состоит из следующих компонентов:

  • Блок питания.
  • Стабилизатор тока.
  • Регулятор силы тока заряда. Может быть ручным или автоматическим.
  • Индикатор уровня тока и (или) напряжения заряда.
  • Опционально – контроль заряда с автоматическим отключением.

Популярное:  Что измеряет вольтметр? Вопрос понятен всем. Или нет?

Любой зарядник, от самого простого, до интеллектуального автомата – состоит из перечисленных элементов или их комбинации.

Схема простого зарядного устройства для автомобильного аккумулятора

Формула нормального заряда простая, как 5 копеек – базовая емкость батареи, деленная на 10. Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт).

Простая принципиальная электрическая схема зарядного устройства для автомобиля состоит из трех компонентов: блок питания, регулятор, индикатор.

Классика — резисторный зарядник

Блок питания изготавливается из двух обмоточного «транса» и диодной сборки. Выходное напряжение подбирается вторичной обмоткой. Выпрямитель – диодный мост, стабилизатор в этой схеме не применяется.

Ток заряда регулируется реостатом.

Проволочный реостат необходим для противостояния главной проблеме такой схемы – избыточная мощность выделяется в виде тепла. Причем происходит это очень интенсивно.

Разумеется, КПД такого прибора стремится к нулю, а ресурс его компонентов очень низкий (особенно реостата).

Тем не менее, схема существует, и она вполне работоспособна. Для аварийной зарядки, если под рукой нет готового оборудования, собрать ее можно буквально «на коленке». Есть и ограничения – ток более 5 ампер является предельным для подобной схемы. Стало быть, заряжать можно АКБ емкостью не более 45 Ач.

Зарядное устройство своими руками, подробности, схемы — видео

Гасящий конденсатор

Принцип работы изображен на схеме.

Благодаря реактивному сопротивлению конденсатора, включенного в цепь первичной обмотки, можно регулировать зарядный ток. Реализация состоит из тех же трех компонентов – блок питания, регулятор, индикатор (при необходимости). Схему можно настроить под заряд одного типа АКБ, и тогда индикатор будет не нужен.

Если добавить еще один элемент – автоматический контроль заряда, а также собрать коммутатор из целой батареи конденсаторов – получится профессиональный зарядник, остающийся простым в изготовлении.

Схема контроля заряда и автоматического отключения, в комментариях не нуждается.

Технология отработана, один из вариантов вы видите на общей схеме. Порог срабатывания устанавливается переменным резистором R4. Когда собственное напряжение на клеммах аккумуляторной батареи достигает настроенного уровня, реле К2 отключает нагрузку.

В качестве индикатора выступает амперметр, который перестает показывать ток заряда.

Популярное:  Диодный мост – как он работает?

Изюминка зарядного устройства – конденсаторная батарея.

Особенность схем с гасящим конденсатором – добавляя или уменьшая емкость (просто подключая или убирая дополнительные элементы) вы можете регулировать выходной ток.

Подобрав 4 конденсатора для токов 1А, 2А, 4А и 8А, и коммутируя их обычными выключателями в различных комбинациях, вы можете регулировать ток заряда от 1 до 15 А с шагом в 1 А.

При этом никакого паразитного нагрева (кроме естественного, выделяющегося на диодах моста), коэффициент полезного действия зарядника высокий.

Схема самодельного зарядного устройства для аккумулятора на тринисторе

Если вы не боитесь держать в руках паяльник, можно собрать автомобильный аксессуар с плавной регулировкой тока заряда, но без недостатков, присущих резисторной классике.

В качестве регулятора применяется не рассеиватель тепла в виде мощного реостата, а электронный ключ на тиристоре. Вся силовая нагрузка проходит через этот полупроводник.

Данная схема рассчитана на ток до 10 А, то есть позволяет без перегрузок заряжать АКБ до 90 Ач.

Регулируя резистором R5 степень открытия перехода на транзисторе VT1, вы обеспечиваете плавное и очень точное управление тринистором VS1.

Схема надежная, легко собирается и настраивается. Но есть одно условие, которое мешает занести подобный зарядник в перечень удачных конструкций. Мощность трансформатора должна обеспечивать троекратный запас по току заряда.

То есть, для верхнего предела в 10 А, трансформатор должен выдерживать длительную нагрузку 450-500 Вт. Практически реализованная схема будет громоздкой и тяжелой. Впрочем, если зарядное устройство стационарно устанавливается в помещении – это не проблема.

Схема импульсного зарядного устройства для автомобильного аккумулятора

Все недостатки перечисленных выше решений, можно поменять на один – сложность сборки. Такова сущность импульсных зарядников. Эти схемы имеют завидную мощность, мало греются, располагают высоким КПД.

К тому же, компактные размеры и малый вес, позволяют просто возить их с собой в бардачке автомобиля.

Схемотехника понятна любому радиолюбителю, имеющему понятие, что такое ШИМ генератор. Он собран на популярном (и совершенно недефицитном) контроллере IR2153.

В данной схеме реализован классический полу мостовой инвертор.

При имеющихся конденсаторах выходная мощность составляет 200 Вт. Это немало, но нагрузку можно увеличить вдвое, заменив конденсаторы на емкости по 470 мкФ. Тогда можно будет заряжать аккумуляторы емкостью до 200 Ач.

Собранная плата получилась компактной, умещается в коробочку 150*40*50 мм. Принудительного охлаждения не требуется, но вентиляционные отверстия надо предусмотреть. Если вы увеличиваете мощность до 400 Вт, силовые ключи VT1 и VT2 следует установить на радиаторы. Их надо вынести за пределы корпуса.

В качестве донора может выступить блок питания от системника ПК.

Поэтому просто воспользуемся элементной базой. Отлично подойдет трансформатор, дроссель и диодная сборка (Шоттки) в качестве выпрямителя. Все остальное: транзисторы, конденсаторы и прочая мелочь – обычно в наличии у радиолюбителя по всяким коробочкам-ящичкам. Так что зарядник получается условно бесплатным.

На видео показано и рассказано как собрать самостоятельно собрать импульсное зарядное устройство для авто.

Стоимость же заводского импульсника на 300-500 Вт – не менее 50 долларов (в эквиваленте).

Вывод:

Собирайте и пользуйтесь. Хотя разумнее поддерживать вашу аккумуляторную батарею «в тонусе».

Схема зарядного устройства для автомобильного аккумулятора – от простого к сложному Ссылка на основную публикацию

Источник: http://obinstrumente.ru/elektronika/sxema-zaryadnogo-ustrojstva-dlya-avtomobilnogo-akkumulyatora.html

Универсальное зарядное для аккумуляторных батарей

Источник: http://elwo.ru/publ/skhemy_zarjadnykh_ustrojstv/universalnoe_zarjadnoe_dlja_akkumuljatornykh_batarej/8-1-0-593

Ссылка на основную публикацию
Adblock
detector
",css:{backgroundColor:"#000",opacity:.6}},container:{block:void 0,tpl:"
"},wrap:void 0,body:void 0,errors:{tpl:"
",autoclose_delay:2e3,ajax_unsuccessful_load:"Error"},openEffect:{type:"fade",speed:400},closeEffect:{type:"fade",speed:400},beforeOpen:n.noop,afterOpen:n.noop,beforeClose:n.noop,afterClose:n.noop,afterLoading:n.noop,afterLoadingOnShow:n.noop,errorLoading:n.noop},o=0,p=n([]),h={isEventOut:function(a,b){var c=!0;return n(a).each(function(){n(b.target).get(0)==n(this).get(0)&&(c=!1),0==n(b.target).closest("HTML",n(this).get(0)).length&&(c=!1)}),c}},q={getParentEl:function(a){var b=n(a);return b.data("arcticmodal")?b:(b=n(a).closest(".arcticmodal-container").data("arcticmodalParentEl"),!!b&&b)},transition:function(a,b,c,d){switch(d=null==d?n.noop:d,c.type){case"fade":"show"==b?a.fadeIn(c.speed,d):a.fadeOut(c.speed,d);break;case"none":"show"==b?a.show():a.hide(),d();}},prepare_body:function(a,b){n(".arcticmodal-close",a.body).unbind("click.arcticmodal").bind("click.arcticmodal",function(){return b.arcticmodal("close"),!1})},init_el:function(d,a){var b=d.data("arcticmodal");if(!b){if(b=a,o++,b.modalID=o,b.overlay.block=n(b.overlay.tpl),b.overlay.block.css(b.overlay.css),b.container.block=n(b.container.tpl),b.body=n(".arcticmodal-container_i2",b.container.block),a.clone?b.body.html(d.clone(!0)):(d.before("
"),b.body.html(d)),q.prepare_body(b,d),b.closeOnOverlayClick&&b.overlay.block.add(b.container.block).click(function(a){h.isEventOut(n(">*",b.body),a)&&d.arcticmodal("close")}),b.container.block.data("arcticmodalParentEl",d),d.data("arcticmodal",b),p=n.merge(p,d),n.proxy(e.show,d)(),"html"==b.type)return d;if(null!=b.ajax.beforeSend){var c=b.ajax.beforeSend;delete b.ajax.beforeSend}if(null!=b.ajax.success){var f=b.ajax.success;delete b.ajax.success}if(null!=b.ajax.error){var g=b.ajax.error;delete b.ajax.error}var j=n.extend(!0,{url:b.url,beforeSend:function(){null==c?b.body.html("
"):c(b,d)},success:function(c){d.trigger("afterLoading"),b.afterLoading(b,d,c),null==f?b.body.html(c):f(b,d,c),q.prepare_body(b,d),d.trigger("afterLoadingOnShow"),b.afterLoadingOnShow(b,d,c)},error:function(){d.trigger("errorLoading"),b.errorLoading(b,d),null==g?(b.body.html(b.errors.tpl),n(".arcticmodal-error",b.body).html(b.errors.ajax_unsuccessful_load),n(".arcticmodal-close",b.body).click(function(){return d.arcticmodal("close"),!1}),b.errors.autoclose_delay&&setTimeout(function(){d.arcticmodal("close")},b.errors.autoclose_delay)):g(b,d)}},b.ajax);b.ajax_request=n.ajax(j),d.data("arcticmodal",b)}},init:function(b){if(b=n.extend(!0,{},a,b),!n.isFunction(this))return this.each(function(){q.init_el(n(this),n.extend(!0,{},b))});if(null==b)return void n.error("jquery.arcticmodal: Uncorrect parameters");if(""==b.type)return void n.error("jquery.arcticmodal: Don't set parameter \"type\"");switch(b.type){case"html":if(""==b.content)return void n.error("jquery.arcticmodal: Don't set parameter \"content\"");var e=b.content;return b.content="",q.init_el(n(e),b);case"ajax":return""==b.url?void n.error("jquery.arcticmodal: Don't set parameter \"url\""):q.init_el(n("
"),b);}}},e={show:function(){var a=q.getParentEl(this);if(!1===a)return void n.error("jquery.arcticmodal: Uncorrect call");var b=a.data("arcticmodal");if(b.overlay.block.hide(),b.container.block.hide(),n("BODY").append(b.overlay.block),n("BODY").append(b.container.block),b.beforeOpen(b,a),a.trigger("beforeOpen"),"hidden"!=b.wrap.css("overflow")){b.wrap.data("arcticmodalOverflow",b.wrap.css("overflow"));var c=b.wrap.outerWidth(!0);b.wrap.css("overflow","hidden");var d=b.wrap.outerWidth(!0);d!=c&&b.wrap.css("marginRight",d-c+"px")}return p.not(a).each(function(){var a=n(this).data("arcticmodal");a.overlay.block.hide()}),q.transition(b.overlay.block,"show",1*")),b.overlay.block.remove(),b.container.block.remove(),a.data("arcticmodal",null),n(".arcticmodal-container").length||(b.wrap.data("arcticmodalOverflow")&&b.wrap.css("overflow",b.wrap.data("arcticmodalOverflow")),b.wrap.css("marginRight",0))}),"ajax"==b.type&&b.ajax_request.abort(),p=p.not(a))})},setDefault:function(b){n.extend(!0,a,b)}};n(function(){a.wrap=n(document.all&&!document.querySelector?"html":"body")}),n(document).bind("keyup.arcticmodal",function(d){var a=p.last();if(a.length){var b=a.data("arcticmodal");b.closeOnEsc&&27===d.keyCode&&a.arcticmodal("close")}}),n.arcticmodal=n.fn.arcticmodal=function(a){return e[a]?e[a].apply(this,Array.prototype.slice.call(arguments,1)):"object"!=typeof a&&a?void n.error("jquery.arcticmodal: Method "+a+" does not exist"):q.init.apply(this,arguments)}}(jQuery)}var debugMode="undefined"!=typeof debugFlatPM&&debugFlatPM,duplicateMode="undefined"!=typeof duplicateFlatPM&&duplicateFlatPM,countMode="undefined"!=typeof countFlatPM&&countFlatPM;document["wri"+"te"]=function(a){let b=document.createElement("div");jQuery(document.currentScript).after(b),flatPM_setHTML(b,a),jQuery(b).contents().unwrap()};function flatPM_sticky(c,d,e=0){function f(){if(null==a){let b=getComputedStyle(g,""),c="";for(let a=0;a=b.top-h?b.top-h{const d=c.split("=");return d[0]===a?decodeURIComponent(d[1]):b},""),c=""==b?void 0:b;return c}function flatPM_testCookie(){let a="test_56445";try{return localStorage.setItem(a,a),localStorage.removeItem(a),!0}catch(a){return!1}}function flatPM_grep(a,b,c){return jQuery.grep(a,(a,d)=>c?d==b:0==(d+1)%b)}function flatPM_random(a,b){return Math.floor(Math.random()*(b-a+1))+a}
");let k=document.querySelector(".flat_pm_modal[data-id-modal=\""+a.ID+"\"]");if(-1===d.indexOf("go"+"oglesyndication")?flatPM_setHTML(k,d):jQuery(k).html(b+d),"px"==a.how.popup.px_s)e.bind(h,()=>{e.scrollTop()>a.how.popup.after&&(e.unbind(h),f.unbind(i),j())}),void 0!==a.how.popup.close_window&&"true"==a.how.popup.close_window&&f.bind(i,()=>{e.unbind(h),f.unbind(i),j()});else{let b=setTimeout(()=>{f.unbind(i),j()},1e3*a.how.popup.after);void 0!==a.how.popup.close_window&&"true"==a.how.popup.close_window&&f.bind(i,()=>{clearTimeout(b),f.unbind(i),j()})}f.on("click",".flat_pm_modal .flat_pm_crs",()=>{jQuery.arcticmodal("close")})}if(void 0!==a.how.outgoing){let b,c="0"==a.how.outgoing.indent?"":" style=\"bottom:"+a.how.outgoing.indent+"px\"",e="true"==a.how.outgoing.cross?"":"",f=jQuery(window),g="scroll.out"+a.ID,h=void 0===flatPM_getCookie("flat_out_"+a.ID+"_mb")||"false"!=flatPM_getCookie("flat_out_"+a.ID+"_mb"),i=document.createElement("div"),j=jQuery("body"),k=()=>{void 0!==a.how.outgoing.cookie&&"false"==a.how.outgoing.cookie&&h&&(jQuery(".flat_pm_out[data-id-out=\""+a.ID+"\"]").addClass("show"),j.on("click",".flat_pm_out[data-id-out=\""+a.ID+"\"] .flat_pm_crs",function(){flatPM_setCookie("flat_out_"+a.ID+"_mb",!1)})),(void 0===a.how.outgoing.cookie||"false"!=a.how.outgoing.cookie)&&jQuery(".flat_pm_out[data-id-out=\""+a.ID+"\"]").addClass("show")};switch(a.how.outgoing.whence){case"1":b="top";break;case"2":b="bottom";break;case"3":b="left";break;case"4":b="right";}jQuery("body > *").eq(0).before("
"+e+"
");let m=document.querySelector(".flat_pm_out[data-id-out=\""+a.ID+"\"]");-1===d.indexOf("go"+"oglesyndication")?flatPM_setHTML(m,d):jQuery(m).html(e+d),"px"==a.how.outgoing.px_s?f.bind(g,()=>{f.scrollTop()>a.how.outgoing.after&&(f.unbind(g),k())}):setTimeout(()=>{k()},1e3*a.how.outgoing.after),j.on("click",".flat_pm_out .flat_pm_crs",function(){jQuery(this).parent().removeClass("show").addClass("closed")})}countMode&&(flat_count["block_"+a.ID]={},flat_count["block_"+a.ID].count=1,flat_count["block_"+a.ID].click=0,flat_count["block_"+a.ID].id=a.ID)}catch(a){console.warn(a)}}function flatPM_start(){let a=flat_pm_arr.length;if(0==a)return flat_pm_arr=[],void jQuery(".flat_pm_start, .flat_pm_end").remove();flat_body=flat_body||jQuery("body"),!flat_counter&&countMode&&(flat_counter=!0,flat_body.on("click","[data-flat-id]",function(){let a=jQuery(this),b=a.attr("data-flat-id");flat_count["block_"+b].click++}),flat_body.on("mouseenter","[data-flat-id] iframe",function(){let a=jQuery(this),b=a.closest("[data-flat-id]").attr("data-flat-id");flat_iframe=b}).on("mouseleave","[data-flat-id] iframe",function(){flat_iframe=-1}),jQuery(window).on("beforeunload",()=>{jQuery.isEmptyObject(flat_count)||jQuery.ajax({async:!1,type:"POST",url:ajaxUrlFlatPM,dataType:"json",data:{action:"flat_pm_ajax",data_me:{method:"flat_pm_block_counter",arr:flat_count}}})}).on("blur",()=>{-1!=flat_iframe&&flat_count["block_"+flat_iframe].click++})),flat_userVars.init();for(let b=0;bflat_userVars.textlen||void 0!==a.chapter_sub&&a.chapter_subflat_userVars.titlelen||void 0!==a.title_sub&&a.title_subc&&cc&&c>d&&(b=flatPM_addDays(b,-1)),b>e||cd||c-1!=flat_userVars.referer.indexOf(a))||void 0!==a.referer.referer_disabled&&-1!=a.referer.referer_disabled.findIndex(a=>-1!=flat_userVars.referer.indexOf(a)))&&(c=!0),c||void 0===a.browser||(void 0===a.browser.browser_enabled||-1!=a.browser.browser_enabled.indexOf(flat_userVars.browser))&&(void 0===a.browser.browser_disabled||-1==a.browser.browser_disabled.indexOf(flat_userVars.browser)))){if(c&&void 0!==a.browser&&void 0!==a.browser.browser_enabled&&-1!=a.browser.browser_enabled.indexOf(flat_userVars.browser)&&(c=!1),!c&&(void 0!==a.geo||void 0!==a.role)&&(""==flat_userVars.ccode||""==flat_userVars.country||""==flat_userVars.city||""==flat_userVars.role)){flat_pm_then.push(a),flatPM_setWrap(a),flat_body.hasClass("flat_pm_block_geo_role")||(flat_body.addClass("flat_pm_block_geo_role"),flatPM_ajax("flat_pm_block_geo_role")),c=!0}c||(flatPM_setWrap(a),flatPM_next(a))}}}let b=jQuery(".flatPM_sticky");b.each(function(){let a=jQuery(this),b=a.data("height")||350,c=a.data("top");a.wrap("
");let d=a.parent()[0];flatPM_sticky(this,d,c)}),debugMode||countMode||jQuery("[data-flat-id]:not([data-id-out]):not([data-id-modal])").contents().unwrap(),flat_pm_arr=[],jQuery(".flat_pm_start, .flat_pm_end").remove()}

Попалась в интернете схема двухканального зарядного устройства. Я не стал делать сразу на два канала, так как не было необходимости – собрал один. Схема вполне рабочая и заряжает прекрасно.

Схема ЗУ для автоаккумуляторов

Характеристики зарядного устройства

  • Напряжение сети 220 В.
  • Выходное напряжение 2 х 16 В.
  • Ток заряда 1 – 10 А.
  • Ток разряда 0,1 – 1 А.
  • Форма тока заряда – однополупериодный выпрямитель.
  • Ёмкость аккумуляторов 10 – 100 А/ч.
  • Напряжение заряжаемых аккумуляторов 3,6 – 12 В.

Описание работы: это зарядно-разрядное устройство на два канала с раздельной регулировкой тока заряда и тока разряда, что очень удобно и позволяет подобрать оптимальные режимы восстановления пластин аккумулятора исходя из их технического состояния.

Использование циклического режима восстановления приводит к значительному снижению выхода газов сероводорода и кислорода из-за их полного использования в химической реакции, ускоренно восстанавливается внутреннее сопротивление и ёмкость до рабочего состояния, отсутствует перегрев корпуса и коробление пластин. 

Ток разряда при зарядке ассиметричным током должен составлять не более 1/5 тока заряда. В инструкциях заводов изготовителей перед зарядкой аккумулятора требуется произвести разрядку, то есть провести формовку пластин перед зарядом.

Искать подходящую разрядную нагрузку нет необходимости, достаточно выполнить соответствующее переключение в устройстве. Контрольную разрядку желательно проводить током в 0,05С от ёмкости аккумулятора в течении 20 часов.

Схема позволяет провести формовку пластин двух аккумуляторов одновременно с раздельной установкой разрядного и зарядного тока.   Регуляторы тока представляют ключевые регуляторы на мощных полевых транзисторах VT1,VT2.

В цепях обратной связи установлены оптопары, необходимые для защиты транзисторов от перегрузки.

При больших токах заряда влияние конденсаторов C3,C4 минимальное и почти однополупериодный ток длительностью 5 мс с паузой в 5 мс ускоряет восстановление пластин аккумуляторов, за счёт паузы в цикле восстановления, не возникает перегрева пластин и электролиза, улучшается рекомбинация ионов электролита с полным использованием в химической реакции атомов водорода и кислорода.

Конденсаторы С2,С3 работая в режиме умножения напряжения, при переключении диодов VD1,VD2, создают дополнительный импульс для расплавления крупнокристаллической сульфатации и переводе окисла свинца в аморфный свинец.

Регуляторы тока обеих каналов R2, R5 питаются от параметрических стабилизаторов напряжения на стабилитронах VD3, VD4.

Резисторы R7, R8 в цепях затворов полевых транзисторов VT1, VT2 ограничивают ток затвора до безопасной величины.

Транзисторы оптопар U1, U2 предназначены для шунтирования напряжения затвора полевых транзисторов при перегрузке зарядным или разрядным токами.

Напряжение управления снимается с резисторов R13, R14 в цепях стока, через подстроечные резисторы R11, R12 и через ограничительные резисторы R9, R10 на светодиоды оптопар.

При повышенном напряжении на резисторах R13, R14 транзисторы оптопар открываются и снижают напряжение управления на затворах полевых транзисторов, токи в цепи сток-исток понижаются.

Режим заряда устанавливается переключателями SA1, SA2 в верхнее положение, разряда в нижнее положение. Полевые транзисторы крепятся для охлаждения на отдельные радиаторы. Светодиоды HL1, HL2 показывают правильную полярность подсоединения аккумуляторов в зарядную цепь.

После подключения аккумулятора переключатель режима SA1 или SA2 переводится в режим разряда. Регулятором тока, при включенной сети, устанавливается ток разряда в указанных выше пределах.

После снижения тока разряда до нулевого значения через 6-10 часов переключатель режима переводится в верхнее положение – заряд, регулятором тока устанавливается рекомендуемое значение зарядного тока.

Через 6-10 часов заряда ток должен упасть до величины подзаряда.

Далее провести повторный разряд. При полной ёмкости 10-ти часового разряда (напряжение не ниже 1,9 Вольта на элемент), провести повторный 10-ти часовой заряд.

Проводить зарядно-разрядный цикл аккумулятора рекомендуется даже при отличном его состоянии, легче кристаллизацию устранить в начале эксплуатации и не ждать когда она перейдёт в «застарелую» сульфатацию с ухудшением всех параметров аккумулятора.

Сделал печатку под схему, надеюсь кому нибудь потребуется. На схеме есть опечатка, оптотрон не АОУ110Б (таких нет в природе), а АОТ110Б. В качестве диода VD1, применил КД213 и установил его на радиатор.

Насчёт замены оптотрона, тут как мне кажется подойдут из современных 4N32, ну а симисторная оптопара MOC3062 не знаю.

В принципе а почему бы и нет?! Если предварительно на макетке собирать, то можно многие оптопары “обкатать” на этой схеме.

Испытания уже проводил без корпуса. При токе зарядки 5 А, радиатор транзистора еле тёплый, радиатор диода КД213 немного сильнее нагрет. Аккумулятор автомобиля заряжался около часа, ток зарядки упал до номинального при достижении 14,8 вольт.

Напряжение окончания зарядки выбрал с помощью резистора R11, резистор установил многооборотный, на переднюю панель не стал ставить R11, так как нет необходимости. Просто выставил напряжение окончания и всё. Да, сильно греется R13, на схеме он 10 Вт, может придётся установить ещё более мощный.

На этом всё, с вами был Demo.

   Форум по ЗУ

   Иногда возникает необходимость зарядить какой-нибудь нестандартный аккумулятор, из МП-3 плеера, фотоаппарата, а зарядного устройства для него нет. Особенно часто такая ситуация возникает при ремонте различной РЭА.

Поэтому настоятельно рекомендуется сделать небольшое универсальное зарядное устройство с возможностью регулировок его параметров, чтобы можно было заряжать практически любые (никель-кадмиевые, свинцовые, литиевые и т.д.) аккумуляторы с рабочим напряжением от 1,5 до 12 В и ёмкостью до 10 А/ч.

При этом важно, чтоб зарядное устройство не допускало перезаряда и сигнализировало об окончании процесса зарядки. В результат экспериментов получилась такая несложная схема, доступная для повторения даже начинающими радиолюбителями:

   Диодный мост выдерживающий ток более ампера. Конденсатор фильтра электролитический на емкость от 470 мкФ, и напряжением 25-50В. Трансформатор можно взять с мощностью 20-40 ватт и имеющим нужное нам напряжение на вторичной обмотке. Ток зарядки аккумулятора устанавливаем согласно формулы:

I = (0,5 … 0,7) / R2

   Резистор R2 желательно ставить переменный (для возможности регулировки максимального начального тока заряда). Стабилизатор КРЕН12А (LM317) позволяет регулировать выходное напряжение зарядки в широких пределах (от 1,5 до 35 В).

   По мере зарядки аккумулятора напряжение на нем будет приближаться к напряжению стабилизатора и, соответственно, ток через транзистор (нижний по схеме) станет понижаться.

Это приведет к его постепенному закрыванию, а светодиод плавно погаснет. Для контроля процесса зарядки, удобно использовать на выходе стрелочный индикатор.

Хорошо подходят для этого индикаторы уровня записи старых магнитофонов.

   Зарядка настроек не требует и при правильной сборке начинает работать сразу. При подключении к клеммам разряженного аккумулятора загорается светодиод и стрелка прибора отклоняется к концу шкалы, в зависимости от типа аккумулятора.

С помощью переменного резистора R3 выставляем максимальный ток зарядки. По мере зарядки яркость светодиода будет постепенно понижаться, а стрелка прибора приближаться к началу шкалы.

При полной зарядке, когда напряжения на аккумуляторе и выходе зарядного устройства сравняются, ток через аккумулятор станет нулевым. Это исключит всякий риск перезарядить аккумулятор.

   Вместо переменного резистора R4 удобнее использовать переключатель с набором заранее подобранных сопротивлений. Тогда нужно будет лишь установить переключателем нужное нам напряжение заряда.

   Подбирая сопротивления нижнего ряда резисторов, мы выставляем на выходе нужное нам напряжение. Таким способом легко подобрать любое напряжение. Зарядное устройство собрано на небольшой плате, размерами 2,5 х 3 см. Плата и расположение деталей универсального зарядного.

   Вся зарядка размещена в корпусе от старого блока питания. 

   Для зарядки разных по размеру и форме аккумуляторов можно использовать батарейные отсеки от каких-либо устройств, или же сделать самодельные.

   Вы можете разработать свой вариант, согласно имеющимся радиоэлементам, а можете изготовить этот, скачав архив с файлом. Автор конструкции: Андрей.

   Форум по схемотехнике ЗУ

   Схемы зарядных устройств