Балласт от энергосберегайки в качестве зарядного устройства мобильника

Как сделать блок питания из энергосберегающих ламп

Балласт от энергосберегайки в качестве зарядного устройства мобильника

Главная > Лампы электрические > Как сделать блок питания из энергосберегающих ламп

Энергосберегающие лампы широко применяются в быту и на производстве, со временем они приходят в негодность, а между тем многие из них после несложного ремонта можно восстановить. Если вышел из строя сам светильник, то из электронной «начинки» можно сделать довольно мощный блок питания на любое нужное напряжение.

Как выглядит блок питания из энергосберегающей лампы

В быту часто требуется компактный, но в то же время мощный низковольтный блок питания, сделать такой можно, используя вышедшую из строя энергосберегающую лампу. В лампах чаще всего выходят из строя светильники, а блок питания остается в рабочем состоянии.

Для того чтобы сделать блок питания, необходимо разобраться в принципе работы электроники, содержащейся в энергосберегающей лампе.

Достоинства импульсных блоков питания

В последние годы наметилась явная тенденция к уходу от классических трансформаторных блоков питания к импульсным. Это связано, в первую очередь, с большими недостатками трансформаторных блоков питания, таких как большая масса, малая перегрузочная способность, малый КПД.

Устранение этих недостатков в импульсных блоках питания, а также развитие элементной базы позволило широко использовать эти узлы питания для устройств с мощностью от единиц ватт до многих киловатт.

Схема блока питания

Принцип работы импульсного блока питания в энергосберегающей лампе точно такой же, как в любом другом устройстве, например, в компьютере или телевизоре.

В общих чертах работу импульсного блока питания можно описать следующим образом:

  • Переменный сетевой ток преобразуется в постоянный без изменения его напряжения, т.е. 220 В.
  • Широтно-импульсный преобразователь на транзисторах превращает постоянное напряжение в прямоугольные импульсы, с частотой от 20 до 40 кГц (в зависимости от модели лампы).
  • Это напряжение через дроссель подается на светильник.

Рассмотрим схему и порядок работы импульсного блока питания лампы (рисунок ниже) более подробно.

Схема электронного балласта энергосберегающей лампы

Сетевое напряжение поступает на мостовой выпрямитель(VD1-VD4) через ограничительный резистор R0 небольшого сопротивления, далее выпрямленное напряжение сглаживается на фильтрующем высоковольтном конденсаторе (С0), и через сглаживающий фильтр (L0) подается на транзисторный преобразователь.

Запуск транзисторного преобразователя происходит в тот момент, когда напряжение на конденсаторе С1 превысит порог открытия динистора VD2. Это запустит в работу генератор на транзисторах VT1 и VT2, благодаря чему возникает автогенерация на частоте около 20 кГц.

Другие элементы схемы, такие как R2, C8 и C11, играют вспомогательную роль, облегчая запуск генератора. Резисторы R7 и R8 увеличивают скорость закрытия транзисторов.

А резисторы R5 и R6 служат как ограничительные в цепях баз транзисторов, R3 и R4 предохраняют их от насыщения, а в случае пробоя играют роль предохранителей.

Диоды VD7, VD6 – защитные, хотя во многих транзисторах, предназначенных для работы в подобных устройствах, такие диоды встроены.

TV1 – трансформатор, с его обмоток TV1-1 и TV1-2, напряжение обратной связи с выхода генератора подается в базовые цепи транзисторов, создавая тем самым условия для работы генератора.

На рисунке выше красным цветом выделены детали, подлежащие удалению при переделке блока, точки А–А` нужно соединить перемычкой.

Переделка блока

Перед тем как приступить к переделке блока питания, следует определиться с тем, какую мощность тока необходимо иметь на выходе, от этого будет зависеть глубина модернизации.

Так, если требуется мощность 20-30 Вт, то переделка будет минимальной и не потребует большого вмешательства в существующую схему.

Если необходимо получить мощность 50 и более ватт, то модернизация потребуется более основательная.

Следует иметь в виду, что на выходе блока питания будет постоянное напряжение, а не переменное. Получить от такого блока питания переменное напряжение частотой 50 Гц невозможно.

Определяем мощность

Мощность можно вычислить по формуле:

P=I*U, где

Р – мощность, Вт;

I – сила тока, А;

U – напряжение, В.

Например, возьмем блок питания со следующими параметрами: напряжение – 12 В, сила тока – 2 А, тогда мощность будет:

Р=2*12=24 Вт

С учетом перегрузки можно принять 24-26 Вт, так что для изготовления такого блока потребуется минимальное вмешательство в схему энергосберегающей лампы мощностью 25 Вт.

Новые детали

Добавление новых деталей в схему

Добавляемые детали выделены красным цветом, это:

  • диодный мост VD14-VD17;
  • два конденсатора С9, С10;
  • дополнительная обмотка, размещенная на балластном дросселе L5, количество витков подбирается опытным путем.

Добавляемая обмотка на дроссель играет еще одну немаловажную роль разделительного трансформатора, предохраняя от попадания сетевого напряжения на выход блока питания.

Чтобы определить необходимое количество витков в добавляемой обмотке, следует проделать следующие действия:

  1. на дроссель наматывают временную обмотку, примерно 10 витков любого провода;
  2. соединяют с нагрузочным сопротивлением, мощностью не менее 30 Вт и сопротивлением примерно 5-6 Ом;
  3. включают в сеть, замеряют напряжение на нагрузочном сопротивлении;
  4. полученное значение делят на количество витков, узнают, сколько вольт приходится на 1 виток;
  5. вычисляют необходимое число витков для постоянной обмотки.

Более детальный расчет приведен ниже.

При испытательных включениях рекомендуется применять схему, которая предохранит от выхода из строя блока питания, ее схематичное изображение приведено на рисунке ниже.

Испытательное включение переделанного блока питания

После этого легко вычислить необходимое число витков. Для этого напряжение, которое планируется получить от этого блока, делят на напряжение одного витка, получается количество витков, к полученному результату добавляют про запас примерно 5-10%.

W=Uвых/Uвит, где

W – количество витков;

Uвых – требуемое выходное напряжение блока питания;

Uвит – напряжение на один виток.

Намотка дополнительной обмотки на штатный дроссель

Оригинальная обмотка дросселя находится под напряжением сети! При намотке поверх нее дополнительной обмотки необходимо предусмотреть межобмоточную изоляцию, особенно если наматывается провод типа ПЭЛ, в эмалевой изоляции. Для межобмоточной изоляции можно применить ленту из политетрафторэтилена для уплотнения резьбовых соединений, которой пользуются сантехники, ее толщина всего 0,2 мм.

Мощность в таком блоке ограничена габаритной мощностью используемого трансформатора и допустимым током транзисторов.

Блок питания повышенной мощности

Для этого потребуется более сложная модернизация:

  • дополнительный трансформатор на ферритовом кольце;
  • замена транзисторов;
  • установка транзисторов на радиаторы;
  • увеличение емкости некоторых конденсаторов.

В результате такой модернизации получают блок питания мощностью до 100 Вт, при выходном напряжении 12 В. Он способен обеспечить ток 8-9 ампер. Этого достаточно для питания, например, шуруповерта средней мощности.

Схема модернизированного блока питания приведена на рисунке ниже.

Блок питания мощностью 100 Вт

Как видно на схеме, резистор R0 заменен на более мощный (3-ваттный), его сопротивление уменьшено до 5 Ом. Его можно заменить на два 2-ваттных по 10 Ом, соединив их параллельно.

Далее, С0 – его емкость увеличена до 100 мкф, с рабочим напряжением 350 В.

Если нежелательно увеличивать габариты блока питания, то можно подыскать миниатюрный конденсатор такой емкости, в частности, его можно взять из фотоаппарата-мыльницы.

Для обеспечения надежной работы блока полезно несколько уменьшить номиналы резисторов R5 и R6, до 18–15 Ом, а также увеличить мощность резисторов R7, R8 и R3, R4. Если частота генерации окажется невысокой, то следует увеличить номиналы конденсаторов C­3 и C4 – 68n.

Импульсный трансформатор

Самым сложным может оказаться изготовление трансформатора. Для этой цели в импульсных блоках чаще всего используют ферритовые кольца соответствующих размеров и магнитной проницаемости.

Расчет таких трансформаторов довольно сложен, но в интернете есть много программ, с помощью которых это очень легко сделать, например, «Программа расчета импульсного трансформатора Lite-CalcIT».

Как выглядит импульсный трансформатор

Расчет, проведенный с помощью этой программы, дал следующие результаты:

Для сердечника используется ферритовое кольцо, его внешний диаметр – 40, внутренний – 22, а толщина – 20 мм. Первичная обмотка проводом ПЭЛ – 0,85 мм2 имеет 63 витка, а две вторичных тем же проводом – 12.

Вторичную обмотку необходимо наматывать сразу в два провода, при этом их желательно предварительно слегка скрутить между собой по всей длине, так как эти трансформаторы очень чувствительны к несимметричности обмоток. Если не соблюдать это условие, то диоды VD14 и VD15 будут нагреваться неравномерно, а это еще больше увеличит несимметричность что, в конце концов, выведет их из строя.

Зато такие трансформаторы легко прощают значительные ошибки при расчете количества витков, до 30%.

Транзисторы

Так как эта схема изначально рассчитывалась для работы с лампой мощностью 20 Вт, то установлены транзисторы 13003. На рисунке ниже позиция (1) – транзисторы средней мощности, их следует заменить на более мощные, например, 13007, как на позиции (2). Возможно, их придется установить на металлическую пластину (радиатор), площадью около 30 см2.

Замена транзисторов

Испытание

Пробное включение стоит проводить с соблюдением некоторых мер предосторожности, чтобы не вывести из строя блок питания:

  1. Первое пробное включение производить через лампу накаливания 100 Вт, чтобы ограничить ток на блок питания.
  2. К выходу обязательно подключить нагрузочный резистор 3-4 Ома, мощностью 50-60 Вт.
  3. Если все прошло штатно, дать поработать 5-10 мин., отключить и проверить степень нагрева трансформатора, транзисторов и диодов выпрямителя.

Если в процессе замены деталей не были допущены ошибки, блок питания должен заработать без проблем.

Если пробное включение показало работоспособность блока, остается испытать его в режиме полной нагрузки. Для этого сопротивление нагрузочного резистора уменьшить до 1,2-2 Ом и включить его в сеть напрямую без лампочки на 1-2 минуты. После чего отключить и проверить температуру транзисторов: если она превышает 600С, то их придется установить на радиаторы.

В качестве радиатора можно использовать как заводской радиатор, что будет наиболее верным решением, так и алюминиевую пластину, толщиной не менее 4 мм и площадью 30 кв.см. Под транзисторы необходимо подложить слюдяную прокладку, крепить их к радиатору нужно с помощью винтов с изолирующими втулками и шайбами.

Блок из лампы. Видео

О том, как сделать импульсный блок питания из эконом лампы, видео ниже.

Импульсный блок питания из балласта энергосберегающей лампы можно сделать своими руками, имея минимальные навыки работы с паяльником.

Источник: https://elquanta.ru/lampa/blok-pitaniya-lamp.html

Вторая жизнь: как изготовить из энергосберегающих ламп блок питания

Выход из строя батареи аккумуляторного шуруповерта или другого электроинструмента – событие не самое приятное, особенно если учесть, что стоимость замены этого элемента соизмерима с ценой нового прибора. Но быть может, незапланированных расходов удастся избежать?

Это вполне возможно, если заменить аккумулятор простеньким самодельным блоком питания импульсного типа, с помощью которого инструмент можно будет запитывать от сети. А комплектующие для него можно найти в доступном и повсеместно распространенном изделии – это люминесцентные лампы.

Как устроен балласт энергосберегающей лампочки

Согласно характеристикам энергосберегающих ламп, в цоколе каждой из них предусмотрен так называемый электронный балласт – миниатюрная схема, предотвращающая мигание лампы во время включения и обеспечивающая постепенный разогрев катодных спиралей. Благодаря ей находящийся в колбе газ испускает свечение с частотой от 30 до 100 кГц.

КЛЛ в разобранном видеВид люминесцентной лампочки изнутриУстройство энергосберегающей лампы на примере изделия от Camelon

Работа на столь высоких частотах значительно увеличивает коэффициент энергопотребления, доводя его практически до единицы, чем и обусловлена высокая экономичность ламп данного типа. Дополнительными преимуществами высокочастотного электричества является отсутствие воспринимаемого человеческим ухом шума и электромагнитного поля.

В зависимости от того, как спроектирован электронный дроссель для люминесцентных ламп, она может сразу загораться с полным накалом, либо выходить на максимальную яркость постепенно.

Иногда для этого требуется одна или две минуты, что, конечно, не очень удобно.

Время разогрева лампы производителями не указывается, и покупатель имеет возможность проверить его, только начав пользоваться изделием.

Подавляющая часть балластных схем, по сути, являющихся преобразователями напряжения, собирается на полупроводниковых транзисторах. В дорогих лампах применена более сложная схема, в дешевых – упрощенная.

Вот чем можно поживиться, имея на руках годную или перегоревшую люминесцентную лампу:

  • биполярные транзисторы, рассчитанные на напряжение до 700 В и токи до 4 А, часто уже с защитными диодами (D4126L или аналогичные);
  • полевые транзисторы (встречаются довольно редко);
  • импульсный трансформатор;
  • дроссель;
  • двунаправленный динистор, аналогичный сдвоенному динистору КН102;
  • конденсатор на 10/50В.

Некоторые виды электронного балласта энергосберегающих ламп при сборке самодельного блока питания выступают не просто источником комплектующих, но представляют собой значительную часть схемы, которую остается только немного дополнить и изменить.

Не очень удачными считаются преобразователи, имеющие в своем составе электролитические конденсаторы. Именно эти элементы особенно часто становятся причиной поломок в электронных устройствах.

Читайте также:  Намотка показаний пробега в 3-х фазных спидометрах

Импульсный блок питания и его особенности

В импульсный блок питания (ИБП) преобразование электрической энергии происходит по следующей схеме:

  1. Выпрямитель входной (диодный мост + конденсатор) преобразует входной ток из переменного в постоянный.
  2. Инвертор преобразует поступающий с входного выпрямителя постоянный ток снова в переменный, но уже с частотой выше 10 кГц, то есть исходная частота тока (50 Гц) повышается более, чем в 200 раз.
  3. Переменный высокочастотный ток поступает на импульсный трансформатор, который понижает или повышает напряжение.
  4. Выходной выпрямитель превращает переменный ток с требуемыми параметрами, но высокой частотой, в постоянный.

Главная особенность этого способа преобразования электроэнергии состоит в существенном увеличении частоты переменного тока, поступающего на трансформатор. Это позволяет сделать его значительно более компактным, чем он был бы при частоте в 50 Гц. Но малые размеры – это не единственное преимущество импульсных блоков перед линейными.

ИБП на IR2153/2155

Работа инвертора, преобразующего постоянный ток высокочастотный переменный, основана на применении MOSFET-транзисторов, для которых характерна высокая скорость переключения. Быстродействующими должны быть и диоды, устанавливаемые в мосту выходного выпрямителя.

Обычные диоды с током, имеющим частоту выше 10 кГц, работать не смогут. Широко используются диоды Шоттки, которые, в отличие от кремниевых диодов, теряют очень малую долю энергии, работая на высокой частоте.

При низком выходном напряжении роль выпрямителя может играть транзистор. Еще вариант – замена трансформатора дросселем. Подобные схемы встречаются в самых простых преобразователях.

Рекомендуем Вам также более подробно ознакомиться со схемой диммера.

Ибп из лампы своими руками

В большинстве случаев для сборки ИБП электронный дроссель следует лишь немного изменить (при двухтранзисторной схеме) за счет перемычки, а затем подключить к импульсному трансформатору и выпрямителю. Некоторые компоненты просто удаляются за ненадобностью.

Блок питания самодельный

Для слабых блоков питания (от 3.7 в до 20 ватт), можно обойтись без трансформатора. Достаточно будет добавить несколько витков провода на магнитопровод имеющегося в балласте лампы дросселя, если, конечно, там есть для этого место. Новую намотку можно делать прямо поверх существующей.

Для этого отлично подойдет провод марки МГТФ с изоляцией из фторопласта. Обычно провода требуется мало, при этом почти весь просвет магнитопровода занимает изоляция, что и обуславливает малую мощность таких устройств. Чтобы увеличить ее, понадобится импульсный трансформатор.

Рекомендуем Вам также прочитать про светодиодный аккумуляторный фонарик.

Импульсный трансформатор

Особенностью описываемого варианта ИБП является способность до некоторой степени подстраиваться под параметры трансформатора, а также отсутствие цепи обратной связи, проходящей через этот элемент. Такая схема подключения позволяет обойтись без особо точного расчета трансформатора.

Как показала практика, даже при грубых ошибках (допускались отклонения свыше 140%) ИБП получался работоспособным.

Трансформатор изготавливается на базе все того же дросселя, на котором наматывается вторичная обмотка из лакированного обмоточного медного провода. При этом важно уделить особенное внимание межобмоточной изоляции из бумажной прокладки, ведь «родная» обмотка дросселя будет работать под сетевым напряжением.

Даже если она покрыта синтетической защитной пленкой, поверх нее все-равно необходимо намотать несколько слоев электрокартона или хотя бы обычной бумаги общей толщиной 100 мкм (0,1 мм), а уже поверх бумаги можно укладывать лакированный провод новой обмотки.

Используя указанные материалы и технологию можно получить блок питания мощность 20 или чуть более ватт. В данном случае ее значение ограничивается площадью окна магнитопровода и, соответственно, максимальным диаметром провода, который удается там разместить.

Выпрямитель

Во избежание насыщения магнитопровода в ИБП применяют только двухполупериодные выходные выпрямители. В том случае, если импульсный трансформатор работает на понижение напряжения, наиболее экономичной является схема с нулевой точкой, но для ее реализации понадобится сделать две полностью симметричные вторичные обмотки. При ручной намотке можно выполнить обмотку в два провода.

Стандартный выпрямитель, собранный по схеме «диодный мост» из обычных кремниевых диодов, для импульсного ИБП не подходит, поскольку из 100 Вт передаваемой мощности (при напряжении 5 В) на нем будет теряться около 32 Вт или более. Собирать же выпрямитель на мощных импульсных диодах будет слишком дорого.

Наладка ИБП

После сборки ИБП его необходимо подключить к максимальной нагрузке и проверить, насколько сильно греются транзисторы и трансформатор. Предел для трансформатора – 60 – 65 градусов, для транзисторов – 40 градусов.

При перегреве трансформатора увеличивают сечение провода или габаритную мощность магнитопровода, либо выполняют оба действия совместно.

Если трансформатор сделан из дросселя балласта лампы, увеличить сечение провода, скорее всего, уже не получится и придется ограничивать подключаемую нагрузку.

Вариант ИБП с повышенной мощностью

Иногда стандартной мощности электронного балласта лампы бывает недостаточно. Представим себе ситуацию: имеется лампа мощностью 23 Вт, а необходимо получить источник питания для зарядного устройства с параметрами 12В/8А.

Для того чтобы осуществить задуманное, придется раздобыть компьютерный блок питания, оказавшийся по каким-либо причинам невостребованным. Из этого блока следует изъять силовой трансформатор вместе с цепочкой R4C8, которая выполняет функцию защиты силовых транзисторов от перенапряжения. Силовой трансформатор следует присоединить к электронному балласту вместо дросселя.

Схема сборки ИБП из энергосберегающей лампочки

Опытным путем было установлено, что данный тип ИБП позволяет снимать мощность до 45 Вт при незначительном перегреве транзисторов (до 50 градусов).

Возможные ошибки

Как уже говорилось, включение в схему в качестве выходного выпрямителя обычного низкочастотного диодного моста нецелесообразно, а при повышенной мощности ИБП делать этого тем более не стоит.

Также бессмысленно пытаться ради упрощения схемы наматывать базовые обмотки непосредственно на силовом трансформаторе. В отсутствие нагрузки будут иметь место значительные потери из-за того, что в базы транзисторов будет поступать ток максимальной величины.

Применяемый трансформатор с увеличением тока нагрузки увеличивает и ток в базах транзисторов. Практика показывает, что при достижении мощностью нагрузки значений в 75 Вт в магнитопроводе трансформатора имеет место насыщение. Это приводит к ухудшению характеристик транзисторов и их перегреву.

Во избежание этого можно самому намотать трансформатор тока, в два раза увеличив сечение сердечника или сложив вместе два кольца. Также можно в два раза увеличить диаметр провода.

Существует способ избавиться от базового трансформатора, выполняющего промежуточную функцию. Для этого токовый трансформатор через мощный резистор подключают к отдельной обмотке силового, реализуя схему обратной связи по напряжению. Недостатком данного варианта является то, что токовый трансформатор при этом постоянно работает в режиме насыщения.

Следует учитывать повышенную чувствительность диодов Шоттки к превышению значения обратных напряжения и тока. Попытка установить, скажем, 5-вольтовый диод в 12-вольтовую схему, скорее всего, приведет к выходу элемента из строя.

Подключение ИБП к шуруповерту

Электроинструмент необходимо разобрать, отвинтив все шурупы. Обычно корпус шуруповерта состоит из двух половинок. Далее следует найти провода, которыми двигатель подключается к батарее. Соединить эти провода с выходом ИБП можно с помощью пайки или термоусадочной трубки, вариант со скрутками нежелателен.

Для ввода провода от блока питания в корпусе инструмента необходимо выполнить отверстие. Важно предусмотреть меры, предотвращающие вырывание провода в случае неосторожных движений или случайных рывков.

Самый простой вариант – обжать провод внутри корпуса у самого отверстия клипсой из сложенного пополам коротенького отрезка мягкой проволоки (подойдет алюминий).

Имея превосходящие диаметр отверстия размеры, клипса не даст проводу оторваться и выпасть из корпуса в случае рывка.

Как видно, энергосберегающая лампочка, даже отработавшая положенный ей срок, может принести немалую пользу своему владельцу. Собранный на базе ее комплектующих ИБП может с успехом применяться в качестве источника энергии для аккумуляторного электроинструмента или зарядного устройства.

Видео

Данное видео расскажет Вам как собрать блок питания из энергосберегающих ламп.

Источник: http://FineLighting.ru/texnologii-i-normy/sistemy/bloki-pitaniya/vtoraya-zhizn-kak-izgotovit-energosberegayushhix-lamp.html

Как сделать блок питания из эконом лампы | Каталог самоделок

Привет, друзья. В эпоху светодиодных технологий многие все еще предпочитают для освещения использовать люминесцентные лампы (они же экономки). Это разновидность газоразрядных ламп, которые многие считают, мягко скажем, не очень безопасным видом освещения.

Но, вопреки всем сомнениям, они успешно висели в наших домах не одно десятилетие, поэтому у многих сохранились нерабочие эконом-лампы.

Как мы знаем, для работы многих газоразрядных ламп требуется высокое напряжение, порой в разы выше, чем напряжение в сети и обычная экономка тоже не исключение.

В такие лампы встроены импульсные преобразователи, или балласты. Как правило, в бюджетных вариантах применяется полумостовой автогенераторный преобразователь по очень популярной схематике.

  Схема такого блока питания работает довольно надежно, несмотря на полное отсутствие каких-либо защит, помимо предохранителя. Тут нет даже нормального задающего генератора.

Цепь запуска построена на базе симметричного диака.

Схема та же, что и у электронного трансформатора, только вместо понижающего трансформатора оттуда использован накопительный дроссель. Я намерен быстро и понятно показать вам, как можно такие блоки питания превратить в полноценный импульсный источник питания понижающего типа, плюс обеспечить гальваническую развязку от сети для безопасной эксплуатации.

Для начала хочу сказать, что переделанный блок может быть использован в качестве основы для зарядных устройств, блоков питания для усилителей. В общем, можно внедрить там, где есть нужда в источнике питания.

Нужно лишь доработать выход диодным выпрямителем и сглаживающей емкостью.

Подойдет для переделки любая экономка любой мощностью. В моем случае -это полностью рабочая лампа на 125 Ватт. Лампу сначала нужно вскрыть, достать блок питания, а колба нам больше не нужна. Даже не вздумайте ее разбивать, поскольку там содержатся очень токсичные пары ртути, которые смертельно опасны для живых организмов.

Первым делом смотрим на схему балласта.

Они все одинаковые, но могут отличаться количеством дополнительных компонентов. На плате сразу бросается в глаза довольно массивный дроссель. Разогреваем паяльник и выпаиваем его.

Дальше находим убитый блок питания от компьютера. Нам нужен только силовой импульсный трансформатор.

На плате у нас имеется также маленькое колечко.

Это трансформатор обратной связи потоку и он состоит из трех обмоток, две из которых являются задающими,

а третья является обмоткой обратной связи потоку и содержит всего один виток.

А теперь нам нужно подключить трансформатор от компьютерного блока питания так, как показано по схеме.

То есть один из выводов сетевой обмотки подключается к обмотке обратной связи.

Второй вывод подключается к точке соединения двух конденсаторов полумоста.

Да, друзья, на этом процесс завершен. Видите, насколько все просто.

Теперь я нагружу выходную обмотку трансформатора, чтобы убедиться в наличии напряжения.

Не забываем, начальный запуск балласта делается страховочной лампочкой. Если блок питания нужен на малую мощность, можно обойтись вообще без всякого трансформатора, и вторичную обмотку обмотать на непосредственно сам дроссель.

Не помешало бы установить силовые транзисторы на радиаторы. В ходе работы под нагрузкой их нагрев – это естественное явление.

Вторичную обмотку трансформатора можно сделать на любое напряжение.

Для этого нужно его перемотать, но если блок нужен, например, для зарядного устройства автомобильного аккумулятора, то можно обойтись без всяких перемоток. Для выпрямителя стоит использовать импульсные диоды, опять же, оптимальное решение – это наше КД213 с любой буквой.

Источник: https://volt-index.ru/electronika-dlya-nachinayushih/kak-sdelat-blok-pitaniya-iz-ekonom-lampyi.html

Бесконтактное зарядное устройство

Сегодня появился новый способ зарядки мобильных устройств — бесконтактный. Его суть заключается в том, что заряжаемое устройство не имеет непосредственного электрического контакта с зарядным устройством. Такой способ применяют для зарядки мобильных телефонов, смартфонов и пр.

Автор предлагает свой вариант бесконтактного зарядного устройства для зарядки аккумуляторов светодиодного фонаря.При частом пользовании каким-либо устройством со сменными элементами питания, например, карманным фонарём, возникает потребность в частой замене гальванических элементов питания или периодической зарядке, если применены аккумуляторы.

Для зарядки аккумуляторов приходится вынимать их из корпуса фонаря, что не всегда удобно. В тоже время сейчас всё большее распространение получает технология так называемой бесконтактной зарядки. Принцип работы большинства таких зарядных устройств (ЗУ) основан на индуктивной связи между источником и потребителем энергии.

По такому же принципу работает и предлагаемое вниманию читателей ЗУ для карманного фонаря.Основа предлагаемого ЗУ — электронный балласт от компактной люминесцентной лампы (КЛЛ). Как известно, электронный балласт КЛЛ представляет собой импульсный генератор, работающий на частоте несколько десятков килогерц.

Благодаря такой частоте все элементы устройства имеют небольшие размеры, в том числе трансформаторы и балластные дроссели. Именно балластный дроссель является элементом, который ограничивает ток через люминесцентную лампу. И в этом смысле он выполняет ту же функцию, что и балластный конденсатор в простейших зарядных устройствах — ограничивает (задаёт) ток зарядки.

Читайте также:  Охрана автомобиля с оповещением по радиоканалу

 
Рис. 1. Структурная схема ЗУ 

Структурная схема ЗУ показана на рис. 1. От КЛЛ использован собственно электронный балласт, который содержит выпрямитель со сглаживающим конденсатором, импульсный генератор и балластный дроссель, последовательно с которым включена не люминесцентная лампа, а разделительный трансформатор.

Этот трансформатор служит связующим элементом между зарядным устройством и аккумуляторной батареей фонаря. Поскольку он включён последовательно с балластным дросселем, ток через него будет ограничен, и он частично работает как трансформатор тока, поэтому замыкание в цепи его вторичной обмотки не приведёт к катастрофическим последствиям.

Первичная обмотка трансформатора размещена в корпусе ЗУ, вторичная — в фонаре. Через первичную обмотку трансформатора протекает ток, который зависит в основном от индуктивности балластного дросселя и напряжения сети, поэтому остаётся относительно стабильным.

В фонаре на вторичной обмотке трансформатора возникает переменное напряжение, которое выпрямляется и через ограничитель напряжения поступает на аккумуляторную батарею фонаря. Поскольку ток в первичной обмотке трансформатора ограничен, то он будет ограничен и во вторичной.

Изменяя параметры трансформатора тока, можно задать требуемые напряжение и ток зарядки батареи. Когда напряжение батареи достигнет максимального значения, включится ограничитель. Напряжение на батарее перестанет расти, а “лишний” ток потечёт через ограничитель. 
Рис. 2.

Схема электронного балласта КЛЛ и его доработка 

Схема электронного балласта КЛЛ и его доработка показаны на рис. 2. Все вновь вводимые элементы и соединения выделены цветом. Была использована КЛЛ мощностью 18…20 Вт. После вскрытия её корпуса с платы снимают проволочные выводы (4 шт.

) люминесцентной лампы, которые обычно намотаны на металлические штыри. Затем отсоединяют провода, соединяющие плату с цоколем лампы. Плату размещают в пластмассовом корпусе подходящего размера с крышкой. Корпус должен быть достаточно просторный, чтобы, кроме платы, поместить дополнительные элементы.

В авторском варианте была применена цилиндрическая коробка диаметром 65 и высотой 28 мм от канцелярских скрепок (рис. 3). Последовательно со штатным балластным дросселем L2 взамен люминесцентной лампы включают ещё один балластный дроссель L3 от аналогичной КЛЛ и первичную обмотку Т2.1 разделительного трансформатора.

Для индикации работы импульсного генератора к его выходу через токоограничиваю-щие резисторы R10 и R11 подключена неоновая индикаторная лампа HL1. Весь монтаж проводят навесным методом, для индикаторной лампы в корпусе сделано отверстие соответствующего диаметра.

Для доработки был выбран светодиодный фонарь с диаметром корпуса 24 и длиной 82 мм. В нём применены девять светодиодов и батарея из трёх аккумуляторов типоразмера ААА. Кнопочный выключатель питания расположен в отвинчивающейся крышке батарейного отсека. С корпусом фонаря соединены катоды светодиодов.

Схема доработки фонаря показана на рис. 4, все новые элементы и связи показаны красным цветом. Переменное напряжение с обмотки Т2.2 разделительного трансформатора выпрямляет диодный мост VD1, пульсации выпрямленного напряжения сглаживает конденсатор С1.

Через диоды VD2 и VD3 ток зарядки поступает в аккумуляторную батарею. Диод VD2 предотвращает разрядку батареи в дежурном режиме, а диод VD3, подключённый параллельно-встречно светодиодам, пропускает зарядный ток.

На микросхеме DA1 (параллельный стабилизатор напряжения) собран ограничитель напряжения, светодиоды HL1, HL2 индицируют режимы зарядки батареи.

 
Рис. 4. Схема доработки фонаря В начале зарядки, когда напряжение аккумуляторной батареи меньше номинального, напряжение на управляющем входе (вывод 1) микросхемы DA1 меньше порогового. Поэтому ток через микросхему мал, и практически всё выпрямленное напряжение поступает на цепь из токоогра-ничивающего резистора R5 и светодиода HL2 (зелёного цвета свечения), который и сигнализирует о том, что происходит зарядка аккумуляторной батареи.Когда напряжение батареи достигнет порогового значения, ток через микросхему возрастёт и падение напряжения на ней уменьшится примерно до 2 В. Зарядный ток станет протекать через резистор R3 и микросхему DA1, поэтому зарядка аккумуляторной батареи постепенно прекратится При этом светодиод HL2 погаснет, a HL1 (красного цвета свечения) начнёт светить, сигнализируя об окончании зарядки.

Конструкцию устройства поясняет рис. 5. В крышке 3 батарейного отсека размещён кнопочный выключатель 5 (SA1 на рис. 4).

Один вывод 4 выключателя 5 механически соединён с металлическим корпусом крышки 3, второй — с пружинным контактом 6. Выключатель механически зафиксирован в крышке с помощью изоляционной пластмассовой прокладки 7.

С другой стороны для защиты от внешних климатических воздействий на выключатель надета резиновая прокладка 8.

Доработка сводится к следующему. К крышке 3 приклеен пластмассовый кожух 1. В центре кожуха сделано отверстие, в котором с помощью клея закреплён каркас 10. На него намотана вторичная обмотка 2 (Т2.2) разделительного трансформатора.

Функцию толкателя выключателя выполняет цилиндрический магнитопровод 11. Чтобы он не выпадал из каркаса 10, к нему приклеена пластмассовая шайба 9. В отверстие в центре верхней крышки 12 корпуса электронного балласта вклеен пластмассовый каркас 14, на который намотана обмотка 13 (Т2.1) трансформатора.

Внутренний диаметр каркаса для намотки катушек трансформатора выбирают таким, чтобы в него с небольшим люфтом входил магнитопровод 11. В авторском варианте применён магнитопровод диаметром 6 и длиной 15 мм от дросселя компьютерного блока питания. Высота каркаса 14 — 8…9 мм, каркаса 10 — 6…

7 мм, их толщина — 0,5…0,7 мм. Обмотка Т2.1 содержит 350 витков провода ПЭВ-2 0,18, обмотка Т2.2 — 180 витков провода ПЭВ-2 0,1. Диаметр шайбы 9 — 10…12 мм, толщина — 0,5… 1,5 мм, последнюю подбирают так, чтобы магнитопровод 11 “не болтался”.

Диаметр кожуха (пластмассовый контейнер от лекарства) — 21 мм, его высота — 11 мм. Доработанный фонарь показан на рис. 6.

 

Рис. 6. Доработанный фонарь

При пользовании фонарём магнито-провод выполняет функцию толкателя выключателя. Но если фонарь выключить, электронный балласт включить в сеть и вставить магнитопровод в каркас 14 (см. рис. 5), между обмотками Т2.1 и Т2.2 возникнет индуктивная связь, на обмотке Т2.2 появится напряжение и начнётся зарядка аккумуляторной батареи (рис. 7).

В устройстве применены малогабаритные постоянные выводные резисторы Р1-4 или импортные, светодиоды — любые с диаметром корпуса 3 мм красного и зелёного цветов свечения. Конденсатор С1 — К10-17в, он установлен на выводах диодного моста VD1.

Налаживание начинают с подборки числа витков обмотки Т2.2. Для этого наматывают указанное число витков этой обмотки и подключают к ней диодный мост с конденсатором фильтра. Вставляют маг-нитопровод в каркас обмотки Т2.1 и надевают на него обмотку Т2.2. К выходу диодного моста (см. рис. 4) подключают переменный резистор сопротивлением 470 Ом.

Изменяя его сопротивление, контролируют ток через него и напряжение на нём. Необходимо, чтобы при требуемом зарядном токе напряжение было 4,8…5 В (напряжение заряженной аккумуляторной батареи — 4,3…4,4 В плюс падение напряжения на диодах VD2 и VD3). При большем напряжении увеличится ток зарядки. Поскольку в фонаре планировалось применить три аккумулятора ёмкостью 300…

600 мАч, был выбран ток зарядки около 40 мА. По результатам измерений принимают решение о необходимости добавить или удалить витки обмотки Т2.2. После подборки числа витков обмотку надо защитить, покрыв слоем лака или клея. Следует отметить, что их число может заметно отличаться от указанного выше, поскольку это зависит от размеров и свойств магнитопровода.

Для увеличения тока зарядки необходимо либо увеличить число витков первичной обмотки трансформатора тока, либо увеличить ток через неё, уменьшив индуктивность дросселей L2 и L3 в электронном балласте.Затем на макетной плате монтируют все остальные элементы устройства, в батарейный отсек устанавливают свежезаряженные аккумуляторы, выводы 1 и 2 микросхемы DA1 временно замыкают.

Вставляют магнитопровод в каркас обмотки Т2.1, надевают на него обмотку Т2.2 и измеряют напряжение (иВыпР) на выходе выпрямителя (см. рис. 4). Затем взамен батареи подключают переменный резистор сопротивлением 470 Ом и, изменяя его сопротивление, устанавливают на выходе выпрямителя такое же напряжение (ивыПр)- Резистор R1 (см. рис.

4) подбирают так, чтобы при увеличении этого напряжения (его изменяют переменным резистором) на несколько десятков милливольт светодиод HL2 выключался, a HL1 — включался. В случае необходимости подбирают резистор R3. Его сопротивление должно быть таким, чтобы при отключении переменного резистора напряжение на выходе выпрямителя не превысило ивыпР и светился светодиод HL1.

Следует учесть, что максимально допустимый ток микросхемы TL431CLP — 100 мА, поэтому ток зарядки не должен превышать 60…70 мА.Доработку фонаря начинают с установки диода VD3. Для этого надо вынуть батарейный отсек, аккуратно удалить защитное стекло и изнутри выдавить плату со светодиодами. На плату между выводами светодиодов устанавливают диод VD3.

После проверки правильности монтажа сборку проводят в обратном порядке и проверяют работоспособность фонаря. Все остальные элементы будут размещены в кожухе на крышке батарейного отсека.В резиновой прокладке 8 (см. рис. 5) прокалывают два отверстия, в которые вставляют провода в надёжной изоляции, например МГТФ, и припаивают их к выводам выключателя.

При этом, возможно, потребуется извлечь выключатель из крышки 3 (см. рис. 5). Затем размещают элементы и закрепляют их термоклеем в кожухе 1 и соединяют проводами. Для установки светодиодов в кожухе делают два отверстия диаметром 3 мм.Предложенное зарядное устройство можно применить для зарядки встроенных в самые различные устройства аккумуляторов или аккумуляторных батарей.

В зависимости от конструкции такого устройства магнитопровод можно установить в каркасе обмотки Т2.1, а на него надевать катушку Т2.2, а также более кардинально изменить конструкцию трансформатора.

И. НЕЧАЕВ, г. Москва Радио, 2015г. №5 стр. 34-36

Источник: http://radio-hobby.org/modules/news/article.php?storyid=1511

Mastergid – самоделки дома и на даче

Все чаще в наших домах появляются так называемые энергосберегайки. Соответственно множится число энегросберегающих ламп, которые вышли из строя. В отличии от старых лам накаливания они могут быть отремонтированы или использованы в качестве доноров для самоделок. Один из вариантов использования электроники от сгоревшей энергосберегайки – это изготовление светильника дневного света.

Энергосберегайка состоит из цоколя и колбы. В цоколе встроена электроника, которая необходима для запуска лампы и её нормальной работы (ЭПРА электронный пускорегулирующий аппарат для люминесцентной лампы – электронный балласт).

Для изготовления светильника из энергосберегайки своими руками понадобятся:

Материалы

  • рабочая электроника энергосберегайки на 11W
  • люминесцентная лампа 8W T4 G5
  • кабельканал 30х16 – 39 см
  • разъем G5 – 2 штуки
  • пару винтов М3 с гайками
  • сетевой выключатель
  • сетевой шнур с вилкой

Инструмент

  • отвертка с плоским и тонким жалом
  • паяльник
  • резак или нож
  • линейка

Разбираем энергосберегайку.

Колба к цоколю прикреплена на пластмассовых защелках которые необходимо аккуратно открыть. Разборка производится ножом или отвёрткой с тонким плоским жалом. Просунув нож в щель между цоколёвой частью и частью крепления колбы и раздвигая их как показано ниже. При разборке желательно одеть рукавицу или обмотать стеклянную колбу салфеткой, чтобы не пораниться в случае, если колба разобьётся.

Тестером проверяем нити накала. Если обе нити рабочие, то причина неисправности лампы кроется в электронном балласте. Для нашей самоделки такая лампа не подходит.

Если одна из нитей накала не рабочая, то с вероятностью 99% электроника исправна и её можно использовать для изготовления самодельного светильника дневного света.

Демонтируем плату электронного балласта. Для этого отсоединяем колбу лампы, откусив провода идущие от нитей накаливания. Нити накаливания с платой электроники соединяются скруткой.

Если скрутка выполнена правильно, то это довольно надёжное соединение.

К слову все соединения корзины ТЭЗ (типовых элементов замены) больших ЭВМ 85 годов прошлого столетия таких как ЕС1022 – ЕС1060 были выполнены на скрутках и отказов по причине неконтактов на скрутках было ничтожно мало.

Далее отпаиваем концы проводов идущих в глубь патрона. И вот плата электронного балласта у нас в руках. Не забудте выпаять резистор который расположен в термоусадной трубке, идущей от центрального контакта цоколя (иногда там скрывается обычный предохранитель).

Плата электронного балласта подходит по размерам в кабельканал размером 30*16. По высоте немного не помещается дроссель. Но это даже к лучшему. В верхней крышке, против дросселя, прорезаем отверстие, которое будет выполнять роль охлаждения электронных компонентов.

На верхней крышке размечаем отверстия для крепления разъемов G5 люминесцентной лампы Т4 и сетевого выключателя.

К стати расшифруем эти магические названия T4 и G5. T4 – код диаметра колбы люминесцентной лампы 12 мм G5 – расстояние между разъемами подключения люминесцентной лампы 5 мм

Разъемы для люминесцентной лампы крепятся к крышке кабельканаля винтом и гайкой с резьбой М3. Соединяем ЭПРА, извлеченный из энергосберегайки, с разъемом, выключателем и сетевым проводом.

Вид в сборе светильника дневного света из неисправной энергосберегающей лампы.

Читайте также:  Радиоуправление тремя нагрузками на rf-модулях с применением микроконтроллеров

(Все фото кликабельны. Для увеличения фото наведите на него мышку и нажмите на ней правую клавишу).

Для справки
параметры заявленные заводом изготовителем люминесцентной лампы

  • срок службы – 9000 час
  • диаметр трубки – 12 мм
Длинна трубки (см) Световой поток (лм) Потребляемая мощность (Вт)
21 360 6
34 480 8
37 720 12
47 1000 16
57 1250 20
67 1500 25
77 1875 30

Цветовая температура

  • 2700К (по свечению близкая к свету лампы накаливания)
  • 4000К (дневной свет)
  • 6400К (холодный белый свет)

Чем ниже цветовая температура лампы, тем ближе цвет к красному, чем выше – к синему. Поэтому перед выбором определенной лампы представьте, какой цвет света устроит вас (или подойдет к цветовой гамме интерьера) лучше всего и выберите люминесцентную лампу с соответствующей цветовой температурой.

Освещение Дневной свет, Лампа, Освещение, Самодельные светильники, Светильник, Энергосберегайка

Источник: http://www.mastergid.com/2010/03/svetilnik-iz-neispravnoj-energosberegajki/

Как сделать импульсный блок питания из сгоревшей лампочки

В случае выхода из строя электронного балласта, его можно отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают. Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя.

Посмотрим, что там на ней есть интересного.

– Диоды – 6 шт. Высоковольтные (220 Вольт) обычно маломощные.

– Дроссель. Убирает помехи по сети.

– Транзисторы средней мощности обычно MJE13003.

– Высоковольтный электролит. Емкость небольшая (4,7 мкФ), на 400 вольт.

– Конденсаторы разной емкости, все на 250 вольт.

– Два высокочастотных трансформатора.

– Несколько резисторов.

Назначение элементов схемы импульсного блока питания.

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения, также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1.

Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания.

После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

Отличие схемы лампы от импульсного БП.

Это одна из самых распространённых электрических схем энергосберегающих ламп.

Для предобразования схемы эконом лампы в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые нужно удалить.

А это уже законченная схема импульсного блока питания, собранная на основе эконом лампы с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Мощность блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом.

Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6.

Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания.

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока.

Блоки питания, собранные по этим схемам почти всегда прощают ошибки в расчётах. 

Намотать импульсный трансформатор не так уж и сложно.

Ёмкость входного фильтра и пульсации напряжения.

Во входных фильтрах электронных балластов, из-за экономии, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе БП, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того.

Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0.

Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить более мощным.

Если требуется компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мыльниц». Например, в одноразовых фотоаппаратах установлены миниатюрные конденсаторы без опознавательных знаков, их ёмкость примерно 100µF х 350V.

Блок питания мощностью 20 Ватт.

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор.

Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода.

Был использован провод МГТФ (многожильный провод во фторопластовой изоляции).

Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание!

Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Обмотка дросселя покрыта синтетической плёнкой,

хотя часто бывает, что обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное.

Количество витков подбирается экспериментальным путём, (их будет немного).

Таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60ºC, а транзисторов – 42ºC. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП.

Мощность, подводимая к нагрузке – 20 Ватт.

Частота автоколебаний без нагрузки – 26 кГц.

Частота автоколебаний при максимальной нагрузке – 32 кГц Температура трансформатора – 60ºС

Температура транзисторов – 42ºС

Блок питания мощностью 100 Ватт.

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2 и увеличить ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

В данном электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, рассчитана на крепление к радиатору при помощи фасонных пружин.

Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже.

Лучше их заменить транзисторами 13007 поз.2

с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами.

Кроме того, 13007 имеют в несколько раз большие предельно-допустимые токи. Можете смело прикручивать оба транзистора на один радиатор.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Изображение соединения транзистора с радиатором:

1.           Винт М2,5.

2.           Шайба М2,5.

3.           Шайба изоляционная М2,5.

4.           Корпус транзистора.

5.           Прокладка – отрезок трубки (кембрика).

6.           Прокладка – слюда, керамика, фторопласт и т.д.

7.           Радиатор охлаждения.

Внимание!

Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

Выпрямитель.

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодными. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.

2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.

Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой.

Тем более что при ручной намотке можно просто намотать обмотку в два провода.

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы нагревается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

Как наладить импульсный блок питания?

Блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65ºС, то нужно уменьшить мощность нагрузки.

Не рекомендуется доводить температуру трансформатора выше 60… 65ºС, а транзисторов выше 80… 85ºС.

Источник:  www.oldoctober.com

Источник: http://electro-tehnyk.narod.ru/docs/BPizEkoLamp.htm

Ссылка на основную публикацию
Adblock
detector