Усовершенствованный электронный блок зажигания. | Мастер Винтик. Всё своими руками!
Представленная ниже, схема зажигания автомобиля предназначена для опытных радиолюбителей.
Тем, кто ранее собирал простые схемы блоков зажигания и желающим собрать устройство, из которого, максимально «выжато» все или может почти всё!
За истекшие годы стабилизированный блок зажигания [1] повторили очень многие авто- и радиолюбители, и несмотря на выявленные недостатки можно считать что он проверку временем выдержал.
Существенно также, что в литературе пока не появились публикации сходных по простоте конструкций с аналогичными параметрами.
Эти обстоятельства и побудили автора сделать ещё одну попытку основательно улучшить показатели блока, сохранив его простоту.
Основное отличие усовершенствованного блока зажигания от [1] — заметное улучшение его энергетических характеристик.
Если у исходного блока максимальная длительность искры не превышала 1,2 мс, причем она могла быть получена лишь на самых низких значениях частоты искрообразования, то у нового длительность искры постоянна во всей рабочей полосе 5…200 Гц и равна 1,2… 1,4 мс.
Это значит, что на средних и максимальных оборотах двигателя — а это наиболее часто используемые режимы, длительность искры практически соответствует установившимся и настоящее время требованиям.
Ощутимо изменилась и мощность, подводимая к катушке зажигания. На частоте 20 Гц при катушке Б-115 она достигает 50…52 мДж, а на 200 Гц — около 16 мДж. Расширены также пределы питающего напряжения, в которых блок работоспособен.
Уверенное искрообразование при пуске двигателя обеспечивается при бортовом напряжении 3,5 В, но работоспособность блока сохраняется и при 2,5 В.
На максимальной частоте искрообразование не нарушается, если питающее напряжение достигает 6 В, а длительность искры — не ниже 0,5 мс.
Указанные результаты получены главным образом за счет изменения режима работы преобразователя, особенно условий его возбуждения. Эти показатели, которые, по мнению автора, находятся на практическом пределе возможностей при использовании всего одного транзистора, обеспечены также применением ферритового магнитопровода в трансформаторе преобразователя.
Как видно из принципиальной схемы блока, показанной на рисунке выше, основные ее изменения относятся к преобразователю, т.е. генератору зарядных импульсов, питающих накопитель-конденсатор С2. Упрощена цепь запуска преобразователя, выполненного, как и прежде, по схеме однотактного стабилизированного блокинг-генератора.
Функции пускового и разрядного диодов(соответственно VD3 и VD9 по прежней схеме) выполняет теперь один стабилитрон VD1. Такое решение обеспечивает более надежный запуск генератора после каждого цикла искрообразования путем значительного увеличения начального смещения на эмиттерном переходе транзистора VT1.
Это не снизило тем не менее общей надежности блока, поскольку режим транзистора ни по одному из параметров не превысил допустимых значений.
Изменена и цепь зарядки конденсатора задержки С1. Теперь он после зарядки накопительного конденсатора заряжается через резистор R1 и стабилитроны VD1 и VD3.
Таким образом, в стабилизации участвуют два стабилитрона, суммарным напряжением которых при их открывании и определяется уровень напряжения на накопительном конденсаторе С2. Некоторое увеличение напряжения на этом конденсаторе скомпенсировано соответствующим увеличением числа витков базовой обмотки и трансформатора.
Средний уровень напряжения на накопительном конденсаторе уменьшен до 345…365 В, что повышает общую надежность блока и обеспечивает вместе с тем требуемую мощность искры.
В разрядной цепи конденсатора С1 использован стабистор VD2, позволяющий получить такую же степень перекомпенсации при уменьшении бортового напряжения, как три-четыре обычных последовательных диода.
При разрядке этого конденсатора стабилитрон VD1 открыт в прямом направлении, (подобно диоду VD9 исходного блока). Конденсатор С3 обеспечивает увеличение длительности и мощности импульса, открывающего тринистор VS1.
Это особенно необходимо при большой частоте искрообразования, когда средний уровень напряжения на конденсаторе С2 существенно снижается.
В блоках электронного зажигания с многократной разрядкой накопительного конденсатора на катушку зажигания [1,2] длительность искры и в определенной степени ее мощность определяет качество тринистора, поскольку все периоды колебаний, кроме первого, создаются и поддерживаются только энергией накопителя. Чем меньше затраты энергии на каждое включение тринистора, тем большее число запусков будет возможно и тем большее количество энергий (и за большее время) будет передано катушке зажигания. Крайне желательно поэтому подобрать тринистор с минимальным открывающим током.
Хорошим можно считать тринистор, если блок обеспечивает начало искрообразования (с частотой 1…2 Гц) при питании блока напряжением 3 В. Удовлетворительному качеству соответствует работа при напряжении 4…5 В. С хорошим тринистором длительность искры равна 1,3…1,5 мс, при плохом — уменьшается до 1… 1,2 мс.
При этом, как это ни покажется странным, мощность искры в обоих случаях будет примерно одинаковой по причине ограниченной мощности преобразователя.
В случае большей длительности конденсатор-накопитель разряжается практически полностью, начальный (он же средний) уровень напряжения на конденсаторе, задаваемый преобразователем, несколько ниже, чем в случае с меньшей длительностью.
При меньшей же длительности начальный уровень более высок, но высок и остаточный уровень напряжения на конденсаторе из-за его неполной разрядки.
Таким образом, разность между начальным и конечным уровнями напряжения на накопителе в обоих случаях практически одинакова, а от нее и зависит количество вводимой в катушку зажигания энергии [3]. И все-таки при большей длительности искры достгается лучшее дожигание горючей смеси в цилиндрах двигателя, т.е. повышается его КПД.
При нормальной работе блока формированию каждой искры соответствуют 4,5 периода колебаний в катушке зажигания. Это означает, что искра представляет собой девять знакопеременных разрядов в свече зажигания, непрерывно следующих один за другим.
Нельзя поэтому согласиться с, мнением (изложенным в[4]) о том, что вклад третьего и тем более четвертого периодов колебаний не удается обнаружить ни при каких условиях. На самом деле каждый период вносит свой совершенно конкретный и ощутимый вклад в общую энергию искры, что подтверждают и другие публикации, например [2].
Однако, если источник бортового напряжения включен последовательно с элементами контура (т.е. последовательно с катушкой зажигания и накопителем), сильное затухание, вносимое именно источником, а не другими элементами, действительно, не позволяет обнаружить упомянутый выше вклад. Такое включение как раз и использовано в [4].
В описываемом блоке источник бортового напряжения в колебательном процессе участия не принимает и упомянутых потерь, естественно, не вносит.
Один из наиболее ответственных узлов блока — трансформатор Т1. Его магнитопровод Ш15х12 изготовлен из оксифера НМ2000. Обмотка I содержит 52 витка провода ПЭВ-2 0,8; II — 90 витков провода ПЭВ-2 0,25; III — 450 витков провода ПЭВ-2 0.25.
Зазор между Ш-образными частями магнитопровода должен быть выдержан с максимально возможной точностью.
Для этого при сборке между его крайними стержнями помещают, без клея по гетинаксовой (или текстолитовой) прокладке толщиной 1,2+-0,05 мм, после чего детали магнитопровода стягивают прочными нитками.
Снаружи трансформатор необходимо покрыть несколькими слоями эпоксидной смолы, нитроклея или нитроэмали.
Катушку можно выполнить на прямоугольной шпуле без щек. Первой наматывают обмотку III, в которой каждый слой отделяют от следующего тонкой изоляционной прокладкой, а завершают трехслойной прокладкой. Далее наматывают обмотку II. Обмотку I отделяют от предыдущей двумя слоями изоляции. Крайние витки каждого слоя при намотке на шпуле следует фиксировать любым нитроклеем.
Гибкие выводы катушки лучше всего оформить по окончании всей намотки. Выводить концы обмотки I и II следует в сторону диаметрально противоположную концам обмотки III, но все выводы должны быть на одном из торцов катушки. В таком же порядке располагают и гибкие выводы, которые закрепляют нитками и клеем на прокладке из электрокартона (прессшпана). Перед заливкой выводы маркируют.
Кроме КУ202Н, в блоке можно применить тринистор КУ221 с буквенными индексами А-Г.
При выборе тринистора следует принять во внимание, что, как показывает опыт, КУ202Н по сравнению с КУ221 имеют в большинстве случаев меньший ток открывания, но более критичны к параметрам импульса запуска (длительности и частоте).
Поэтому для случая использования тринистора из серии КУ221 номиналы элементов цепи удлинения искры необходимо скорректировать — конденсатор С3 должен иметь емкость 0,25 мкФ, а резистор R4 — сопротивление 620 Ом.
Транзистор КТ837 может быть с любыми буквенными индексами, кроме Ж, И, К, Т, У, Ф. Желательно, чтобы статический коэффициент передачи тока не был менее 40. Применение транзистора другого типа нежелательно.
Теплоотвод транзистора должен иметь полезную площадь не менее 250 кв.см. В роли теплоотвода удобно использовать металлический кожух блока или его основание, которые следует дополнить охлаждающими ребрами. Кожух должен обеспечивать и брызгозащищенность блока.
Стабилитрон VD3 также необходимо устанавливать на теплоотвод. В блоке он представляет собой две полосы размерами 60x25x2 мм, согнутые П-образно и вложенные одна в другую.
Стабилитрон Д817Б можно заменить последовательной цепью из двух стабилитронов Д816В; при бортовом напряжении 14 В и частоте искрообразования 20 Гц эта пара должна обеспечивать на накопители напряжение 350…360В.
Каждый из них устанавливают на небольшой теплоотвод. Стабилитроны подбирают только после выбора и установки тринистора.
Стабилитрон VD1 подборки не требует, но он обязательно должен быть в металлическом корпусе. Для увеличения общей надежности блока целесообразно этот стабилитрон снабдить небольшим теплоотводом в виде обжимки из полоски тонкого дюралюминия.
Стабистор КС119А (VD2) можно заменить тремя диодами Д223А (или другими кремниевыми диодами с импульсным прямым током не менее 0,5 А), включенными последовательно.
Большинство деталей блока смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм. Чертеж платы показан на рис.2. Плата разработана с учетом возможности монтажа деталей при различных вариантах замены.
Для блока, предназначенного работать в местностях с суровым зимним климатом, оксидный конденсатор С1 желательно использовать танталовый с рабочим напряжением не ниже 10 В.
Его устанавливают вместо большой перемычки на плате, при этом точки подключения алюминиевого оксидного конденсатора (он-то и показан на плате), пригодного для работы в подавляющем большинстве климатических зон, следует замкнуть перемычкой соответствующей длины. Конденсатор С2-МБГО, МБГЧ или К73-17 на напряжение 400…600 В.
В случае выбора для блока тринистора из серии КУ221 нижнюю по рис.2 часть платы необходимо скорректировать так, как это показано на рис.3. При монтаже тринистора необходимо один из винтов его крепления изолировать от печатной дорожки общего провода.
Проверку работоспособности и тем более регулировку следует проводить именно с такой катушкой зажигания, с которой блок будет работать в дальнейшем. Следует иметь в виду, что включение блока без катушки зажигания, нагруженной запальной свечой, совершенно недопустимо.
Для проверки вполне достаточно измерять пиковым вольтметром напряжение на накопительном конденсаторе С2. Таким вольтметром может служить авометр, имеющий предел постоянного напряжения 500 В.
Авометр подключают к конденсатору С2 через диод Д226Б (или подобный), а зажимы авометра шунтируют конденсатором емкостью 0,1…0,5мкф, на напряжение 400…600 В.
При номинальном напряжении питания (14 В) и частоте искрообразования 20 Гц напряжение на накопителе должно находиться в пределах 345…365 В. Если напряжение меньше, то прежде всего подбирают тринистор с учетом сказанного выше.
Если после подборки будет обеспечено искрообразоеание при понижении напряжения питания до 3 В, но на конденсаторе С2 при номинальном напряжении питания будет повышенное напряжение, следует подобрать стабилитрон VD3 с несколько пониженным напряжением стабилизации.
Далее проверяют блок на высшей частоте искрообраэования (200 Гц), поддерживая номинальное бортовое напряжение.
Напряжение на конденсаторе С2 должно находиться в пределах 185…200 В, а потребляемый блоком ток после непрерывной работы в течение 15…20 мин не должен превышать 2,2 А.
Если транзистор за это время нагреется выше 60°С при комнатной окружающей температуре, тёплоотводящую поверхность следует несколько увеличить. Конденсатор С3 и резистор R4 подборки, как правило, не требуют.
Однако для отдельных экземпляров тринисторов (как того, так и другого типа) может потребоваться корректировка номиналов, если на частоте 200 Гц будет обнаружена неустойчивость в искрообраэовании. Она проявляется обычно в виде кратковременного сбоя в показаниях вольтметра, подключенного к накопителю, и хорошо заметна на слух.
В этом случае следует увеличить емкость конденсатора С3 на 0,1…0,2 мкФ, а если это не поможет, вернуться к прежнему значению и увеличить сопротивление резистора R4 на 100…200 Ом. Одна из этих мер, а иногда и обе вместе, обычно устраняют неустойчивость запуска. Заметим, что увеличение сопротивления уменьшает, а увеличение емкости увеличивает длительность искры.
Если есть возможность воспользоваться осциллографом, то полезно убедиться в нормальном течении колебательного процесса в катушке зажигания и фактической его длительности.
До полного затухания должны быть хорошо, различимы 9-11 полуволн, суммарная длительность которых должна быть равна 1,3…1,5 мс на любой частоте искрообразования.
Вход X осциллографа следует подключать к общей точке обмоток катушки зажигания.
Типичный вид осциллограммы показан на рис.4. Всплески посредине минусовых полуволн соответствуют единичным импульсам блокинг-генератора при изменении направления тока в катушке зажигания.
Целесообразно проверить также зависимость напряжения на накопительном конденсаторе от бортового напряжения.
Ее вид не должен заметно отличаться от показанного на рис.5.
Изготовленный блок рекомендуется устанавливать в моторном отсеке в передней, более прохладной его части. Искрогасящий конденсатор прерывателя следует отключить и соединить его вывод с соответствующим контактом розетки разъема Х1. Переход на классическое зажигание выполняют, как и в прежней конструкции, установкой вставки-замыкателя Х1.3.
В заключение отметим, что попытки получить столь же «длинную» искру с трансформатором на стальном магнитопроводе, даже из стали самого высокого качества, не приведут к успеху. Наибольшая длительность, которая может быть достигнута, — 0,8…0,85 мс.
Тем не менее блок почти без изменений (сопротивление резистора R1 следует уменьшить до 6…8 Ом) работоспособен и с трансформатором на стальном магнитопроводе с указанными намоточными характеристиками, и эксплуатационный качества блока выше, чем у его прототипа [1].
Литература:
1. Г. Карасев. Стабилизированный блок электронного зажигания. — Радио, 1988, № 9, с. 17; 1989, №5, с.91
2. П.Гацанюк. Усовершенствованная электронная система зажигания. В сб.
: «В помощь радиолюбителю», вып: 101, с. 52, — М.: ДОСААФ.
3. А. Синельников. Электроника в автомобиле. — М.:, Радио и связь, 1985, с.46.
4. Ю. Архипов. Полуавтоматический блок зажигания. — Радио, 1990, № 1, с.
31-34; №2, с. 39-42.
Источник: Радио №8, 1994 г.
Источник: http://www.MasterVintik.ru/usovershenstvovannyj-elektronnyj-blok-zazhiganiya/
Блок электронного зажигания
Источник: http://www.qrz.ru/schemes/contribute/auto/ignition.shtml
Схема блока электронного зажигания
Источник: http://radioskot.ru/publ/avtomoto/skhema_bloka_ehlektronnogo_zazhiganija/23-1-0-1102
Электронное зажигание – как оно устроено?
Автомобиль – система невероятно сложная, включает в себя множество компонент и устройств, которые постоянно взаимодействуют между собой. Без системы зажигания Ваш автомобиль с места не сдвинется. Стоит уделить особое внимание этому аспекту, а, в частности, обсудить вопросы, связанные с электронным зажиганием.
Что такое электронное зажигание?
Электронная система зажигания – это такая система зажигания, которая использует электронные устройства для создания и передачи тока высокого напряжения на цилиндры двигателя. Также эту систему иногда называют микропроцессорной системой зажигания.
Нужно упомянуть о том, что и бесконтактная, и контактно-транзисторная системы в своей конструкции используют электронные механизмы, но названия данных систем уже давно устоялись.
Электронное зажигание лишено любых механических контактов, поэтому можно сказать, что электронное зажигание является бесконтактным. Современные модели автомобилей оснащены электронной системой зажигания, которая является компонентой системы управления движком.
С помощью этой системы контролируется объединенная система впрыска и зажигания, а иногда и другие системы (впускная, выпускная, охладительная).
Все системы электронного зажигания можно разбить на две категории: системы с прямым зажиганием и с распределителем. Распределительная система электронного зажигания во время работы использует распределитель на механике, который отвечает за передачу сильного тока на свечу. Системы прямого зажигания передают ток прямо на катушки зажигания.
Конструкцию системы электрозажигания формируют достаточно традиционные компоненты – источник питания, катушка зажигания, свечи, выключатель, высоковольтные провода. Также в систему входят воспламенитель (устройство-исполнитель), электронный блок управления и входные датчики.
Эти самые датчики фиксируют показатели работы двигателя в текущий момент и преобразуют эти показатели в электрические импульсы. В своей работе электронное зажигание использует показания датчиков, которые присутствуют в системе управления двигателем.
К этим устройствам относятся датчики:
– частоты вращения коленвала двигателя;
– массового расхода воздуха;
– положения распредвала;
– детонации;
– температуры охлаждающей жидкости, воздуха;
– кислородный датчик и другие.
С помощью блока управления двигателя происходит обработка сигналов сходных датчиков и формирование управляющего воздействия на воспламенитель. Сам воспламенитель – это электронная плата, которая обеспечивает выключение и включение зажигания. В основе воспламенителя лежит транзистор.
Если транзистор открыт, то ток идет на первичную обмотку катушки зажигания, а если он закрыт, то ток идет на вторичную обмотку. Катушка в системе зажигания может быть одна общая, индивидуальные или же сдвоенные.
При использовании индивидуальных катушек зажигания отпадает необходимость использовать провода высокого напряжения, так как такая катушка будет крепиться прямо на свечу. В распределительных системах зажигания применяются общие катушки зажигания.
Для систем прямого зажигания характерно использование сдвоенных катушек. Если двигатель имеет 4 цилиндра, то одна из катушек приходится на первый и четвертый цилиндры, а другая – на второй и третий.
С помощью катушек происходит генерация тока высокого напряжения, причем для тока есть два вывода, посему искра проходит сразу в оба цилиндра.
В одном из них воспламеняется топливно-воздушная смесь, а в другом искра идет вхолостую.
Электронная система зажигания работает по следующему принципу. На электронный блок управления приходят сигналы датчиков.
Основываясь на этих показаниях, вычисляются наиболее оптимальные параметры для работы всей системы.
Далее управленческий импульс идет к воспламенителю, который и отвечает за подачу напряжения на зажигательную катушку. После этого по первичной обмотке катушки начинает «бежать» ток.
Когда подача напряжения прерывается, тогда ток высокого напряжения протекает по вторичной обмотке катушки зажигания. Этот самый ток передается свече зажигания или прямо с катушки, или через высоковольтные провода. После того, как на свечу поступает ток, образуется искра, благодаря которой детонирует топливно-воздушная смесь.
Когда меняется скорость вращения коленвала, то датчик частоты его вращения вместе с датчиком положения распредвала передают сигнал на ЭБУ, который производит сигнал для изменения угла опережения зажигания. Когда двигатель находится под воздействием возросшей нагрузки, то угол опережения зажигания регулируется датчиком массового расхода воздуха.
Остальные датчики предоставляют дополнительную информацию.
Если Вы решите заменить заводское зажигание на электронное, то больше не будете сталкиваться с большинством проблем с зажиганием, а также получите ряд преимуществ, например, динамичность Вашей машины увеличится, а в мороз двигатель будет запускать легче.
Если сравнивать заводское зажигание с электронным, то последняя система использует транзистор выхода для замыкания и размыкания цепь. Подобное решение приводит к тому, что напряжение на свечах автомобиля возрастает, а от искры получается больше энергии.
Также такое конструкторское решение не позволяет напряжению на электродах свечей падать даже при низких температурах, посему двигатель легче запускается даже при неблагополучных условиях.
Хотя у катушек и заводского, и электронного зажигания набор проводов одинаковый, но обязательно нужно проверять правильно ли они подключены, так как в системе электрозажигания катушка может развернуться на кронштейне на все 180 градусов.
Установка электронного зажигания
Имеет смысл сказать несколько слов о том, что же входит в комплект элементов системы электронного зажигания. Всю систему формируют следующие 5 элементов:
1) Бесконтактный трамблер. Выполняет роль распределяющего датчика зажигания. На машинах с разными видами двигателей будут установлены разные трамблеры.
2) Коммутатор. Коммутатор отвечает за прерывание электрического тока, идущего по катушке зажигания. Это реакция на сигналы, которые исходят из распределительного датчика. Каждый коммутатор «умеет» отключать электрический ток, причем даже тогда, когда включено зажигание, или же работает двигатель.
3) Катушка зажигания. Этот элемент необходим для преобразования низковольтного тока в высоковольтный. Подобная процедура крайне важна по причине необходимости пробивать воздушную прослойку, образовывающуюся между контактами электродов свечей.
4) Комплект проводов
5) Свечи для передачи искры в цилиндры.
Для того, чтобы установить электронное зажигание, Вам понадобятся:
1) Набор гаечных ключей;
2) Крестовидная отвертка;
3) Саморезы;
4) Электронная дрель и сверло, диаметр которого аналогичен саморезу.
Начинать установку электрического зажигания можно только по окончанию полноценной регулировки трамблера.
Последовательность действий следующая:
1) С трамблера нужно снять крышку, к которой идут высоковольтные электрические провода;
2) Далее можно демонтировать эти самые провода;
3) В стартерной системе происходят короткие включения, за счет чего нужно выставить линию резистора так, чтобы она образовывала с двигателем прямой угол. После выставления направления резистора запрещено проворачивать коленвал вплоть до окончания работ;
4) Справа на корпусе трамблера имеются 5 меток, которые нужны для того, чтобы регулировка зажигания была сделана правильно. Дабы правильно установить новый трамблер, необходимо отметить на моторе то место, которое расположено напротив средней отметки старого трамблера;
5) Далее нужно отключить провода, которые соединяющие трамблер с катушкой. Также нужно выкрутить гайку из трамблера. Эта гайка держит сам элемент, а после ее удаления трамблер можно будет демонтировать;
6) После демонтажа старого трамблера можно будет ставить новый. Это делается посредством помещения детали в мотор на основе той метки, которая была поставлена ранее;
7) После установки и регулировки нового трамблера, его нужно будет зафиксировать гайкой;
8) После закрепления трамблера можно будет вернуть на место крышку, а после этого можно подключать к крышке электропровода.
9) После манипуляций с трамблером, необходимо заменить катушку, так как катушки контактного и электронного зажигания различны между собой;
10) После переустановки катушки нужно подвести к зажиганию провода. Важно не забыть о трехштырьковом высоковольтном проводе, соединяющем катушку с трамблером;
11) После окончания работ с катушкой можно переходить к установке коммутатора. Наиболее простое решение – это размещение коммутатора в свободной области между омывателем и левой фарой.
Для того, чтобы закрепить элемент, необходимо будет сделать под размер его «ушей» отверстия, а сам коммутатор крепиться с помощью саморезов.
После монтажа нужно будет «бросить» провод от коммутатора к системе зажигания;
12) После окончания всех работ нужно проверить правильность подключения проводов. Ориентиром для этого будут сервисная книжка Вашей машины, а также схема, имеющая в комплекте элементов электронного зажигания.
Неисправности электронного зажигания
Во время использования автомобиля любой его компонент может выйти из строя, в том числе это касается системы зажигания. Были выделены дефекты, которые характерны для любой системы зажигания:
– выход из стоя свечей системы зажигания;
– поломка катушки;
– проблема с высоковольтными и низковольтными проводами (наличие обрыва, окисленные контакты, недостаточно плотное соединение и т.д.).
В системе электрозажигания также могут возникнуть неполадки, связанные с неисправностями ЭБУ и входными датчиками.
Система зажигания ломается по следующим причинам:
1) Были нарушены правила эксплуатации автомобиля (в машину заливался некачественный бензин, авто вовремя не обслуживалось, а если диагностика и проводилась, то она могла быть выполнена неквалифицированным мастером);
2) В машину ставились некачественные конструктивные элементы (катушки, свечи системы зажигания, провода высокого напряжения и т.д.);
3) Поломка произошла под воздействием фактором извне (атмосферное воздействие, механическое повреждение).
Наиболее распространенный дефект электронной системы зажигания – это выход из строя свечей. К счастью, сегодня эти элементы могут приобрести все автомобилисты, посему устранение этой поломки не займет много времени.
Указать на неисправности системы электронного зажигания поможет даже внешняя диагностика. Легче всего заметить, как реагирует зажигание на неисправности, которые есть в топливной системе и системе впрыска горючего. Посему диагностировать систему зажигания нужно в комплексе с данными системами.
Внешние признаки поломки зажигания:
1) Увеличенный расход горючего;
2) Сниженная мощность движка;
3) На холостом ходу двигатель работает неустойчиво;
4) Запускать двигатель стало труднее.
В случае системы электронного зажигания плохая работа двигателя, его затрудненный запуск сигнал к тому, что произошел пробой или обрыв проводов высокого напряжения, вышли из строя свечи, катушки зажигания, сломан ЭБУ, датчик частоты вращения коленвала или датчика холла. Если же Ваш автомобиль стал «съедать» больше горючего, а двигатель стал выдавать меньшую мощность, то это может свидетельствовать о том, что вышки из строя свечи, входные датчики или ЭБУ.
Перед тем, как ехать к специалисту, постарайтесь самостоятельно произвести диагностику системы зажигания, так как велика вероятность самостоятельного обнаружения дефекта. В этом случае Вы просто замените свечи или катушку, и снова будете «на коне». Успехов.
Источник: https://auto.today/bok/3097-elektronnoe-zazhiganie-v-chem-ego-preimuschestvo.html
Adblockdetector