Мощный преобразователь напряжения для автомобильного усилителя

Автомобильный преобразователь напряжения

По просьбам наших уважаемых радиолюбителей, а именно в статье Саб с усилителем на TDA1562Q открываем новую довольно интересную тему про преобразователи напряжения, в частности автомобильные.

Преобразователи напряжения – это довольно актуальная тема для радиолюбителей автомобилистов, которые задаются целью установить в машине качественную акустическую систему с мощным бомбовым сабом и сателлитами, получив тем самым отличное качественное звучание, радующее слух не только владельца, но и окружающих.

Уж не знаю, конечно, насколько окружающим это нравится. Особенно в ночное время во дворе многоквартирного дома (прим. авт. AndReas). Но непосредственно для радиолюбителя важен сам факт качества звучания.

Добиться безупречности можно при наличии нескольких составляющих: во-первых, установкой правильно рассчитанного и собранного саба (лучше самодельного), во-вторых, подключением акустической системы, состоящей из сабвуфера и сателлитов, к усилителю мощности звуковой частоты с малым коэффициентом нелинейных искажений и, в-третьих, питанием усилителя мощности звуковой частоты (УМЗЧ) от бортовой сети автомобиля (нужен преобразователь напряжения). В данной статье остановимся на последнем факторе подробнее.

Напряжение автомобильной бортовой сети составляет 12…14 вольт. Как известно, все качественные, мощные усилители звуковой частоты требуют значительно большего напряжения питания (вплоть до 100 вольт), что может быть достигнуто применением автомобильного преобразователя напряжения.

Основные блоки типичных преобразователей напряжения состоят из ШИМ – контроллера и выходного каскада на мощных транзисторах и трансформатора. В качестве ШИМ контроллера для автомобильных преобразователей напряжения могут применяться различные микросхемы. Особенно популярной и широко применяемой является TL494 или КР1114ЕУ4.

Вообще-то на сайте уже есть несколько схем преобразователей напряжения. Ознакомьтесь: Преобразователь 12 вольт – 220 вольт – довольно неплохой вариант для переделки под питающий блок усилителя; Простейший преобразователь напряжения; Импульсный преобразователь напряжения – это уже более серьёзный вариант с применением TL494 или КР1114ЕУ4.

Также совершенно обоснованно стоит упомянуть об автомобильном преобразователе напряжения, рассчитанном для питания усилителя мощности звуковой частоты на микросхеме TDA7294 – собран на TL494 или КР1114ЕУ4.

Теперь поговорим о трансформаторе. Трансформатор для автомобильного преобразователя напряжения мотается на ферритовом кольце.

Из отечественных ферритов наилучшими характеристиками обладают ферриты марок 2500НМС1 и 2500НМС2 как имеющие, в отличие от остальных марок, отрицательную температурную зависимость потерь и предназначенные для сильных магнитных полей. Но также возможно применение 2000НМ1, как более ходовой марки.

Можно использовать кольца 40х25х11 или 45х28х12. Для надёжности лучше взять два таких кольца, т.к. мощность нужна немаленькая, и склеить их любым клеем по керамике. После склеивания края закруглить напильником.

Теперь нужно рассчитать количество витков обмоток в зависимости от нужного напряжения и мощности на выходе автомобильного преобразователя напряжения. Возьмем для примера максимальную мощность трансформатора 500 ватт. Тогда ток в первичной обмотке равен I=500/12=41,66 ампера. Округленно примем I=42 А.

Но в преобразователях напряжения первичная обмотка трансформатора делится на две части (двухтактный преобразователь напряжения). Соответственно ток в каждом плече составит 21 ампер. Выбираем сечение обмоточного провода трансформатора. Площадь сечения получается S=0,157*21=3,297 мм2 или же провод сечением D=2 мм.

Но чем толще провод, тем ниже КПД и выше нагрев трансформатора. Рекомендуется взять несколько проводов меньшим диаметром, к примеру, 0,6 мм. Вычисляем его площадь по формуле S=?*R2, т.е. 0,32*3,14=0,283 мм2. Далее 3,297/0,283=11,7 округлим до 12. Значит, для намотки одного плеча нам понадобится 12 проводов сечением 0,6 мм.

Вторичная обмотка трансформатора преобразователя напряжения рассчитывается таким же образом. Определяем максимальный ток в зависимости от нужного напряжения (т.е. напряжение питания усилителя мощности звуковой частоты); ток умножаем на 0,157 мм2, найдя сечение провода; рассчитываем сколько потребуется проводков меньшим сечением.

Определившись с количеством витков в первичной обмотке, можно приступать к самой намотке трансформатора автомобильного преобразователя напряжения. Для этого берутся все 12 проводов, если используется провод сечением 0,6 мм, переплетаются косичкой и наматываются на кольца. Вторая часть первичной обмотки наматывается также.

Очень важно, чтобы витки обеих обмоток распределялись равномерно по всему кольцу, иначе трансформатор преобразователя будет греться, особенно на максимальной или близкой к этому значению мощности. Можно осуществить намотку другим способом. Намотать 12 отдельных обмоток для одного плеча, а потом точно также для второго и соединить их.

Выводы трансформатора сразу идут в печатную плату. Соединять надо так: 1-начало, 2-конец, т.е. 1;2;1;2. По окончанию намотки первичной обмотки можно её обернуть тканевой изоляционной лентой, а потом уже мотать вторичную. Вторичная обмотка мотается аналогично. Количество витков будет зависеть от напряжения, которое вы хотите получить.

Можете воспользоваться программой для расчета импульсного трансформатора для автомобильного преобразователя напряжения:

Скачать программу для расчета импульсного трансформатора

Особое внимание также стоит уделить выпрямлению и стабилизации полученного напряжения на выходе трансформатора автомобильного преобразователя. Необходимо подобрать импульсные диоды, чтобы они выдержали необходимую силу тока, способные работать на частоте от 80…100 кГц. На выход необходимо установить дроссели.

Для сердечника дросселей можно применить кольца, используемые в компьютерных блоках питания. Кстати, оттуда же можно выпаять и ШИМ – контроллер TL494 (КР1114ЕУ4). Дроссели содержат по 5…6 витков провода сечением не менее 2 мм. Есть ещё одна маленькая хитрость.

Обычно при питании устройств, в том числе и усилителей звуковой частоты, используются фильтрующие конденсаторы очень большой ёмкости. Рекомендуется 1000…2000 мкФ на 1 ампер нагрузки. Но для автомобильных преобразователей напряжения важна не сама ёмкость конденсаторов, а количество самих конденсаторов. Т.е.

лучше поставить, скажем, 10 штук по 1000 мкФ, чем один на 47000 мкФ.

Структурно принцип работы автомобильного преобразователя напряжения можно описать так. ШИМ контроллер TL494 (КР1114ЕУ4) задает частоту открытия и закрытия транзисторов. Двухтактным такой преобразователь напряжения называется потому, что при открытии одного плеча другое закрывается.

Смена режима происходит с заданной частотой ШИМ контроллера. Постоянное напряжение, преобразованное выходным каскадом на мощных транзисторах в переменное, подается на трансформатор. После этого напряжение выпрямляется диодным мостом, фильтруется дросселями и конденсаторами.

Ну а дальше автомобильный преобразователь напряжения выполняет непосредственно ту функцию, для которой создавался.

Ну и от полутеории перейдем к практике, добавив в копилку приведенных выше ссылок на схемы преобразователей напряжения ещё следующие схемы.
Автомобильный преобразователь напряжения с мощностью 500 ватт.

Варианты использования выходов автомобильного преобразователя напряжения:

Количество выходных обмоток автомобильного преобразователя напряжения можно уменьшить или вообще модернизировать, применив ультраскоростные диоды, рабочее напряжение которых значительно выше напряжения диодов Шотки, что позволяет получить выходное напряжение вплоть до 90 В, а при замене электролитических фильтрующих конденсаторов на более высоковольтные и выше 90 вольт.

Как видим, в выходном каскаде автомобильного преобразователя напряжения используются мощные полевики IRF3205 (отечественный аналог КП783А). Можно заменить на NTP5426, IRF540, IRF1405, IRF1407, IRF2805.

В модернизированной выходной схеме используются быстродействующие диоды 30EPF06.

Немного планку по мощности и приведем следующую схему автомобильного преобразователя напряжения 300 ватт.

В общем-то принципиальная разница в схемах состоит только в упрощении выходного каскада. Варианты использования выходов преобразователя следующие:

А если мы увеличим количество мощных полевых транзисторов IRF3205 в выходном каскаде преобразователя напряжения до трех штук на плечо, то получим весьма солидную мощность в 700 ватт.

Таким образом, при использовании автомобильного преобразователя напряжения конструктивно должно получиться нечто вроде этого:

Чертеж печатной платы и расположение деталей на ней в формате .lay можете также скачать:

Скачать чертеж печатной платы

Данные преобразователи напряжения, несмотря на упрощенную схемотехнику, достаточно надежны.

Непосредственно перед публикацией статьи, порывшись дополнительно в рунете, пришёл к выводу, что из приведенных выше схем автомобильных преобразователей напряжения можно исключить некоторые компоненты, тем самым значительно упростив конструкцию.

А именно, выходной каскад на полевых транзисторах подключается непосредственно к выходному трансформатору. Исключаются дроссели L4 для 300 ваттного и трансформатор TV1 со всей обвязкой для 500 и 700 ваттных преобразователей. Можно исключить оптрон IC1, тем самым убрав блок защиты.

В итоге можно получить очень простую для повторения схему автомобильного преобразователя напряжения.

Под эту схему есть также печатная плата в формате .lay. В архиве три печатки. Первый вариант – это печатная плата с подписанными элементами, второй вариант – обычный вариант с одним напряжением на выходе, третий вариант – с двумя разными напряжениями на выходе.

Скачать чертежи печатных плат для последнего варианта схемы

Источник: http://xn--80a3afg4cq.xn--p1ai/vashi-voprosy/avtomobilnyjj-preobrazovatel-napryazheniya.html

Мощный преобразователь для автомобильного усилителя

Для того чтобы питать мощный усилитель в автомобиле, нужен соответствующий преобразователь напряжения. Конструкции таких преобразователей остаются неизменны вот уже на протяжении нескольких десятков лет. В данной статье вы узнаете, как собрать преобразователь напряжения для автомобильного усилителя, мощность которого равна 500 Ватт.

ПН должен состоять из генератора импульсов, силовых ключей (которые работают как усилитель по току) и трансформатора, повышающего или понижающего номинал входного напряжения.

Почти любой современный преобразователь напряжения имеет генератор импульсов на специализированных ШИМ контроллерах. Обычно применяются двухканальные генераторы типа TL494 (микросхема чаще других применяется в конструкциях самодельных и промышленных преобразователей напряжения).

Микросхема вырабатывает прямоугольные импульсы с частотой порядка 30кГц, хотя частота может быть настроена в широких пределах.

Мощность преобразователя в целом зависит от количества полевых ключей и мощности импульсного трансформатора. В нашей схеме использованы широко-известные полевые ключи серии IRF3205.

Это достаточно мощные полевые транзисторы, которые в основном нашли применение в промышленных преобразователях напряжения.

Импульсный трансформатор — самая важная часть нашей конструкции. Он имеет ряд особенностей намотки и нюансов. Импульсный трансформатор удобно мотать на ферритовых кольцах марки 2000НМ, хотя возможно применение «Ш» или «П» образных сердечников.

Подойдет сердечник от строчного трансформатора ТВС 110пц15. В нашем случае трансформатор мотался с расчетной мощностью в 600 Ватт (с запасом порядка 100-130 Ватт).

Намотка делалась на кольце феррита от электронного трансформатора на 150 Ватт, хотя кольцо лучше подобрать с большим диаметром.

Первичная обмотка мотается следующим образом: Берем провод 0,5 мм 12-15 жил (длина провода 0,5м). Далее отрезаем этот провод на две равные половинки так, чтобы получилось два идентичных провода на 25 см, которые состоят из 12-15 жил. Далее берем одну из половинок, и мотаем им 5 витков, растягивая по всему кольцу. Витки мотаем максимально ровно и аккуратно.

Затем берем вторую половину провода и мотаем второе плечо первичной обмотки. Затем половинки обмоток нужно сфазировать, но прежде нужно снять лак и залудить кончики проводов.

После этой операции берем один конец одного из обмоток и присоединяем его с противоположным концом другой обмотки, одним словом начало одной обмотки с концом другой или конец первой с началом другой.

Для того, чтобы понять правильность фазировки и намотки трансформатора в целом, вам нужно собрать всю схему генератора и подключить полевые транзисторы. Позже нужно подключить трансформатор в схему и мотать пробную вторичную обмотку.

Пробная обмотка может иметь любое количество витков, к примеру, 4 витка. Мотаем проводом 0,3-1мм (диаметр особо не важен). Далее к пробной обмотке подключаем лампу накаливания 12 Вольт, скажем 1-10 Ватт.

При включении лампа должна загореться в пол накала или чуть больше.

Такой преобразователь может питать автомобильные усилители повышенной мощности для канала сабвуфера или несколько отдельных усилителей. Преобразователь может питать 5-6 микросхем TDA7294/93.

Вторичная обмотка мотается с расчетом 1 виток 2,5 Вольта. Диаметр этой обмотки зависит от мощности питаемого усилителя, к примеру, для одного канала усилителя на микросхеме TDA7294 обмотка должна содержать 2х16 витков провода с диаметром 0,8-1мм.

В качестве диодного   выпрямителя можно использовать любые импульсные диоды с током 10 Ампер и более, рабочая частота диода более 100кГц. Можно использовать диодные сборки (Шоттки) от компьютерного блока питания.

Loading…

Источник: https://all-he.ru/publ/svoimi_rukami/ehlektronika/moshhnyj_preobrazovatel_dlja_avtomobilnogo_usilitelja/2-1-0-464

Музыка в авто. Часть #3.2. Преобразователь напряжения. — бортжурнал Audi 100 “Sandkastenfreund” 1991 года на DRIVE2

Салют, драйвовчане. Я наконец-таки выбрался домой, теперь есть время для занятий своим хобби. Этой записью продолжаю трилогию про создание сабвуферного усилителя своими руками. Впереди последняя часть, в которой будет рассказано про сборку сабсоника, защиты АС и корпуса. А теперь, ПОГНАЛИ!

***Изучение матчасти***

Существует давно известный факт — от 12 В бортового напряжения можно получить лишь 18 Вт мощности. Чтобы качественно качать саб, нужно как минимум 100 Вт. Повторюсь, от 12 В такую мощность получить НЕВОЗМОЖНО.

Для этого в мощных автомобильных усилителях используются преобразователи напряжения, поднимающие бортовое напряжение 12 В до необходимого. В случае с Ланзаром нужно получить 55-60 В, чтобы снять с него максимальную мощность.

В интернете есть куча схем, в нашем случае лучше всего использовать схемы на микросхеме TL494. Перелопатив кучу этих схем, я отобрал несколько годных, и переделал их под свои нужды.

Если вы собрались браться за такое, очень советую посмотреть видео Ака Касьяна, вот ссылка на него. Очень доступно все объясняет. Поэтому на принципе работы я останавливаться не буду.

***Изготовление печатной платы***

Подробно процесс изготовления печатки я описывал тут, поэтому также не останавливаюсь, но парочку фоток я все-таки скину). Из новшеств — “типа шелкография”, также печатал на журнальных листах и переводил утюгом. На одну плату перевелось отлично, на преобразователь плоховато, но ничего.

Полный размер

Справа листик с 'шелкографией', снизу тизерок следующей темы)

Полный размер

Без лака никуда)

Полный размер

Готовые платы)

После всего этого были насверлены отверстия, платы залужены, ну и естественно запаяны все элементы.

Полный размер

За .lay файлом стучитесь в ЛС

Область, выделенная красным — защита АС, о ней я скажу позже. Я просто использовал свободное место на печатке. К преобразователю напряжения она не имеет никакого отношения.

***Сборка преобразователя***

Самое сложное в создании преобразователя — намотка трансформатора. Ее я сегодня и разжую. В качестве сердечника я использовал ферритовое кольцо. Искал я его долго, если находил — было фуфло, с низкой проницаемостью. К выбору кольца нужно отнестись ответственно, желательно не брать кольца без маркировки и если вы не уверены.

Я на хреновом кольце перевел кучу проволоки, а оказалось хреновое кольцо. В итоге было куплено кольцо размером 45х28х12. Без маркировки, точно проницаемость не знаю, продавец уверял, что 2000, потом я расскажу, оказалось ли это правдой.

Чтобы рассчитать моточные данные, воспользуемся программой RingFerriteExtraSoft

Частоту преобразования делал 40 кГц, Сопротивление канала Rds(on) нужно брать из даташита полевых транзисторов, которые вы используете. Для IRF3205 это 0,008 Ом. Все остальное вводится исходя из ваших требований.

Можно выставить диаметр проволоки и количество жил в шине. Использовать можно только проволоку в лаке.
Берем наше кольцо, на него необходимо поставить изоляцию. Я использовал малярный скотч, можно тряпичную изоленту, можно вообще забить и не ставить ее.

Теперь приступаем к намотке первички.

Полный размер

С изоляцией и без

Программа дает длину обмотки, но дает она ее с большим запасом, это нам не подходит. Берем кусок проволоки, мотаем равномерно 5 витков (в моем случае 5, у вас может быть иначе, в зависимости от расчета), отмеряем с запасом 10-15 см. Все, длину обмотки мы узнали. Нарезаем необходимое количество.

Теперь формируем две шины по 7 жил и аккуратно, равномерно, без нахлестов и т.д. мотаем на кольцо. Чем качественнее намотка, тем лучше все это будет работать. Запоминаем, в какую сторону мотаем, это очень важно.

Полный размер

Вот так у меня получилось, можно и лучше

Ставим на жилы изоляцию, в моем случае термоусадка.

Теперь заматываем всю первичную обмотку тряпичной изолентой.

Формируем выводы. Теперь очень важный момент. Две обмотки должны быть сфазированы между собой. Т.е. Должны быть соединены КОНЕЦ ОДНОЙ ОБМОТКИ И НАЧАЛО ДРУГОЙ. Это очень важный момент, зачастую делают в этом ошибку, соединяя начало и конец одной и той же обмотки. Так как у нас на плате предусмотрено место, где они соединяются, посередине кольца должны быть конец одной и начало другой.

Полный размер

Вроде доступно объяснил

После окончательной намотки первички, нужно намотать наверх тестовую вторичку. Берем любую проволоку, мотаем 8-10 витков. К ним припаиваем лампочку. Впаиваем кольцо на плату. Первый запуск лучше всего делать через лампу, подключенную в разрыв питания. Если на схеме ошибка, она загорится. Если все хорошо, лампа гореть не должна.

На фото видно, что лампочка в цепи питания не горит, значит все гуд. А вот лампочка на вторичке горит, значит мы все сделали правильно. Меряем ток холостого хода. Он должен быть не больше 0.8 А. У меня он 0.27 А. Кольцо и полевики не должны быть горячими.

Если у вас все получилось, как у меня, можно мотать вторичку. Если нет — ищем проблему, если большое ток холостого хода, возможно вам продали плохое кольцо. Если горит лампа и по схеме нет ошибок — скорее всего неправильно сфазировали обмотки, либо очень плохое кольцо.

Намотка вторички ничем не отличается от намотки первички, только жилы длинные и тяжело аккуратно мотать. Наматывать необходимо в том же направлении, в каком мотали первичку. Еще лучше брать большой запас по длине. Зачастую выходное напряжение не совпадает с расчетным.

У меня оно получилось намного больше, поэтому мне пришлось отматывать 8 витков.

Полный размер

Готовая вторичка

Формируем выводы, впаиваем, запускаем через лампу, если все гуд, то без нее. Меряем выходные напряжения.

Силовые дорожки на плате желательно хорошо пролить припоем, все-таки токи немалые, а количество меди на плате небольшое.

Полный размер

Припоя пошло туда немало

Ну и напоследок цепляем полевики на радиатор, все через прокладки и втулки. На радиаторе не должна прозваниваться средняя нога. Диоды на выходе также можно поставить на радиатор через прокладки, но сильно они не греются.

Ну и финальный вид преобразователя:

***Заключение***

Полгода у меня заняли поиски кольца для него, сделано две разные печатные платы. Но я сделал это, я смог). В скором времени буду оформлять все это добро в общий корпус и тестировать.

Музыка в авто. Часть #1. Сабвуфер JBL GTO1202d.
Музыка в авто. Часть #3.1. Усилитель ЛАНЗАР, 300Вт веселья.

А на сегодня всё 🙂

Стаўце падабайкi i падпiсвайцеся!

Источник: https://www.drive2.ru/l/8809530/

Преобразователь для автомобильного сабвуфера

Очень часто во время постройки сабвуферных автомобильных усилителей радиолюбители часто сталкиваются с проблемой сборки преобразователя напряжения.

Преобразователь напряжения предназначен для повышения бортовых 12 Вольт автомобиля до нужного уровня для питания усилителя мощности. Наш преобразователь способен питать довольно мощные усилители низкой частоты для сабвуфевра. Выходная мощность преобразователя составляет 250-270 ватт, отлично подходит для питания одного-двух усилителей на микросхеме TDA7293/94 (даже по схеме Чивильча).

Для начала разберемся с намоткой импульсного трансформатора. Берем кольцо 40х25х11 марки 2000НМ, и закругляем острые углы со всех сторон. Удобно использовать надфиль.

После этого кольцо обматываем тканевой изолентой.

Первичная обмотка растянута по всему кольцу и содержит 2х6 витков, провод 0,7мм из пяти жил.

Для начала нужно отрезать 10 кусков провода 0,7мм (по пять жил для каждой половинки). Длина каждого куска 30 см. Далее собираем шину из 5 жил, таким образом получаем две шины, каждая из 5 – и жил провода 0,7мм. Затем с кончиков проводов сдираем лак, скручиваем и залужаем. Мотаем оба плеча сразу – равномерно по всему кольцу.

После полной намотки получается 4 вывода. После этого один конец первой половины обмотки подключаем к другому концу второй половины. К примеру – начало одной половины к концу второй или начало второй к концу первого.

После намотки первичной обмотки трансформатор изолируют той же тканевой изолентой и мотаем вторичную – повышающую обмотку.

Обмотка содержиит содержит 2х18 витков. Обмотку мотают и фазируют по тому же принципу, что и первичную. На сей раз обмотка намотана двумя жилами провода 1,2 мм. После этого опять изолируем обмотку, хотя эту изоляцию можно и не ставить.

Далее собираем саму схему преобразователя.

Схема построена на традиционном ШИМ контроллере TL494. Преобразователь не имеет контроля выходного напряжения, но просадка небольшая, сама схема работает довольно стабильно. В качестве полевых ключей использованы транзисторы серии IRFZ44. При замене на IRF3205 мощность можно увеличить до 300 ватт.

На маломощных транзисторах построен серии BC557 (можно заменить на BC556 или на отечественный КТ3107). Драйвер предназначен для усиления сигнала с микросхемы. Схема в особой наладке не нуждается и должна заводится сразу. Для страховки, в цепь питания подключаем лампу накаливания (галогенку 12 вольт 60-120 ватт). Лампу подключаем последовательно в разрыв плюса или минуса питания.

В качестве выпрямителя можно использовать любые импульсные диоды с рабочей частотой более 60кГц, обратное напряжение не менее 50 вольт при токе не менее 10 А. Можно использовать отечественные диоды серии КД213А (ток 10 А при рабочей частоте до 100кГц) или диодные сборки Шоттки из компьютерных блоков питания.

Дроссель на входе питания может быть намотан на кольце от порошкового железа или же на ферритовом стержне с длиной 2,5см. Мотается дроссель двумя жилами миллиметрового провода и содержит 7-10 витков.

Дроссели на в выходной части можно мотать на стержне из феррита с длиной 2-3 см (или же на кольце) и состоит из 5-7 витков. Для намотки можно использовать провод с сечением 1,2 мм 9для удобства можно мотать двумя жилами провода 0,6-0,7мм).

Печатная плата в формате *.lay

Автор материала kosty Краснодарский кр. Тихорецк.

Источник: http://vip-cxema.org/index.php/home/bloki-pitaniya/30-preobrazovatel-dlya-avtomobilnogo-sabvufera

Преобразователь для автомобильного сабвуфера

Преобразователь напряжения — одна из основных частей автомобильных усилителей высокой мощности. Преобразователь напряжения обеспечивает нужные параметры питания для автомобильных усилителей высокой мощности.

Любой электронщик знает, что от напряжения 12 Вольт (напряжение в бортовой сети автомобиля) не реально получить больше 18 ватт звуковой мощности на нагрузку 4 Ом, но для питания мощных сабвуферных головок 18 ватт явно мало, ведь иногда мощность головок по несколько тысяч ватт.

Преобразователь напряжения является блоком питания для усилителя и последующих частей (фильтр, сумматор, блоки предварительных усилителей и стабилизаторов).  Для строения автомобильных усилителей малой мощности (80-120 ватт) можно использовать схему довольно простого, но хорошего двухтактного преобразователя, построенной на микросхеме TL494.

TL494 — двухтактный ШИМ контроллер, посключен по схеме генератора импульсов, частота которого определяется подбором компонентов цепи R3/C4. Советуется настроить генератор на частоту 45-60кГц.

Трансформатор мотается на подходящем по размерам кольце, в моем случае использовано ферритовое кольцо (импортное) от импульсного источника питания с мощностью 150 ватт. С таким сердечником, можно получить мощность 200-220 ватт, но я делал инвертор для усилителя на микросхеме TDA7294, следовательно, инвертор имеет двойной запас по мощности.

Силовые ключи серии IRFZ44, можно заменить на любые другие, к примеру IRFZ40/46/48, IRF3205, IRL3705 или на любые аналогичные.

 Номинальна мощность инвертора с указанными ключами составляет 150 ватт, максимальная мощность — 200.

Если заменить полевые ключи на IRF3205, то легко можно снять выходную мощность 300 ватт с одной парой транзисторов, но возможно, придется подобрать сердечник с более большими размерами.

В качестве сердечника для импульсного трансформатора, можно использовать ферритовые кольца с проницательностью от 1500 до 3000НМ, оптимальный вариант 2000НМ — с ним гораздо меньше потерь в трансформаторе.

Первичная обмотка намотана 5-ю жилами провода 0,8 мм и состоит из 2х5 витков. Обмотка растянута по всему кольцу. Точно также мотается и вторичная обмотка, которая состоит из 13 витков, намотана тем же проводом, но количество жил всего три.

ВАЖНО! первичную и вторичную обмотку обязательно мотать в том же направлении. После намотки нужно сфазировать обмотки.

Первичная цепь, по сути, состоит из двух равноценных обмоток по 5 витков каждая. Теперь нужно подключить конец одной из этих обмоток к началу второй обмотки, место стыковки у нас и есть отвод от середины. Точно по такому же принципу подключаем и обмотки во вторичной цепи, там уже место стыковки , это средняя точка — GND

Входной дроссель может быть намотан на кольце феррита, состоит из 7 витков провода 1,5 мм. Обмотку дросселя можно мотать также и на кольцах из порошкового железа или ферритовом стержне с диаметром не менее 4мм и длиной от 25мм.

Выходные дросселя использовал готовые, от компьютерных блоков питания. Намотаны на стержнях (ферритовых) с длиной 2,5см и состоят из 8 витков провода 1мм.

Автор; АКА КАСЬЯН

Источник: http://xn—-7sbbil6bsrpx.xn--p1ai/preobrazovatel-dlya-avtomobilnogo-sabvufera.html

Преобразователь напряжения 12 В/±45 В, 200 Вт для мощного автомобильного усилителя

Статьи » Преобразователи » Преобразователь напряжения 12 В/±45 В, 200 Вт для мощного автомобильного усилителя

https://www.youtube.com/watch?v=ri6MOleL400

Технические характеристики

Входное напряжение ……………………………12…15 В (типовое 14,4 В) Выходное напряжение ………………..постоянное, двухполярное ±45 В Средняя рабочая мощность нагрузки …………………………120…150 Вт Кратковременная максимальная мощность нагрузки …………….200 Вт Ток потребления на «холостом” ходу, не более……………………..0,6 А

Частота преобразования……………………………………………….25 кГц

Общий вид устройства показан на рис.1, принципиальная электрическая схема – на рис.2.

В качестве схемы управления используется микросхема TL494CN, выпускаемая фирмой TEXAS INSTRUMENT (США). Функциональная схема ИМС TL494 показана на рис.3.

В состав микросхемы входят: генератор пилообразного напряжения, источник опорного стабилизированного напряжения, компаратор «мертвой зоны”, компаратор ШИМ, усилитель ошибки по напряжению, усилитель ошибки по сигналу ограничения тока, два выходных транзистора, двухтактный триггер, вспомогательные логические элементы и источники напряжения и тока.
Цоколевка микросхемы показана на рис.4.

В состав преобразователя напряжения входит схема управления мощными ключевыми транзисторами IR4426, ключевые транзисторы VT1–VT4 (IRF540N), импульсный трансформатор Т1, выпрямительные диоды VD, VD2, сглаживающие фильтры С13–С17.

Частота преобразования сигнала составляет 25 кГц. В устройстве предусмотрены защиты от переполюсовки входного напряжения (R1, С1, HL1, К1) и от перегрузки.

Светодиод HL1 индицирует наличие входного напряжения, HL3 и HL4 индицируют наличие выходных напряжений, HL2 – перегрузку.

Конструкция. 

Конструктивно преобразователь выполнен на односторонней печатной плате из фольгированного стеклотекстолита размерами 182*60 мм. Конструкция предусматривает установку платы в корпус, для этого имеются монтажные отверстия по краям платы
диаметром 3 мм.

Для удобства подключения проводов входных и выходных напряжений на плате устанавливаются двухконтактные клеммные зажимы. Силовые элементы VT1, VT3, VD1 и VT2, VT4, VD2 необходимо установить на общие радиаторы площадью 1000 см2 каждый.

При этом надо использовать изолирующие втулки и теплопроводные прокладки.

Параметры импульсного трансформатора

Первичная обмотка: намотку ведут шестью проводами диаметром 1 мм; количество витков 10; после намотки обмотку разделяют на две по три провода в каждой; начало одной получившейся обмотки соединяют с концом другой и свивают в одну жилу; два оставшихся конца провода также свивают вместе; длина получившихся трех выводов должна составлять примерно 30 мм, выводы облуживают на длину 20 мм от концов.Вторичная обмотка: намотку ведут четырьмя проводами диаметром 1 мм; количество витков 32; после намотки обмотку разделяют на две по два провода в каждой; концы обеих получившихся обмоток соединяют и свивают в одну жилу; два оставшихся конца тоже свивают в жилы; длина получившихся трех выводов должна составлять примерно 30 мм,

выводы зачищают и облуживают на длину 20 мм от концов.

Сборка трансформатора:

намотку трансформатора ведут на ферритовом кольце типоразмера 45*28*12 мм, магнитной проницаемости 2000; перед намоткой обмоток ферритовое кольцо обматывают слоем трансформаторной бумаги или тряпичной изоленты; наматывают первичную обмотку; наматывают слой трансформаторной бумаги или тряпичной изоленты; наматывают вторичную обмотку; наматывают слой трансформаторной бумаги или цветной изоленты;

трансформатор устанавливают и монтируют на печатной плате.

Правильно собранный преобразователь не требует настройки.

Чтобы сэкономить Ваше время и избавить Вас от рутинной работы по поиску необходимых компонентов и изготовлению печатных плат, «МАСТЕР КИТ” предлагает набор NM1025. Набор состоит из печатной платы, импульсного трансформатора, всех необходимых компонентов и инструкции по сборке и эксплуатации. http://www.masterkit.ru

Электрик №2/2005

Источник: http://rcl-radio.ru/?p=5495

Преобразователь для автомобильного сабвуфера

Источник: http://el-shema.ru/publ/pitanie/preobrazovatel_dlja_avtomobilnogo_sabvufera/5-1-0-408

Автомобильный преобразователь ±20 В для аудио усилителя

Jonathan Filippi

Напряжения бортовой сети легкового автомобиля (12 В) недостаточно, чтобы получить большую выходную мощность от аудио усилителя, поэтому для питания усилителя необходим повышающий преобразователь.

Какую же неискаженную мощность можно получить при однополярном напряжении питания 12 В?

(Uп × 0.709 / 2)2 / Rд,

где Uп – напряжение питания, 0.709 – коэффициент пересчета на действующее значение звукового сигнала,

Rд – сопротивление динамика.

Итак, (12 × 0.709 / 2)2 / 4 = 4.5 Вт. Не впечатляет…

Для питания мощного усилителя звуковой частоты лучше всего применять двуполярное симметричное питание, например, ±20 В.

Тогда (20 × 0.709)2 / 4 = 50 Вт. Разница существенная, не так ли?

Предлагаемый блок питания предназначен для питания двухканального усилителя с максимальной мощностью 50 Вт на канал. Если требуется иное значение мощности, выходное напряжение может быть легко изменено.

Кликните для увеличения

Двухканальный ШИМ контроллер IR2153 обладает высокой точностью работы, благодаря чему, стал широко применяться в импульсных блоках питания и преобразователях напряжения. Сегодня будет рассмотрен вариант импульсного преобразователя для автомобильного сабвуфера, на основе микросхем ТДА7293/94.

Такой преобразователь предназначен для питания указанной микросхемы от бортовой сети автомобиля 12 вольт. С питанием +/-28…+/-30 вольт данная микросхема способна развивать номинальную мощность 80 ватт, максимальная мощность составляет 100 ватт, а пиковая доходит до 110-120 ватт.

В архиве рисунки печатных плат, а ниже сама схема преобразователя.

Схема, плата и трансформатор

Преобразователь достаточно мощный и может питать сразу две микросхемы. Мускулами преобразователя являются полевые транзисторы серии IRFZ44, в плече использовано по 2 транзистора. Трансформатор от компьютерного блока питания. Сначала с него надо снять все заводские обмотки, затем мотаем новую – первичная состоит из 10 витков, имеет отвод от середины.

Сначала на каркасе мотают пробные 5 витков, для того, чтобы примерно узнать, сколько провода уйдет на намотку. Затем пробный провод снимают и получаем примерную длину провода намотки. Отрезаем 10 жил того же провода, провод 0,6-0,8 мм.

Отрезки должны иметь идентичную длину. Из отрезков отделяем 5 жил и ими мотаем первую обмотку, точнее одну половину первичной обмотки. Состоит обмотка из 5 витков, мотают вверх по длине каркаса.

Затем поверх мотают вторую половину обмотки, которая полностью идентична первой половине.

После мотают вторичную обмотку – 26 витков с отводом от середины, мотают по половинкам, точно так, как мотали первичную. Обмотка мотается 2-я жилами провода 0,7 мм. Выходная мощность преобразователя порядка 200-250 ватт, чего достаточно для очень мощного автомобильного сабвуфера. На выходе можно использовать любые импульсные диоды на 10 Ампер.

Дроссель по питанию намотан на кольце от компьютерного БП (желтое кольцо из порошкового железа). Содержит дроссель 7 витков, намотана двумя жилами провода 1 мм.

Остальные дроссели (после трансформатора) тоже намотаны на идентичных кольцах (можно также использовать ферритовые кольца и стержни, намоточные данные сохраняются), число витков 7, провод 2 жилы 0,7 мм.

Конечно в рамках небольшой статьи всех тонкостей не рассказать – поэтому заходите на форум по сабвуферам и спрашивайте что непонятно там.

Надписи на схеме
70A 4 mOhmsMOSFET MOSFET транзистор с сопротивлением открытого канала 4 мОми максимальным током 70 А
Ferrite bead Ферритовая бусина
Powder iron toroid Кольцо из порошкового железа
5*5;10*10, turns, AWG22*3 primary,AWG22*2 secondary Первичная обмотка – 5+5 витков тройного провода 0.32 мм2,вторичная обмотка – 10+10 витков двойного провода 0.32 мм2
Shottky, 3 Arectifier Диод Шоттки на 3 А

Как работает схема?

Это классическая схема двухтактного преобразователя, выдающего симметричное двуполярное напряжение. Имейте в виду, что устройство будет потреблять довольно значительный ток (около 10 A), так что необходимо найти провода подходящего сечения и надежно их припаять, иначе потери напряжения на входе могут оказаться недопустимо большими.

Конструкция трансформатора должна быть направлена на снижение скин-эффекта. Это можно сделать, использовав несколько соединенных параллельно обмоточных проводов.

Выходное напряжение зависит от коэффициента трансформации и скважности рабочего цикла. У меня коэффициент трансформации 2, так как количество витков трансформатора 5+5 и 10+10.

За счет динамического управления контроллером ШИМ TL494, выходное напряжение поддерживается на уровне 20 В.

Повышающий коэффициент трансформатора должен быть немного выше требуемого, чтобы компенсировать потери на выпрямительных диодах, на сопротивлении обмоток, а также снижении входного напряжения из-за падения на входных проводах.

Конструкция трансформатора

Для заявленной мощности трансформатор должен быть достаточно большим. Сердечник моего трансформатора имеет длину 33.5 мм, высоту 30.0 мм и ширину 13 мм, при этом площадь поперечного сечения равна 1.25 см2. Этого достаточно для того, чтобы на частоте 50 кГц получить мощность 150 Вт.

Провода обмоток, особенно первичной должны быть довольно большого сечения, но вместо одного провода лучше использовать несколько проводов параллельно. Это снизит внутреннее сопротивление, которое увеличивается из-за скин-эффекта.

Первичная и вторичная обмотки имеют отвод от середины, это означает, что вы должны намотать 5 витков первичной обмотки, сделать отвод, и намотать еще 5 витков.

То же самое необходимо сделать и при намотке вторичной обмотки: 10 витков, отвод, и еще 10 витков.

Очень важно, чтобы сердечник трансформатора не имел воздушных зазоров, иначе возникнут большие индуктивные выбросы напряжения, превосходящие уровень рассчитанного выходного напряжения. Поэтому, если выходное напряжение (при полном коэффициенте заполнения импульсов ШИМ) превышает величину

Vin × N2 / N1 – Vdrop

где Vin – входное напряжение, N1, N2 – количество витков первичной и вторичной обмоток,

Vdrop – прямое падение напряжения на выпрямительных диодах,

это означает, что трансформатор имеет воздушный зазор (но нужно быть слепым, чтобы не заметить его), и КПД преобразования резко снизится. Чтобы избежать этого, используйте Ш-образный сердечник без зазора или ферритовое кольцо.

Выходные диоды, конденсаторы и дроссель

На выходе трансформатора я использовал диоды Шоттки, так как они имеют низкое прямое падение напряжения малое время восстановления. Недорогие 1N5822 (прямой ток 3 A) – лучший выбор для данной схемы.

Используйте выходные конденсаторы 4700 мкФ 25 В, больше не надо, так как на высоких частотах пульсации определяются, в основном, эквивалентным последовательным сопротивлением конденсатора (ESR).

К тому же, при большом коэффициенте заполнения импульсов ШИМ на конденсаторы подается, практически, постоянное напряжение.

Дроссель, подключенный к отводу вторичной обмотки, фильтрует пульсации выходного напряжения и способствует его стабилизации при асимметрии выходных напряжений.

Силовые ключи и драйвер

Я использовал ключевые транзисторы в корпусах D2PAK максимальным напряжением 70 В, максимальным ток 80 A и сопротивлением открытого канала 0.004 Ом. Это – очень дорогие и труднодоступные приборы фирмы Fairchind semiconductor.

В принципе, в схеме смогут работать любые мощные полевые транзисторы, но чем ниже будет их сопротивление канала, тем меньше будет потерь в открытом состоянии, меньший их нагрев и, соответственно, меньше размеры радиатора, и, как следствие, более высокий КПД устройства.

На полной мощности (100 Вт) преобразователь на указанных транзисторах работает с КПД 82% с терпимым нагревом довольно небольшого радиатора, без вентилятора.

При увеличении мощности до 120 Вт перегрев радиатора увеличивается на несколько градусов и КПД снижается до 75% (сердечник трансформатора входит в насыщение).

Используйте MOSFET транзисторы с низким сопротивлением открытого канала, и проблем с перегревом радиатора не будет возникать, иначе вам даже может потребоваться вентилятор. В качестве драйвера полевых транзисторов используется микросхема TPS2811P фирмы Texas instruments, рассчитанная на пиковый ток 2 А и время переключения 200 нс.

Индуктивность линий управления затворами должна быть минимальной, чтобы снизить потери при переключении силовых ключей и влияние на них импульсных шумовых помех. Лично я считаю, что снижение индуктивности достигается с помощью витой пары (свитые проводники, идущие от драйвера к затворам и от стоков к «земле»).

При этом резисторы необходимо располагать возле затворов транзисторов, а не возле микросхемы драйвера.

Контроллер

Я применил испытанный ШИМ контроллер TL494 с рабочей частотой, регулируемой потенциометром в пределах 40–60 кГц. Для уменьшения бросков тока добавлена схема мягкого старта.

Необходимое выходное напряжение устанавливается подстроечным резистором в цепи обратной связи. К выходнам контроллера ШИМ подключены подтягивающие резисторы R3 и R4, которые в каждом цикле, поочередно, подключаются к «земле».

Импульсные выходные сигналы поступают на сдвоенный драйвер MOSFET транзисторов (TPS2811P).

Питание устройства и снижение помех

Как уже было отмечено выше, входные провода и соединительные контакты должны быть достаточно мощными для снижения потерь от падения напряжения и обеспечения высокого КПД. Не забудьте поставить на входе предохранитель на 10–15 А, поскольку ток короткого замыкания автомобильных аккумуляторов очень велик.

При подключении к аккумулятору не лишним будет установить предохранитель и непосредственно возле него. Это обезопасит Вас от любой непредвиденной ситуации (а значит и от взрыва, пожара, пожарных и полиции). Немаловажна и фильтрация входного напряжения. Используйте на входе конденсаторы емкостью не менее 20,000 мкФ на напряжение 16 В.

Полезно применить и дроссель (с необходимым максимальным током), но пока я решил его не ставить.

Заключительные соображения

Описанный блок питания имеет КПД 85% (иногда даже 90% с определенным видом нагрузки). Для проверки пульсаций выходного напряжения воспользуйтесь осциллографом, но если вы будете следовать моим указаниям, проблем с помехами не будет.

Обратная связь для стабилизации напряжения – это хорошо, но имейте в виду, что обратной связью охвачено только положительное плечо, отрицательное плечо лишь повторяет напряжение положительного. Если нагрузка несимметрична, возможны два варианта:

  • Сопротивление нагрузки в положительном плече ниже, чем в отрицательном. Проблем не должно возникнуть, так как отрицательное напряжение повторяет напряжение в положительном, регулируемом плече, что для аудио усилителя не страшно.
  • Сопротивление нагрузки в отрицательном плече больше, чем в положительном. Тут будет снижение напряжения на отрицательной шине относительно земли (т.е. перекос), особенно если нагрузка подключена только к этому контакту.

К счастью, аудио усилители являются вполне симметричной нагрузкой, а выходной фильтр из дросселя и конденсаторов позволяет стабилизировать выходные напряжения во время несимметричных переходных процессов (на басах).

ВНИМАНИЕ!Имейте в виду, что ЭТОТ ПРОЕКТ НЕ ДЛЯ НОВИЧКА. НИ В КОЕМ СЛУЧАЕ НЕ ИСКЛЮЧАЙТЕ ИЗ СХЕМЫ ПРЕДОХРАНИТЕЛЬ, НЕ ЗАМЕНЯЙТЕ ЕГО ТОЛСТОЙ ПЕРЕМЫЧКОЙ (ЖУЧКОМ)! ЭТО ПОМОЖЕТ ИЗБЕЖАТЬ БОЛЬШИХ ПРОБЛЕМ.

ДЛЯ ПЕРВОГО ПРОБНОГО ВКЛЮЧЕНИЯ используйте небольшой блок питания на 12 В и резисторы для имитации нагрузки и измерения выходного тока и тока потребления. Попытайтесь определить КПД. Если он выше, чем 70–75% – вы можете быть довольны своим детищем. Регулировкой частоты добейтесь компромисса между выходной мощностью и потерями при переключении, от скин-эффекта и гистерезиса.

Перечень элементов

Кол-во Обозначение Значение
Резисторы
2 R1, R2 10 Ом
4 R3, R4, R6, R7 1 кОм
1 R5 22 кОм
1 R8 4.7 кОм
1 R9 100 кОм
Конденсаторы
2 C1, C2 10,000 мкФ
2 C3, C6 47 мкФ
1 C4 10 мкФ
3 C5, C7, C14 100 нФ
2 C8, C9 4700 мкФ
1 C12 1 нФ
1 C13 2.2 мкФ
Микросхемы
1 U1 TL494
1 U2 TPS2811P
Транзисторы
2 Q1, Q2 FDB045AN
Диоды
4 D1-D4 1N5822
1 D5 1N4148
Разное
1 FU1 10 A
1 L1 10 мкГн
1 L2 Ферритовая бусина
Триммеры
1 RV1 2.2 кОм
1 RV2 24 кОм
1 T1 Трансформатор TRAN-3P3S

Источник: https://www.rlocman.ru/shem/schematics.html?di=72059

Блоки питания автомобильных усилителей звука, схемотехника и принцип работы

Источник: http://www.xn--b1agveejs.su/avtoelektronika/210-shemotehnika-blokov-pitaniya-usiliteley.html

Ссылка на основную публикацию
Adblock
detector
",css:{backgroundColor:"#000",opacity:.6}},container:{block:void 0,tpl:"
"},wrap:void 0,body:void 0,errors:{tpl:"
",autoclose_delay:2e3,ajax_unsuccessful_load:"Error"},openEffect:{type:"fade",speed:400},closeEffect:{type:"fade",speed:400},beforeOpen:n.noop,afterOpen:n.noop,beforeClose:n.noop,afterClose:n.noop,afterLoading:n.noop,afterLoadingOnShow:n.noop,errorLoading:n.noop},o=0,p=n([]),h={isEventOut:function(a,b){var c=!0;return n(a).each(function(){n(b.target).get(0)==n(this).get(0)&&(c=!1),0==n(b.target).closest("HTML",n(this).get(0)).length&&(c=!1)}),c}},q={getParentEl:function(a){var b=n(a);return b.data("arcticmodal")?b:(b=n(a).closest(".arcticmodal-container").data("arcticmodalParentEl"),!!b&&b)},transition:function(a,b,c,d){switch(d=null==d?n.noop:d,c.type){case"fade":"show"==b?a.fadeIn(c.speed,d):a.fadeOut(c.speed,d);break;case"none":"show"==b?a.show():a.hide(),d();}},prepare_body:function(a,b){n(".arcticmodal-close",a.body).unbind("click.arcticmodal").bind("click.arcticmodal",function(){return b.arcticmodal("close"),!1})},init_el:function(d,a){var b=d.data("arcticmodal");if(!b){if(b=a,o++,b.modalID=o,b.overlay.block=n(b.overlay.tpl),b.overlay.block.css(b.overlay.css),b.container.block=n(b.container.tpl),b.body=n(".arcticmodal-container_i2",b.container.block),a.clone?b.body.html(d.clone(!0)):(d.before("
"),b.body.html(d)),q.prepare_body(b,d),b.closeOnOverlayClick&&b.overlay.block.add(b.container.block).click(function(a){h.isEventOut(n(">*",b.body),a)&&d.arcticmodal("close")}),b.container.block.data("arcticmodalParentEl",d),d.data("arcticmodal",b),p=n.merge(p,d),n.proxy(e.show,d)(),"html"==b.type)return d;if(null!=b.ajax.beforeSend){var c=b.ajax.beforeSend;delete b.ajax.beforeSend}if(null!=b.ajax.success){var f=b.ajax.success;delete b.ajax.success}if(null!=b.ajax.error){var g=b.ajax.error;delete b.ajax.error}var j=n.extend(!0,{url:b.url,beforeSend:function(){null==c?b.body.html("
"):c(b,d)},success:function(c){d.trigger("afterLoading"),b.afterLoading(b,d,c),null==f?b.body.html(c):f(b,d,c),q.prepare_body(b,d),d.trigger("afterLoadingOnShow"),b.afterLoadingOnShow(b,d,c)},error:function(){d.trigger("errorLoading"),b.errorLoading(b,d),null==g?(b.body.html(b.errors.tpl),n(".arcticmodal-error",b.body).html(b.errors.ajax_unsuccessful_load),n(".arcticmodal-close",b.body).click(function(){return d.arcticmodal("close"),!1}),b.errors.autoclose_delay&&setTimeout(function(){d.arcticmodal("close")},b.errors.autoclose_delay)):g(b,d)}},b.ajax);b.ajax_request=n.ajax(j),d.data("arcticmodal",b)}},init:function(b){if(b=n.extend(!0,{},a,b),!n.isFunction(this))return this.each(function(){q.init_el(n(this),n.extend(!0,{},b))});if(null==b)return void n.error("jquery.arcticmodal: Uncorrect parameters");if(""==b.type)return void n.error("jquery.arcticmodal: Don't set parameter \"type\"");switch(b.type){case"html":if(""==b.content)return void n.error("jquery.arcticmodal: Don't set parameter \"content\"");var e=b.content;return b.content="",q.init_el(n(e),b);case"ajax":return""==b.url?void n.error("jquery.arcticmodal: Don't set parameter \"url\""):q.init_el(n("
"),b);}}},e={show:function(){var a=q.getParentEl(this);if(!1===a)return void n.error("jquery.arcticmodal: Uncorrect call");var b=a.data("arcticmodal");if(b.overlay.block.hide(),b.container.block.hide(),n("BODY").append(b.overlay.block),n("BODY").append(b.container.block),b.beforeOpen(b,a),a.trigger("beforeOpen"),"hidden"!=b.wrap.css("overflow")){b.wrap.data("arcticmodalOverflow",b.wrap.css("overflow"));var c=b.wrap.outerWidth(!0);b.wrap.css("overflow","hidden");var d=b.wrap.outerWidth(!0);d!=c&&b.wrap.css("marginRight",d-c+"px")}return p.not(a).each(function(){var a=n(this).data("arcticmodal");a.overlay.block.hide()}),q.transition(b.overlay.block,"show",1*")),b.overlay.block.remove(),b.container.block.remove(),a.data("arcticmodal",null),n(".arcticmodal-container").length||(b.wrap.data("arcticmodalOverflow")&&b.wrap.css("overflow",b.wrap.data("arcticmodalOverflow")),b.wrap.css("marginRight",0))}),"ajax"==b.type&&b.ajax_request.abort(),p=p.not(a))})},setDefault:function(b){n.extend(!0,a,b)}};n(function(){a.wrap=n(document.all&&!document.querySelector?"html":"body")}),n(document).bind("keyup.arcticmodal",function(d){var a=p.last();if(a.length){var b=a.data("arcticmodal");b.closeOnEsc&&27===d.keyCode&&a.arcticmodal("close")}}),n.arcticmodal=n.fn.arcticmodal=function(a){return e[a]?e[a].apply(this,Array.prototype.slice.call(arguments,1)):"object"!=typeof a&&a?void n.error("jquery.arcticmodal: Method "+a+" does not exist"):q.init.apply(this,arguments)}}(jQuery)}var debugMode="undefined"!=typeof debugFlatPM&&debugFlatPM,duplicateMode="undefined"!=typeof duplicateFlatPM&&duplicateFlatPM,countMode="undefined"!=typeof countFlatPM&&countFlatPM;document["wri"+"te"]=function(a){let b=document.createElement("div");jQuery(document.currentScript).after(b),flatPM_setHTML(b,a),jQuery(b).contents().unwrap()};function flatPM_sticky(c,d,e=0){function f(){if(null==a){let b=getComputedStyle(g,""),c="";for(let a=0;a=b.top-h?b.top-h{const d=c.split("=");return d[0]===a?decodeURIComponent(d[1]):b},""),c=""==b?void 0:b;return c}function flatPM_testCookie(){let a="test_56445";try{return localStorage.setItem(a,a),localStorage.removeItem(a),!0}catch(a){return!1}}function flatPM_grep(a,b,c){return jQuery.grep(a,(a,d)=>c?d==b:0==(d+1)%b)}function flatPM_random(a,b){return Math.floor(Math.random()*(b-a+1))+a}
");let k=document.querySelector(".flat_pm_modal[data-id-modal=\""+a.ID+"\"]");if(-1===d.indexOf("go"+"oglesyndication")?flatPM_setHTML(k,d):jQuery(k).html(b+d),"px"==a.how.popup.px_s)e.bind(h,()=>{e.scrollTop()>a.how.popup.after&&(e.unbind(h),f.unbind(i),j())}),void 0!==a.how.popup.close_window&&"true"==a.how.popup.close_window&&f.bind(i,()=>{e.unbind(h),f.unbind(i),j()});else{let b=setTimeout(()=>{f.unbind(i),j()},1e3*a.how.popup.after);void 0!==a.how.popup.close_window&&"true"==a.how.popup.close_window&&f.bind(i,()=>{clearTimeout(b),f.unbind(i),j()})}f.on("click",".flat_pm_modal .flat_pm_crs",()=>{jQuery.arcticmodal("close")})}if(void 0!==a.how.outgoing){let b,c="0"==a.how.outgoing.indent?"":" style=\"bottom:"+a.how.outgoing.indent+"px\"",e="true"==a.how.outgoing.cross?"":"",f=jQuery(window),g="scroll.out"+a.ID,h=void 0===flatPM_getCookie("flat_out_"+a.ID+"_mb")||"false"!=flatPM_getCookie("flat_out_"+a.ID+"_mb"),i=document.createElement("div"),j=jQuery("body"),k=()=>{void 0!==a.how.outgoing.cookie&&"false"==a.how.outgoing.cookie&&h&&(jQuery(".flat_pm_out[data-id-out=\""+a.ID+"\"]").addClass("show"),j.on("click",".flat_pm_out[data-id-out=\""+a.ID+"\"] .flat_pm_crs",function(){flatPM_setCookie("flat_out_"+a.ID+"_mb",!1)})),(void 0===a.how.outgoing.cookie||"false"!=a.how.outgoing.cookie)&&jQuery(".flat_pm_out[data-id-out=\""+a.ID+"\"]").addClass("show")};switch(a.how.outgoing.whence){case"1":b="top";break;case"2":b="bottom";break;case"3":b="left";break;case"4":b="right";}jQuery("body > *").eq(0).before("
"+e+"
");let m=document.querySelector(".flat_pm_out[data-id-out=\""+a.ID+"\"]");-1===d.indexOf("go"+"oglesyndication")?flatPM_setHTML(m,d):jQuery(m).html(e+d),"px"==a.how.outgoing.px_s?f.bind(g,()=>{f.scrollTop()>a.how.outgoing.after&&(f.unbind(g),k())}):setTimeout(()=>{k()},1e3*a.how.outgoing.after),j.on("click",".flat_pm_out .flat_pm_crs",function(){jQuery(this).parent().removeClass("show").addClass("closed")})}countMode&&(flat_count["block_"+a.ID]={},flat_count["block_"+a.ID].count=1,flat_count["block_"+a.ID].click=0,flat_count["block_"+a.ID].id=a.ID)}catch(a){console.warn(a)}}function flatPM_start(){let a=flat_pm_arr.length;if(0==a)return flat_pm_arr=[],void jQuery(".flat_pm_start, .flat_pm_end").remove();flat_body=flat_body||jQuery("body"),!flat_counter&&countMode&&(flat_counter=!0,flat_body.on("click","[data-flat-id]",function(){let a=jQuery(this),b=a.attr("data-flat-id");flat_count["block_"+b].click++}),flat_body.on("mouseenter","[data-flat-id] iframe",function(){let a=jQuery(this),b=a.closest("[data-flat-id]").attr("data-flat-id");flat_iframe=b}).on("mouseleave","[data-flat-id] iframe",function(){flat_iframe=-1}),jQuery(window).on("beforeunload",()=>{jQuery.isEmptyObject(flat_count)||jQuery.ajax({async:!1,type:"POST",url:ajaxUrlFlatPM,dataType:"json",data:{action:"flat_pm_ajax",data_me:{method:"flat_pm_block_counter",arr:flat_count}}})}).on("blur",()=>{-1!=flat_iframe&&flat_count["block_"+flat_iframe].click++})),flat_userVars.init();for(let b=0;bflat_userVars.textlen||void 0!==a.chapter_sub&&a.chapter_subflat_userVars.titlelen||void 0!==a.title_sub&&a.title_subc&&cc&&c>d&&(b=flatPM_addDays(b,-1)),b>e||cd||c-1!=flat_userVars.referer.indexOf(a))||void 0!==a.referer.referer_disabled&&-1!=a.referer.referer_disabled.findIndex(a=>-1!=flat_userVars.referer.indexOf(a)))&&(c=!0),c||void 0===a.browser||(void 0===a.browser.browser_enabled||-1!=a.browser.browser_enabled.indexOf(flat_userVars.browser))&&(void 0===a.browser.browser_disabled||-1==a.browser.browser_disabled.indexOf(flat_userVars.browser)))){if(c&&void 0!==a.browser&&void 0!==a.browser.browser_enabled&&-1!=a.browser.browser_enabled.indexOf(flat_userVars.browser)&&(c=!1),!c&&(void 0!==a.geo||void 0!==a.role)&&(""==flat_userVars.ccode||""==flat_userVars.country||""==flat_userVars.city||""==flat_userVars.role)){flat_pm_then.push(a),flatPM_setWrap(a),flat_body.hasClass("flat_pm_block_geo_role")||(flat_body.addClass("flat_pm_block_geo_role"),flatPM_ajax("flat_pm_block_geo_role")),c=!0}c||(flatPM_setWrap(a),flatPM_next(a))}}}let b=jQuery(".flatPM_sticky");b.each(function(){let a=jQuery(this),b=a.data("height")||350,c=a.data("top");a.wrap("
");let d=a.parent()[0];flatPM_sticky(this,d,c)}),debugMode||countMode||jQuery("[data-flat-id]:not([data-id-out]):not([data-id-modal])").contents().unwrap(),flat_pm_arr=[],jQuery(".flat_pm_start, .flat_pm_end").remove()}

Рис. 1 моноплата автомобильного усилителя звука с раздельными преобразователями напряжения питания

Преобразователь напряжения в схеме блоков питания автомобильных усилителей, как и любой источник питания, имеет некоторое выходное сопротивление. При питании от общего источника между каналами многоканальных усилителей звука возникает взаимосвязь, которая тем больше, чем выше выходное сопротивление источника питания. Оно, обратно пропорционально мощности преобразователя.

Одной из составляющих выходного сопротивления блока питания становится и сопротивление питающих проводов. В моделях высокого класса для питания выходных каскадов усилителя мощности звука используют медные шины сечением 3…5 мм. Это наиболее простое решение проблем с питанием усилителя звука, улучшающее динамику и качество звучания.

Конечно, повысив мощность источника питания, взаимное влияние каналов можно уменьшить, но полностью исключить его нельзя. Если же использовать для каждого канала отдельный преобразователь, проблема снимается.

Требования к отдельным источникам питания при этом можно заметно снизить. Обычно уровень переходного затухания автомобильных усилителей с общим блоком питания составляет для бюджетных моделей 40…55 дБ, для более дорогих — 50…65 дБ.

Для автомобильных усилителей звука с раздельными блоками питания этот показатель превышает 70 дБ.

Преобразователи напряжения питания делятся на две группы — стабилизированные и нестабилизированные. Нестабилизированные заметно проще и дешевле, но им свойственны серьезные недостатки. На пиках мощности выходное напряжение преобразователя снижается, что приводит к увеличению искажений.

Если увеличить мощность преобразователя, это снизит экономичность при малой выходной мощности. Поэтому нестабилизированные преобразователи применяются, как правило, в недорогих усилителях с суммарной мощностью каналов не более 100… 120 Вт.

При более высокой выходной мощности усилителя предпочтение отдается стабилизированным преобразователям.

Как правило, блок питания смонтирован в одном корпусе с усилителем (на рис. 1 показана моноплата автомобильного усилителя звука с раздельными преобразователями напряжения питания), но в некоторых конструкциях он может быть выполнен в виде внешнего блока или отдельного модуля.

Для включения автомобильного усилителя в рабочий режима усилителя используется управляющее напряжение от головного аппарата (вывод Remote). Потребляемый по этому выводу ток минимален — несколько миллиампер — и никак не связан с мощностью усилителя.

В автомобильных усилителях обязательно используется защита от короткого замыкания нагрузки и от перегрева. В ряде случаев имеется также защита акустичеких систем от постоянного напряжения в случае выхода из строя выходного каскада усилителя.

Эта часть схемы для современных автомобильных усилителей стала практически типовой и может отличаться незначительными изменениями.

Автомобильные усилители имеют еще одну особенность. Обычно компоненты аудиосистемы удалены друг от друга и для их соединения используются относительно длинные соединительные кабели длина которых в автомобиле может достигать десятка и более метров.

Чтобы исключить образование паразитного контура чувствительного к наводкам, приходится принимать специальные меры. Прежде всего нужно стремиться к тому, чтобы в системе была одна точка заземления (точка соединения с “массой” автомобиля), но это условие не всегда можно выполнить.

Для уменьшения уровня помех общий провод входных цепей блока питания и общий провод его выходных цепей имеют полную гальваническую развязку или связаны через резистор R1 сопротивлением порядка 1 кОм, как показано на рисунке 2.

В зависимости от места и способа монтажа усилителя, линий питания и связи для достижения минимального уровня наводок может понадобиться и непосредственное соединение первичных и вторичных цепей.

Рис. 2 Схема стабилизированного блока питания автомобильного усилителя звука “Monacor НРВ 150”

В первых автомобильных усилителях в блоках питания использовались преобразователи напряжения, выполненные полностью на дискретных элементах. Пример такой схемы стабилизированного блока питания автомобильного усилителя звука “Monacor НРВ 150” (рис. 2). На схеме сохранена заводская нумерация элементов.

Задающий генератор выполнен на транзисторах VT106 и VT107 по схеме симметричного мультивибратора. Работой задающего генератора управляет ключ на транзисторе VT101. Транзисторы VT103, VT105 и VT102, VT104 — двухтактные буферные каскады, улучшающие форму импульсов задающего генератора.

Выходной каскад выполнен на параллельно включенных биполярных транзисторах VT111, VT113 и VT110, VT112. Согласующие эмиттерные повторители на VT108 и VT109 питаются пониженным напряжением, снимаемым с части первичной обмотки трансформатора. Диоды VD106 – VD111 ограничивают степень насыщения выходных транзисторов.

Для дополнительного ускорения закрывания этих транзисторов введены диоды VD104, VD105. Диоды VD102, VD103 обеспечивают плавный запуск преобразователя. С отдельной обмотки трансформатора напряжение, пропорциональное выходному, подается на выпрямитель (диод VD113, конденсатор С106).

Это напряжение обеспечивает быстрое закрывание выходных транзисторов и способствует стабилизации выходного напряжения.

Недостаток биполярных транзисторов — высокое напряжение насыщения при большом токе. При токе 10… 15 А это напряжение достигает 1 В, что значительно снижает КПД преобразователя и его надежность. Частоту преобразования не удается сделать выше 25…30 кГц, в результате растут габариты трансформатора преобразователя и потери в нем.

Применение полевых транзисторов в блоке питания повышает надежность и экономичность. Частота преобразования во многих блоках превышает 100 кГц. Появление специализированных микросхем, содержащих на одном кристалле задающий генератор и цепи управления, значительно упростило конструкцию блоков питания для мощных автомобильных усилителей.

Рис. 3 Упрощенная схема нестабилизированного преобразователя напряжения питания автомобильного усилителя “Jensen”

Упрощенная схема нестабилизированного преобразователя напряжения питания четырехканального автомобильного усилителя “Jensen” приведена на рис. 3 (нумерация элементов на схеме условная).

Задающий генератор преобразователя напряжения собран на микросхеме KIA494P или TL494 (отечественный аналог — КР1114ЕУ4). Цепи защиты на схеме не показаны.

В выходном каскаде, помимо указанных на схеме типов приборов, можно использовать мощные полевые транзисторы IRF150, IRFP044 и IRFP054 или отечественные КП812В, КП850.

В конструкции использованы отдельные диодные сборки с общим анодом и с общим катодом, смонтированные через изолирующие теплопроводящие прокладки на общем теплоотводе вместе с выходными транзисторами усилителя.

Трансформатор можно намотать на ферритовом кольце типоразмера К42х28х10 или К42х25х11 с магнитной проницаемостью μэ=2000.

Первичная обмотка намотана жгутом из восьми проводов диаметром 1,2 мм, вторичная — жгутом из четырех проводов диаметром 1 мм.

После намотки каждый из жгутов разделен на две равные части, и начало одной половины обмотки соединено с концом другой. Первичная обмотка содержит 2×7 витков, вторичная — 2×15 витков, равномерно распределенных по кольцу.

Дроссель L1 намотан на ферритовом стержне диаметром 16 мм и содержит 10 витков эмалированного провода диаметром 2 мм. Дроссели L2, L3 намотаны на ферритовых стержнях диаметром 10 мм и содержат по 10 витков провода диаметром 1 мм. Длина каждого стержня 20 мм.

Подобная схема блоков питания с незначительными изменениями используется в автомобильных усилителях с суммарной выходной мощностью до 100… 120 Вт. Варьируются число пар выходных транзисторов, параметры трансформатора и устройство цепей защиты. В преобразователях напряжения более мощных усилителей вводят обратную связь по выходному напряжению, увеличивают число выходных транзисторов.

Для равномерного распределения нагрузки и уменьшения влияния разброса параметров транзисторов в трансформаторе токи мощных транзисторов распределяют на несколько первичных обмоток. Например, в преобразователе блока питания автомобильного усилителя “Lanzar 5.200” использовано 20! мощных полевых транзисторов, по 10 в каждом плече.

Повышающий трансформатор содержит 5 первичных обмоток. К каждой из них подключено по 4 транзистора (параллельно по два в плече). Для лучшей фильтрации высокочастотных помех возле транзисторов установлены индивидуальные конденсаторы сглаживающего фильтра суммарной емкостью 22000 мкФ.

Выводы обмоток трансформатора подключены непосредственно к транзисторам, без использования печатных проводников.

Поскольку автомобильным усилителям звука приходится работать в очень тяжелом температурном режиме, для обеспечения надежной работы в некоторых конструкциях используются встроенные вентиляторы охлаждения, продувающие воздух через каналы теплоотвода. Управление вентиляторами осуществляется с помощью термодатчика. Встречаются устройства как с дискретным управлением (“включен-выключен”), так и с плавной регулировкой скорости вращения вентилятора.

Наряду с этим, во всех усилителях используется термозащита блоков. Чаще всего она реализуется на основе термистора и компаратора.

Иногда применяют стандартные компараторы в интегральном исполнении, но в этой роли чаще всего используют обычные микросхемы операционных усилителей ОУ.

Пример схемы устройства термозащиты используемой в уже рассмотренном четырехканальном автомобильном усилителе “Jensen” приведен на рис. 4. На схеме, нумерация деталей условная.

Термистор Rt1 имеет тепловой контакт с корпусом усилителя вблизи выходных транзисторов. Напряжение с термистора подано на инвертирующий вход ОУ. Резисторы R1 — R3 вместе с термистором образуют мост, конденсатор С1 предотвращает ложные срабатывания защиты.

При длине проводов, которыми термистор подключен к плате, около 20 см уровень наводок от блока питания достаточно велик. Через резистор R4 осуществляется положительная обратная связь с выхода ОУ, превращающая ОУ в пороговый элемент с гистерезисом.

При нагреве корпуса до 100 °С сопротивление термистора снижается до 25 кОм, компаратор срабатывает и высоким уровнем напряжения на выходе блокирует работу преобразователя.

Выходные транзисторы усилителя и ключевые транзисторы преобразователя питания чаще всего применяют в пластиковых корпусах, ТО-220. К теплоотводу их крепят либо винтами, либо пружинными клипсами.

У транзисторов в металлических корпусах теплоотвод несколько лучше, но поскольку устанавливать их нужно через специальные теплоотводящие прокладки, монтаж их намного сложнее, поэтому используют их в автоусилителях значительно редко, только в самых дорогих моделях.