Электронная нагрузка

Электронная нагрузка до 100В, до 10А, 50/75Вт

Время от времени у радиолюбителей возникает необходимость в электронной нагрузке. Что такое электронная нагрузка? Ну, если по простому, это такой прибор, который позволяет нагрузить блок питания (или другой источник) стабильным током, который естественно регулируется.

О подобном самодельном девайсе уже писал уважаемый Kirich, я же решил попробовать в деле устройство «фирменное», запихнув его в какой-нибудь корпус и прицепив к нему такой приборчик для индикации. Как видим, они отлично сочетаются по заявленным параметрам.
Итак, нагрузка.платка размером 59х55мм, в комплекте пара клемм 6.

5мм (весьма тугие, да еще и с защелкой — просто так не снять, нужно нажимать специальный язычок. отличные клеммы), 3-проводной шлейф с разъемом для подключения потенциометра, двухпроводной кабелёк с разъемом для подключения питания, винтик М3 для прикручивания транзистора к радиатору.Платка красивая, края фрезерованы, пайка ровная, флюс отмыт.

На плате есть два силовых разъема для подключения собственно нагрузки, разъемы для подключения потенциометра (3-контактный), питания (2-контактный), вентилятора (3-контактный) и три контакта для подключения прибора.

Тут я хочу обратить ваше внимание, что как правило черный тонкий провод от измерительного прибора использоваться не будет! В частности, в моём случае, с вышеописанным прибором (см. ссылку на обзор) — подключать тонкий черный провод НЕ НУЖНО, потому что питание и нагрузки и прибора идет от одного БП.

Силовой элемент — транзистор IRFP250N (200V, 30A)

Ну а из микросхем на плате присутствуют компаратор LM393, операционник LM258 и регулируемый стабилитрон TL431.

На просторах интернета была найдена схема:

Скажу честно — всю схему досконально не перепроверял, но беглое схемы с платой сравнение показало что вроде как всё сходится. Собственно, больше о самой нагрузке рассказывать-то и нечего. Схема довольно простая и не работать вообще говоря не может. Да и интерес в данном случае представляет скорее её работа под нагрузкой в составе готового устройства, в частности — температура радиатора. Долго думал из чего сделать корпус. была мысль согнуть из нержавейки, склеить из пластика… А потом подумал — так вот же оно, максимально доступное и повторяемое решение — «кнопочный пост» КП-102, на две кнопки. Радиатор нашел в ящике, вентилятор там же, клеммы и выключатель купил в оффлайне, а бананы и сетевой разъем выколупал из чего-то старого на чердаке 😉

Забегая вперед скажу, что я лоханулся, и тот трансформатор который я использовал (в комплекте с выпрямительным мостиком, конечно) — не потянул данный девайс по причине высокого потребляемого вентилятором тока. Увы.

Буду заказывать такой, должен как раз вписаться по габаритам. Как вариант — можно использовать и внешний 12В блок питания, коих тоже полно и на бэнге и в арсенале любого радиолюбителя.

Питать нагрузку от исследуемого блока питания крайне нежелательно, не говоря уже о диапазоне напряжений.

Кроме того нам понадобится потенциометр на 10кОм для регулировки тока. Я рекомендую ставить многооборотистые потенциометры, например такие или такие. И там и там есть нюансы. первый тип — на 10 оборотов, второй на 5. у второго типа вал очень тонкий, около 4мм, кажется, и стандартные ручки не подходят — я натягивал два слоя термоусадки.

у первого типа вал потолще, но ИМХО тоже не дотягивает до стандартных размеров, поэтому возможны проблемы — впрочем, их я в руках не держал, так что утверждать на 100% не могу. Ну и диаметр/длина как видим заметно отличаются, так что нужно прикидывать по месту.

У меня были в наличии потенцы второго типа, так что я не запаривался по этому поводу, хотя надо бы и первых прикупить для коллекции. Для потенциометра нужна ручка — для эстетики и удобства. Вроде как для потенциометров первого типа должны подойти такие вот ручки, во всяком случае они с фиксирующим винтом и будут нормально держаться на гладком валу.

Я же использовал то что было в наличии, натянув пару слоёв термоусадки и капнув суперклеем для фиксации термоусадки на валу. Метод проверенный — я его использовать еще для блока питания, пока всё работает, уж пару лет.

Далее были муки компоновки, которые показали что фактически единственно возможным решением является то, что я приведу ниже. К сожалению, данное решение требует подрезания корпуса, ибо из-за ребер жесткости не входит плата, а выключатель и регулятор не входят из-за того что я их старался разместить в центре выемок на корпусе, а они в итоге упёрлись в толстую стенку внутри.

знал бы — перевернул бы переднюю панель. Итак, размечаемся и делаем отверстия под сетевой разъем, транзистор и радиатор на задней стенке:Теперь передняя панель.

Отверстие под прибор это просто (правда, как я писал в предыдущем обзоре, защелки у него дурацкие, и я от греха подальше предпочел вначале защелкнуть в корпус устройства корпус прибора, а потом уже вщелкнуть в него внутренности прибора). Отверстия под выключатель и регулятор — тоже относительно просто, хотя и пришлось на фрезерном станке выбрать пазы на стенках.

А вот как расположить гнёзда, чтобы «обойти» отверстие на передней панель — задача. Но я приклеил кусочек черного пластика и просверлил отверстия прямо в нем. Получилось и красиво и аккуратно.Теперь нюансик. в приборе у нас есть термодатчик.

Но зачем измерять температуру в корпусе, если можно прислонить его к радиатору? Это гораздо более полезная информация! А раз уж прибор всё равно разобран — ничто не мешает выпаять термодатчик и удлинить провода.

для прижима датчика к радиатору я приклеил кусочек пластика к корпусу таким образом, чтобы отпустив винты крепления радиатора можно было подсунуть под пластик термодатчик, а затянув эти винты — надежно его там зафиксировать. Отверстие вокруг транзистора заблаговременно сделал на несколько мм больше.

Ну и упихиваем весь этот «взрыв на макаронной фабрике» в корпус:
Результат:
Проверка температуры радиатора:
Как видим на примерно 55Вт через 20 минут температура радиатора в непосредственной близости от силового транзистора стабилизировалась на 58 градусах.

Вот такая температура самого радиатора снаружи:
Тут, повторюсь, есть нюансики: на момент проверки устройство работало от хилого трансформатора и мало того что под нагрузкой напряжение просаживалось до 9 вольт (то есть при нормальном питании охлаждение будет ЗНАЧИТЕЛЬНО лучше), так еще и из-за некачественного питания ток стабилизировать толком не удавалось, поэтому на разных фото он немного разный. При питании от кроны и соответственно с выключенным вентилятором имеем вот что:Провода от БП у меня тонкие, поэтому падение напряжения тут довольно значительное получилось, ну и при желании можно еще уменьшить количество переходных сопротивлений, припаявшись везде где можно и убрав клеммы. меня же такая точность вполне устраивает — впрочем, о точности говорили в прошлом обзоре. 😉 Выводы: вполне рабочая штука, позволяющая сэкономить время на разработку собственного решения. В качестве «серьёзной» и «профессиональной» нагрузки воспринимать её, пожалуй, не стоит, но ИМХО отличная штука для начинающих, ну или когда нужно редко. Из плюсов могу отметить хорошее качество изготовления, а минус, пожалуй, один — отсутствие потенциометра и радиатора в комплекте, и это нужно обязательно иметь в виду — устройство придется доукомплектовывать, чтобы оно начало работать. Второй минус — отсутствие термоконтроля вентилятора. При том что «ненужная» половинка компаратора как раз есть. Но это нужно было вносить на этапе разработки и изготовления платы, потому как если навешивать терморегулятор «сверху» — то его разумнее на отдельной плате собрать 😉 По моей готовой конструйне — тоже есть нюансы, в частности, нужно будет поменять блок питания, ну и вообще говоря было бы неплохо и предохранитель какой-то поставить. Но предохранитель это лишние контакты и лишние сопротивления в цепи, так что тут я пока не уверен совершенно. Можно также переставить на плату шунт из прибора и задействовать его и для прибора и для электроники нагрузки, убрав «лишний» шунт из цепи.

Несомненно, существуют и «более другие» электронные нагрузки, которые стоят сопоставимо. Например такая. Отличие обозреваемой — в заявленном входном напряжении, до 100В, тогда как в основном нагрузки рассчитаны на работу до 30В. Ну и в данном случае у нас модульная конструкция, что лично меня весьма устраивает. Надоел прибор? Поставили поточнее или покрупнее, или еще чего. Не устраивает мощность? Поменяли транзистор или радиатор и т.д.

Одним словом — я вполне доволен результатом (ну только вот блок питания другой прикрутить — но это я сам дурак, а вы предупреждены), и вполне рекомендую к приобретению.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Источник: https://mysku.ru/blog/china-stores/54812.html

Электронная нагрузка с регулировкой тока

Источник: http://radioskot.ru/publ/ehlektronnaja_nagruzka_s_regulirovkoj_toka/1-1-0-1205

Red-Resistor.ru/library/power/load

Электронная нагрузка с плавной регулировкой тока от 0 до 8 А – 200 ватт

Электронная нагрузка вещь в обиходе не очень нужная, но вот когда надо проверить блок питания или разрядить аккумулятор, сразу же возникает вопрос. Где взять нагрузку? В качестве мощных нагрузок чаще всего используют автомобильные лампы, так как при напряжении в 12V они имеют приличную мощность (50…100W), а значит, способны забрать уйму энергии от источника. Но такая нагрузка не универсальна. Поэтому и приходится делать устройство, которое сможет заменить ослепительную гирлянду. 🙂

Для чего нужно такое устройство, как электронная нагрузка, наверное все в курсе – она позволяет создать имитацию очень мощного резистора на выходе блоков питания, зарядок, усилителей, ИБП и других схем при их настройке. Данная электронная нагрузка может выдержать более 100 Ампер тока, рассеивая более 500 Вт непрерывно и выдерживая 1 кВт мощности в импульсном режиме.

Схема самодельной электронной нагрузки на 500 Вт

Схема в принципе несложная и тут используются два полевых транзистора с регулирующими ОУ. Каждый из двух каналов одинаков и включены они параллельно. Управляющие напряжения связаны между собой и нагрузка делится поровну между двумя мощными полевыми транзисторами.

Здесь использованы для шунта 2 резистора на 50 А, формируя напряжение обратной связи 75 мВ. Очевидным преимуществом в выборе такого малого значения сопротивления (каждый шунт сопротивлением всего 1,5 миллиом) в том, что падение напряжения практически ничтожно.

Даже при работе с нагрузкой 100 А, падение напряжения на каждом шунтирующем резисторе будет менее 0,1 В.

Недостатком использования такой схемы в том, что требуется ставить ОУ с очень низким входным смещением, так как даже небольшое изменение смещения может привести к большой погрешности в контролируемом токе. Например, при лабораторных испытаниях, всего 100 мкВ напряжения смещения приведет к изменению тока нагрузки на 0,1 А.

Кроме того, трудно создать такие стабильные управляющие напряжения без использования ЦАП и прецизионных ОУ.

Если вы планируете использовать микроконтроллер для управления нагрузкой, нужно будет либо использовать прецизионные ОУ для усиления напряжения с шунта, совместимые с ЦАП на выходе (например, 0-5 В) или использовать прецизионный делитель напряжения для создания управляющего сигнала.

Вся схема была собрана на куске текстолита методом упрощённого монтажа и размещена на верхней части большого алюминиевого блока.

Поверхность металла отполирована для того, чтобы обеспечить хорошую теплопроводность между транзисторами и радиатором.

Все соединения с большим током – не менее 5 проводов толстого многожильного провода, тогда они смогут выдерживать не менее 100 А без существенного нагрева или падения напряжения.

Выше приведено фото макетки, на которой впаяны два операционных усилителя повышенной точности LT1636. А модуль DC-DC преобразователя используется для преобразования входного напряжения на стабильных 12 В для контроллера вентилятора системы охлаждения. Вот они – 3 вентилятора на боковой стороне радиатора.

   Форум по схеме

Для начала давайте разберем схему. Я не претендую на оригинальность, так как подсмотрел составные элементы здесь и адаптировал под то, что имелось у меня из деталей.

Цепь защиты составлена из плавкого предохранителя FU1 и диода VD1 (возможно она лишняя). Нагрузка выполнена на четырех 818 транзисторах VT1…VT4. У них приемлемые характеристики по току и рассеиваемой мощности, а также они не дороги и не являются дефицитом. Управление VT5 на 815 транзисторе, а стабилизация на операционном усилителе LM358.

Амперметр, показывающих ток, проходящий через нагрузку, я установил отдельно. Т.к. если амперметром заменить резисторы R3 R4 (как в схеме по ссылке выше), то, на мой взгляд, будет теряться часть тока, который потечет через VT5 и показания будут занижены. А судя по тому, как нагревается 815, ток через него протекает приличный.

Я даже подумываю, что между эмиттером VT5 и землей надобно поставить еще одно сопротивление Ом так в 50…200.

Отдельно надо рассказать о цепи R10…R13. Так как регулировка происходит не линейно, необходимо брать одно переменное сопротивление в 200…220 кОм с логарифмической шкалой, либо ставить два переменных резистора, которые обеспечивают плавное регулирование во всем диапазоне. При чем R10 (200кОм) регулирует ток от 0 до 2.

5А, а R11 (10 кОм) при выкрученном в ноль R10 регулирует ток от 2.5 до 8 А. Верхний предел тока устанавливается резистором R13.

При настройке будьте осторожны, если напряжение питания случайно попадет на третью ногу операционного усилителя, 815 открывается полностью, что с большой вероятностью приведет к выходу из строя всех 818 транзисторов.

Теперь немного о блоки питания для нагрузки.

Нет, это не извращение. Просто у меня под рукой не нашлось малогабаритного трансформатора на 12 вольт. Пришлось делать умножитель и повышать напряжение с 6-ти вольт до 12-ти для вентилятора и ставить стабилизатор для питания самой нагрузки и сигнализации.

Да, в это устройство я вставил простенькую сигнализацию по температуре. Схему я подсмотрел здесь. Когда радиатор нагревается выше 90 градусов, включается красный светодиод и пищалка с интегрированным генератором, которая издает очень неприятный звук. Это указывает на то, что пора снижать ток в нагрузке, а то можно лишиться устройства из-за его перегрева.

Казалось бы, при таких мощных транзисторах, которые выдерживают до 80 вольт и 10 А суммарная мощность должна быть не менее 3 кВт. Но, так как мы делаем «кипятильник» и вся мощность источника уходит в тепло, то ограничение накладывается показателем рассеиваемой мощности транзисторов.

По даташиту она всего лишь 60 Вт на один транзистор, а с учетом того, что теплопроводность между транзистором и радиатором не идеальна, то фактическая рассеиваемая мощность и того меньше. И поэтому чтобы хоть как-то улучшить теплоотвод я прикрутил транзисторы VT1…VT4 непосредственно к радиатору без прокладок на теплопроводную пасту.

При этом мне пришлось организовать специальные накладки на радиатор, чтобы он не замыкал на корпус.

К сожалению, у меня не было возможности протестировать работу устройства во всем диапазоне напряжений, но при 22V 5A нагрузка работает, стабильно не перегреваясь. Но как всегда в бочке меда есть и ложка дегтя.

Из-за недостаточной площади радиатора взятого мной, при нагрузке более 130 ватт, через какое-то время (3…5 минут) транзисторы начинают перегреваться. На что указывает сигнализация. Отсюда вывод.

Если будете делать нагрузку, берите радиатор как можно большей площади и обеспечите ему надежное принудительное охлаждение.

Также ложкой дегтя можно считать небольшой дрейф в сторону уменьшения тока нагрузки на 100…200 мА. Думаю этот дрейф происходит из-за нагрева резисторов R3, R4. Так, что если есть возможность найти резисторы на 0,15 Ом на 20 Вт или больше, то лучше использовать их.

В целом схема, насколько я понял, не критична к замене деталей. Четыре 818транзистора можно заменить двумя кт896а, кт815г можно, а возможно и нужно, заменить на кт817г. Операционный усилитель думаю тоже можно взять другой.

Хочу особо подчеркнуть, что обязательно при наладке ставьте резистор R13 не менее 10 кОм, потом по мере понимания какой ток вам нужен, уменьшайте это сопротивление. Печатную плату не выкладываю, потому, что монтаж основной части нагрузки сделан навесным.

20.11.15

Дополнение.

Как оказалось, нагрузкой мне приходится пользоваться регулярно и в процессе ее использования пришло понимание того, что по мимо амперметра также нужен вольтметр чтобы контролировать напряжения источника.

На Али мне попался небольшой приборчик, который совмещает в себе вольтметр и амперметр. Приборчик 100 V / 10 А мне обошёлся в 150 рублей с пересылкой. Как по мне это копейки т.к. полтарашка пива стоит примерно столько же.

Недолго думая я заказал два.

Прикрутил его вместо амперметра и протестировал. Заработал сразу, но показывал черт знает что. Оказалось, его, в данной схеме, надо подключать так, чтобы земля прибора оказалась со стороны источника, а не со стороны нагрузки.

Вообще приборчик не прихотлив в отношении питания, собран качественно и имеет регулировку как по напряжению, так и по току в виде двух переменных резисторов. Так, что, если потребуется корректировка — это легко осуществить.

На всем диапазоне от 0 до 8 А разница в показаниях между прибором и мультиметром составляет чуть больше одной десятки, что меня устраивает в полной мере.

27.07.17

Вот как-то так. Если вдруг найдете в статье неточности или заблуждения. Напишите мне об этом. Я подправлю.

Приложение:
Скачать схемы в формате .spl7

Источник: http://red-resistor.ru/library/power/load.html

Регулируемая электронная нагрузка для проверки блока питания. Схема

Эта простая схема электронной нагрузки может быть использована для тестирования различных видов блоков питания. Система ведет себя как резистивная нагрузка с возможностью регулирования.

С помощью потенциометра мы можем зафиксировать любую нагрузку от 10мА до 20А, и такое значение будет поддерживаться независимо от падения напряжения. Величина тока непрерывно отображается на встроенном амперметре – поэтому нет необходимости для этой цели использовать сторонний мультиметр.

Схема регулируемой электронной нагрузки

Схема настолько проста, что практически любой желающий может собрать ее, и думаю, она будет незаменима в мастерской каждого радиолюбителя.

Операционный усилитель LM358 делает так, чтобы падение напряжения на R5 было равно значению напряжения заданного с помощью потенциометров R1 и R2. Потенциометр R2 предназначен для грубой подстройки, а R1 для точной.

Резистор R5 и транзистор VT3 (при необходимости и VT4) необходимо подобрать соответствующими максимальной мощности, которой мы хотим нагрузить наш блок питания.

В принципе подойдет любой N-канальный MOSFET транзистор. От его характеристики будет зависеть рабочее напряжение нашей электронной нагрузки.

Параметры, которые должны заинтересовать нас – большой Ik (ток коллектора) и Ptot (рассеиваемая мощность).

Ток коллектора – это максимальный ток, который может пустить через себя транзистор, а рассеиваемая мощность – это мощность, которую транзистор может отвести в виде тепла.

В нашем случае транзистор IRF3205 теоретически выдерживает ток до 110А, однако его максимальная мощность рассеивания около 200 Вт. Как нетрудно подсчитать, максимальный ток 20А мы можем задать при напряжении до 10В.

Для того чтобы улучшить эти параметры, в данном случае используем два транзистора, что позволит рассеивать 400 Вт. Плюс ко всему нам будет нужен мощный радиатор с принудительным охлаждением, если мы действительно собираемся выжать максимум.

Транзисторы BC327 и BC337 – повторители для MOSFET транзисторов, предназначены для обеспечения быстрой перезарядки затвора. Конденсатор С1 предназначен для подавления возбуждений (при тестировании импульсных БП).

Подбор резистора

При нагрузке 20А, резистор R5 должен иметь мощность 40 Вт и хорошо охлажден (20 A * 0,1 Ом = 2 В; 2 В * 20 A = 40 Вт). Лучше использовать резистор в металлическом корпусе с возможностью установки на радиатор. Можно также соединить параллельно несколько резисторов так, чтобы получить соответствующую мощность и сопротивление.

Напряжение питания схемы – нестабилизированное 15В, хотя оно зависит от параметра Vgs (напряжение затвора) нашего транзистора, при котором он полностью откроется. Как правило, не нужно больше 10В. Поскольку при более высоком напряжении стабилизатора IC2 должен быть оснащен радиатором.

Можно использовать транзисторы (VT3 и VT4)  с логическим уровнем управления, то есть такой, который управляется напряжением TTL. Тогда напряжение питания в 7В будет достаточно. На этом заканчивается описание основной части электронной нагрузки.

При желании в схему можно добавить амперметр, но это не обязательно. Тем не менее, дополнив схему амперметром мы освободим свой мультиметр, который будет необходим для настройки. Измерительный блок выполнен на популярной микросхеме ICL7107 и четырех 7-сегментных светодиодных индикаторов по классической схеме.

Настройка

Перед использованием нужно откалибровать показания нашего амперметра. Для этого подключаем электронную нагрузку к блоку питания и в разрыв цепи включаем мультиметр (диапазон 10А). После прогрева схемы, потенциометром R9 устанавливаем такое же показание, как на мультиметре.

Другие области применения устройства

Регулируемая электронная нагрузка подойдет не только для тестирования блоков питания. Устройство также может быть использован для тестирования батарей, аккумуляторов. С помощью его удобно измерять и рассчитывать емкость за счет стабилизации тока, который всегда будет поддерживаться на заданном уровне.

Источник

Источник: http://www.joyta.ru/10100-reguliruemaya-elektronnaya-nagruzka-dlya-proverki-bloka-pitaniya-sxema/

Токовая электронная нагрузка

Электронная нагрузка вещь очень полезная, предназначена для теста источников питания, в том числе и аккумуляторов.

Например если имеется сомнительный блок питания и нужно выяснить его выходные параметры первым делом нужно его нагрузить, при этом каждый блок питания требует индивидуального расчета нагрузочного резистора и чем мощнее блок, тем мощнее должен быть нагрузочный резистор.

Электронная нагрузка выполняет ту же функцию, только является универсальным вариантом для любых источников питания.

Наш вариант очень простой и построен всего на одном операционном усилителе LM358, но задействован всего один элемент ОУ.

Мощность рассеивается на транзисторах, поэтому чем больше их количество и ток коллектора каждого транзистора, тем больше может быть общая мощность рассеиваемая электронной нагрузкой.

В теории общий ток может доходить до 40 Ампер с учетом тока коллектора кт827, но в деле естественно все будет зависеть от напряжения тестируемого источника питания, если мощность превышает 250 ватт, транзисторам придет кирдык, уделите этому моменту должное внимание.

Мощные резисторы в этой схеме тоже рассеивают некоторую мощность (и не малую). Эмиттерные резисторы предназначены для выравнивания тока через транзисторы, мощный низкоомный шунт R12 служит датчиком тока, на нем будет рассеиваться колоссальная мощность, поэтому этот резистор подбираем с мощностью около 40 ватт.

Переменными резисторами мы можем искусственным образом изменить напряжение на неинвертирующем входе ОУ, этим управляем током протекающий по транзисторам.

Трансформатор в схеме нужен только для питания операционного усилителя и блока индикаторов, поэтому он нужен маломощный. Вторичное напряжение трансформатора от 9 до 15 Вольт, все ровно потом это напряжение будет стабилизировано до уровня 12 Вольт.

Нынче КТ827 очень дороги, но уверяю, они являются наилучшим решением в этой схеме, знаю что появятся вопросы на счет внедрения полевых транзисторов и должен сказать, что пробовал и с ними. Проблема в том, что при больших токах полевики тупо коротят, я думаю в случае их использования не помешает отдельное управление.

А так можно использовать любые составные ключи, в том числе и кт829, естественно нужно учитывать, что ток этих транзисторов в несколько раз ниже, чем ток коллектора КТ827.

Кнопкой S1 меняем чувствительность ОУ, этим можем переключить нагрузку на более точных измерений малых токов.

Свою конструкцию я дополнил ваттметром, который имеет функцию измерения емкости и в итоге получил электронную нагрузку с функцией разряда аккумуляторов с целью выявления их емкости, притом система может разряжать аккумуляторы большим током (лично тестировал на токах до 20 Ампер, никаких нареканий).
Монтаж простенький, корпус позаимствован у лабораторного источника питания PS-1502.

Каждый транзистор установлен на свой радиатор, вся система дополнена активным охлаждение, притом имеется простенькая схема регулировки оборотов кулера.

В архиве находится печатная плата. А с вами был Ака Касьян, удачи в творчестве, до новых встреч!

Архив

Источник: https://xn--100–j4dau4ec0ao.xn--p1ai/tokovaya-elektronnaya-nagruzka/

Электронная нагрузка

Источник: http://vprl.ru/publ/istochniki_pitanija/bloki_pitanija/ehlektronnaja_nagruzka/11-1-0-74

Токовая электронная нагрузка

Расскажу о полезном для радиолюбителей устройстве – о токовой электронной нагрузке с возможностью измерения емкости аккумуляторов. Зачем нужен этот прибор?

Все сталкивались с ситуацией, когда надо выяснить параметры какого-нибудь источника питания, например, лабораторного БП, драйвера светодиодов или зарядноо устройства. Ведь практика показывает, что производители не всегда указывают верные параметры.

Конечно, есть самый простой вариант – нагрузить резистором, рассчитанным по закону Ома, и измерить ток с помощью мультиметра. Но для каждого случая надо делать свои расчеты и не всегда можно найти мощный резистор нужного номинала, они довольно дороги.

Целесообразнее использовать электронную или активную нагрузку, позволяющую нагрузить любой БП или аккумулятор, и регулировать ток нагрузки обычным потенциометром.

А за счет включения в схему многофункционального цифрового ваттметра, показывающего емкость, этот нагрузочный стенд может разрядить аккумулятор и показать его реальную мощность. Кстати, в отличие от IMAX 6 наша система может разряжать аккумуляторы с током до 40А. Это удобно для автомобильных аккумуляторов.

        Схема построена на сдвоенном операционном усилителе (ОУ) LM358, хотя задействован только 1 элемент.

Датчиком тока является мощный резистор R12, желательно на 40Вт, хотя я поставил на 20Вт. Можно соединить параллельно несколько резисторов для получения нужной мощности так, чтобы итоговое сопротивление было равно 0.1 Ом. R10 и R11 (0.22 Ом/ 10Вт) – токовыравнивающие элементы для силовых ключей.У меня реально стоят параллельно 2 х 0.47 Ом / 5Вт для каждого транзистора.

ОУ управляет двумя составными транзисторами КТ827, установленными на отдельные радиаторы. Транзисторы оптимальны для этой схемы, хотя и довольно дорогие.

Принцип работы.

        При подключении тестируемого устройства образуется падение напряжения на мощном токовом резисторе R12, соответственно меняется напряжение на входах ОУ, следовательно, и на его выходе. В итоге, сигнал поступающий на транзисторы зависит от падения напряжения на шунте. Изменится ток протекающий по транзисторам.

Потенциометром изменяем напряжение на неинвертирующем входе ОУ и также как описано выше изменяется ток через по транзисторы. Данные транзисторы позволяют работать с токами до 40А, но требуют хорошего охлаждения, т.

к. они работают в линейном режиме. Поэтому, кроме массивных радиаторов я поставил вентилятор, с регулировкой оборотов, который можно включить отдельной кнопкой. Схема регулятора оборотов собрана на небольшой плате.

        Теоретически максимальное входное напряжение может быть до 100В – транзисторы выдержат, но китайский ваттметр рассчитан только до 60В.

        Кнопка S1 изменяет чувствительность ОУ, т.е. переключает на малые токи для точного измерения тестируемых маломощных источников.

        Важные особенности данной схемы:

  1. наличие обратной связи для обоих транзисторов,
  2. возможность изменения чувствительности ОУ.
  3. грубая и тонкая регулировка тока (R5 и R6).

       Трансформатор в схеме питает только ОУ и блок индикаторов, подойдет любой с током от 400мА и напряжением 15-20В, все равно напряжение потом стабилизируется до 12В линейным стабилизатором 7812. Его нет необходимости ставить на радиатор.

       Собрал все в корпус от лабораторного БП  PS 1502  за пару дней, с учетом разработки и травления платы.

         Минусом этой схемы является отсутствие защиты от переполюсовки питания, но ее можно доработать. Также в дальнейшем добавлю токовую защиту, а пока стоит только предохранитель. При желании увеличить общий ток можно добавить еще пару транзисторов КТ827.

Купить электронную нагрузку  

Купить ваттметр  

Купить LM358  

Купить резисторы 0,22R 

Купить составные транзисторы 

{youtube}wZtwQ7OTM8A{/youtube}

Источник: http://vip-cxema.org/index.php/home/raznoe/348-tokovaya-elektronnaya-nagr

Электронная нагрузка

Источник: http://el-shema.ru/publ/pitanie/ehlektronnaja_nagruzka/5-1-0-275

Электронная нагрузка с наворотами

Понадобилось мне нагрузить  импульсный источник питания, а нечем,полазил по своим закромам, нашел нихром ну и всякую ерунду в виде древних сапротов….Попробовал нагрузить источник как то не гибко получается  и решился спаять электронную нагрузку как говорится на века… Схем в интернете оказалось много от простых ну и по сложнее ..

В итоге небольших мучений родилось сие чудо …В ходе первых испытаний оказалось что греется радиатор  и весьма существенно.. И тут пришла идея применить ранее мною изготовленное  Устройство контроля температурного режима, управления охлаждением и термо защиты на PIC12F629 …когда то делал для лабораторника  … Схема есть на нашем сайте…

И все заработало завертелось…

Схема нагрузки.

Для повышения стабильности работы регулирующей микросхемы LM358 ,необходимо соеденитьмежду собой выводы микросхемы 6 и 7 ,а вывод 5 соединить с землей…

Схема контроля температуры.

При включении питания – кратковременно включается вентилятор и проверяется его исправность (по сигналу датчика тахогенератора), если вентилятор исправен и температура в норме – включается реле, подавая питание на контролируемое устройство.

По мере прогрева нагрузки (около 50 градусов) – включается вентилятор, а если температура упала ниже 45 градусов – кулер выключается. Т.е. имеется гистерезис в 5 градусов.

Когда температура достигнет 75 градусов – срабатывает термозащита, нагрузка отключается, а если зафиксирована неисправность вентилятора – то термозащита срабатывает уже при 60 градусах. Если сработала термозащита – то обратного включения нагрузки не происходит, как бы оно не остыло.

Кулер же будет продолжать работать в штатном режиме, т.е. будет охлаждать радиаторы и выключится, когда температура упадет ниже +45 градусов. Для сброса термозащиты требуется отключить и снова включить питание контроллера.

Ну фотки …

Индикатор использовал покупной  до 10 ампер …События показали что индикатор нужен до 20 ампер…

Корпус взят от старого компового блока питания ..

Транс питания схемы от китайского древнего мафона  ,радиатор с кулером от пенька четвертого если не ошибаюсь…

Ну и куча кирпичей в виде сапротов нагрузки…

При работе нагрузки в 18 ампер нагрев деталей был в  рабочих температурах…Замерял  мультиметром и электроным термометром…

Показания приборов у всех разное одним словом китай…На нагрузке показания амперметра более точные по сравнении с блоком питания проверял мультиметром…

 Возникнут вопросы отвечу …Остальное все в архиве… Все схемы взяты из интернета на авторство не претендую,схемы перерабатывал под свои нужды….

АРХИВ:

Источник: http://cxema.my1.ru/publ/istochniki_pitanija/reguljatory_moshhnosti/ehlektronnaja_nagruzka_s_navorotami/105-1-0-6147

Электронные нагрузки. Возможные проблемы

Как быть, если максимальное выходное напряжение тестируемого устройства превышает максимально допустимое напряжение нагрузки? В статье рассмотрены возможные решения.

При тестировании источников питания используется электронная нагрузка. Как быть, если максимальное выходное напряжение тестируемого устройства превышает максимально допустимое напряжение нагрузки? Рассмотрим несколько вариантов.

Принцип работы 

Основными режимами стабилизации электронной нагрузки являются режим постоянного тока (СС) или постоянного напряжения (CV).

Некоторые нагрузки имеют дополнительные режимы: постоянного сопротивления (CR), постоянной мощности (CP) и постоянного импеданса (CZ).

Нагрузка СС предназначена для источников постоянного напряжения, например, DC/DC-преобразователей. Нагрузки CV используются для источников тока СС.

Рассмотрим подробнее программируемую нагрузку СС. Ток через нагрузку регулируется посредством изменения сопротивления канала RDS силового MOSFET  (см. рис. 1).

Рис. 1. Подключение нагрузки СС

 Максимальный ток найдем из соотношения I = V/R, где V – выходное напряжение DC/DC преобразователя VOut; R = (RDS(on) + Rshunt).

Когда этот предел достигнут, электронная нагрузка перестает работать в режиме СС. Она становится неуправляема и работает практически в режиме короткого замыкания (КЗ). Соответственно, ее сопротивление минимально.

Как правило, это значение называют минимальным сопротивлением включения или сопротивлением КЗ.

Последовательно включенная нагрузка

У каждой электронной нагрузки есть максимально допустимое напряжение. Для определенности пусть это 60 В. Если DC/DC-преобразователь имеет максимальное напряжение 100 В и выходной ток 10 А, то очевидное решение – поставить две нагрузки последовательно (см. рис. 2). Каждая будет обеспечивать 10 А, а раз они соединены последовательно, то через них будет течь один и тот же ток.

Однако невозможно установить программно точный ток из-за погрешностей шунтов и схем, задающих величину тока.

Рис. 2. Последовательное соединение двух электронных нагрузок

Пусть первая нагрузка обеспечивает 9,99 А, вторая 10,01 А. Первая нагрузка будет работать в режиме СС.

 Вторая нагрузка будет пытаться увеличить ток, уменьшая RDS, однако никогда значение 10,01 А не будет достигнуто из-за того, что первая нагрузка ограничивает ток на уровне 9,99 А.

Таким образом, вторая нагрузка будет работать в режиме, близком к КЗ.

Поскольку она закорочена, падение напряжения на ней составляет 0 В. То есть все 100 В приходятся только на одну нагрузку. Она автоматически отключится, и входная схема, вероятно, будет повреждена. При использовании большего количества нагрузок происходит то же самое.

Подключение двух нагрузок в разных режимах стабилизации

Можно попробовать одну нагрузку оставить в режиме СС, остальные – в CV. Тогда только одна нагрузка будет управлять током. В данной конфигурации проблемным является момент отключения или перехода одной из нагрузок в режим защиты, когда она отключается неожиданно.

Как только ток прерывается, нагрузка из режима СС перейдет в режим КЗ с наименьшим сопротивлением, чтобы увеличить ток. Остальные нагрузки, работающие в режиме CV, установят наибольшее сопротивление, чтобы достичь запрограммированное значение напряжения. Высокое напряжение преобразователя появится на нагрузке с наибольшим сопротивлением (см. рис. 3).

Рис. 3. Подключение двух нагрузок в разных режимах стабилизации

Заключение

Электронные нагрузки включать последовательно нельзя, если тестируемое устройство может вырабатывать большее напряжение, чем то, на которое рассчитаны нагрузки.

В противном случае все напряжение будет сконцентрировано на одной нагрузке. Единственным безопасным с этой точки зрения решением является правильный выбор нагрузки.

Ее максимально допустимое напряжение должно быть не меньше, чем выходное напряжение тестируемого устройства.

Источник: http://meandr.org/archives/22578

Ссылка на основную публикацию
Adblock
detector
",css:{backgroundColor:"#000",opacity:.6}},container:{block:void 0,tpl:"
"},wrap:void 0,body:void 0,errors:{tpl:"
",autoclose_delay:2e3,ajax_unsuccessful_load:"Error"},openEffect:{type:"fade",speed:400},closeEffect:{type:"fade",speed:400},beforeOpen:n.noop,afterOpen:n.noop,beforeClose:n.noop,afterClose:n.noop,afterLoading:n.noop,afterLoadingOnShow:n.noop,errorLoading:n.noop},o=0,p=n([]),h={isEventOut:function(a,b){var c=!0;return n(a).each(function(){n(b.target).get(0)==n(this).get(0)&&(c=!1),0==n(b.target).closest("HTML",n(this).get(0)).length&&(c=!1)}),c}},q={getParentEl:function(a){var b=n(a);return b.data("arcticmodal")?b:(b=n(a).closest(".arcticmodal-container").data("arcticmodalParentEl"),!!b&&b)},transition:function(a,b,c,d){switch(d=null==d?n.noop:d,c.type){case"fade":"show"==b?a.fadeIn(c.speed,d):a.fadeOut(c.speed,d);break;case"none":"show"==b?a.show():a.hide(),d();}},prepare_body:function(a,b){n(".arcticmodal-close",a.body).unbind("click.arcticmodal").bind("click.arcticmodal",function(){return b.arcticmodal("close"),!1})},init_el:function(d,a){var b=d.data("arcticmodal");if(!b){if(b=a,o++,b.modalID=o,b.overlay.block=n(b.overlay.tpl),b.overlay.block.css(b.overlay.css),b.container.block=n(b.container.tpl),b.body=n(".arcticmodal-container_i2",b.container.block),a.clone?b.body.html(d.clone(!0)):(d.before("
"),b.body.html(d)),q.prepare_body(b,d),b.closeOnOverlayClick&&b.overlay.block.add(b.container.block).click(function(a){h.isEventOut(n(">*",b.body),a)&&d.arcticmodal("close")}),b.container.block.data("arcticmodalParentEl",d),d.data("arcticmodal",b),p=n.merge(p,d),n.proxy(e.show,d)(),"html"==b.type)return d;if(null!=b.ajax.beforeSend){var c=b.ajax.beforeSend;delete b.ajax.beforeSend}if(null!=b.ajax.success){var f=b.ajax.success;delete b.ajax.success}if(null!=b.ajax.error){var g=b.ajax.error;delete b.ajax.error}var j=n.extend(!0,{url:b.url,beforeSend:function(){null==c?b.body.html("
"):c(b,d)},success:function(c){d.trigger("afterLoading"),b.afterLoading(b,d,c),null==f?b.body.html(c):f(b,d,c),q.prepare_body(b,d),d.trigger("afterLoadingOnShow"),b.afterLoadingOnShow(b,d,c)},error:function(){d.trigger("errorLoading"),b.errorLoading(b,d),null==g?(b.body.html(b.errors.tpl),n(".arcticmodal-error",b.body).html(b.errors.ajax_unsuccessful_load),n(".arcticmodal-close",b.body).click(function(){return d.arcticmodal("close"),!1}),b.errors.autoclose_delay&&setTimeout(function(){d.arcticmodal("close")},b.errors.autoclose_delay)):g(b,d)}},b.ajax);b.ajax_request=n.ajax(j),d.data("arcticmodal",b)}},init:function(b){if(b=n.extend(!0,{},a,b),!n.isFunction(this))return this.each(function(){q.init_el(n(this),n.extend(!0,{},b))});if(null==b)return void n.error("jquery.arcticmodal: Uncorrect parameters");if(""==b.type)return void n.error("jquery.arcticmodal: Don't set parameter \"type\"");switch(b.type){case"html":if(""==b.content)return void n.error("jquery.arcticmodal: Don't set parameter \"content\"");var e=b.content;return b.content="",q.init_el(n(e),b);case"ajax":return""==b.url?void n.error("jquery.arcticmodal: Don't set parameter \"url\""):q.init_el(n("
"),b);}}},e={show:function(){var a=q.getParentEl(this);if(!1===a)return void n.error("jquery.arcticmodal: Uncorrect call");var b=a.data("arcticmodal");if(b.overlay.block.hide(),b.container.block.hide(),n("BODY").append(b.overlay.block),n("BODY").append(b.container.block),b.beforeOpen(b,a),a.trigger("beforeOpen"),"hidden"!=b.wrap.css("overflow")){b.wrap.data("arcticmodalOverflow",b.wrap.css("overflow"));var c=b.wrap.outerWidth(!0);b.wrap.css("overflow","hidden");var d=b.wrap.outerWidth(!0);d!=c&&b.wrap.css("marginRight",d-c+"px")}return p.not(a).each(function(){var a=n(this).data("arcticmodal");a.overlay.block.hide()}),q.transition(b.overlay.block,"show",1*")),b.overlay.block.remove(),b.container.block.remove(),a.data("arcticmodal",null),n(".arcticmodal-container").length||(b.wrap.data("arcticmodalOverflow")&&b.wrap.css("overflow",b.wrap.data("arcticmodalOverflow")),b.wrap.css("marginRight",0))}),"ajax"==b.type&&b.ajax_request.abort(),p=p.not(a))})},setDefault:function(b){n.extend(!0,a,b)}};n(function(){a.wrap=n(document.all&&!document.querySelector?"html":"body")}),n(document).bind("keyup.arcticmodal",function(d){var a=p.last();if(a.length){var b=a.data("arcticmodal");b.closeOnEsc&&27===d.keyCode&&a.arcticmodal("close")}}),n.arcticmodal=n.fn.arcticmodal=function(a){return e[a]?e[a].apply(this,Array.prototype.slice.call(arguments,1)):"object"!=typeof a&&a?void n.error("jquery.arcticmodal: Method "+a+" does not exist"):q.init.apply(this,arguments)}}(jQuery)}var debugMode="undefined"!=typeof debugFlatPM&&debugFlatPM,duplicateMode="undefined"!=typeof duplicateFlatPM&&duplicateFlatPM,countMode="undefined"!=typeof countFlatPM&&countFlatPM;document["wri"+"te"]=function(a){let b=document.createElement("div");jQuery(document.currentScript).after(b),flatPM_setHTML(b,a),jQuery(b).contents().unwrap()};function flatPM_sticky(c,d,e=0){function f(){if(null==a){let b=getComputedStyle(g,""),c="";for(let a=0;a=b.top-h?b.top-h{const d=c.split("=");return d[0]===a?decodeURIComponent(d[1]):b},""),c=""==b?void 0:b;return c}function flatPM_testCookie(){let a="test_56445";try{return localStorage.setItem(a,a),localStorage.removeItem(a),!0}catch(a){return!1}}function flatPM_grep(a,b,c){return jQuery.grep(a,(a,d)=>c?d==b:0==(d+1)%b)}function flatPM_random(a,b){return Math.floor(Math.random()*(b-a+1))+a}
");let k=document.querySelector(".flat_pm_modal[data-id-modal=\""+a.ID+"\"]");if(-1===d.indexOf("go"+"oglesyndication")?flatPM_setHTML(k,d):jQuery(k).html(b+d),"px"==a.how.popup.px_s)e.bind(h,()=>{e.scrollTop()>a.how.popup.after&&(e.unbind(h),f.unbind(i),j())}),void 0!==a.how.popup.close_window&&"true"==a.how.popup.close_window&&f.bind(i,()=>{e.unbind(h),f.unbind(i),j()});else{let b=setTimeout(()=>{f.unbind(i),j()},1e3*a.how.popup.after);void 0!==a.how.popup.close_window&&"true"==a.how.popup.close_window&&f.bind(i,()=>{clearTimeout(b),f.unbind(i),j()})}f.on("click",".flat_pm_modal .flat_pm_crs",()=>{jQuery.arcticmodal("close")})}if(void 0!==a.how.outgoing){let b,c="0"==a.how.outgoing.indent?"":" style=\"bottom:"+a.how.outgoing.indent+"px\"",e="true"==a.how.outgoing.cross?"":"",f=jQuery(window),g="scroll.out"+a.ID,h=void 0===flatPM_getCookie("flat_out_"+a.ID+"_mb")||"false"!=flatPM_getCookie("flat_out_"+a.ID+"_mb"),i=document.createElement("div"),j=jQuery("body"),k=()=>{void 0!==a.how.outgoing.cookie&&"false"==a.how.outgoing.cookie&&h&&(jQuery(".flat_pm_out[data-id-out=\""+a.ID+"\"]").addClass("show"),j.on("click",".flat_pm_out[data-id-out=\""+a.ID+"\"] .flat_pm_crs",function(){flatPM_setCookie("flat_out_"+a.ID+"_mb",!1)})),(void 0===a.how.outgoing.cookie||"false"!=a.how.outgoing.cookie)&&jQuery(".flat_pm_out[data-id-out=\""+a.ID+"\"]").addClass("show")};switch(a.how.outgoing.whence){case"1":b="top";break;case"2":b="bottom";break;case"3":b="left";break;case"4":b="right";}jQuery("body > *").eq(0).before("
"+e+"
");let m=document.querySelector(".flat_pm_out[data-id-out=\""+a.ID+"\"]");-1===d.indexOf("go"+"oglesyndication")?flatPM_setHTML(m,d):jQuery(m).html(e+d),"px"==a.how.outgoing.px_s?f.bind(g,()=>{f.scrollTop()>a.how.outgoing.after&&(f.unbind(g),k())}):setTimeout(()=>{k()},1e3*a.how.outgoing.after),j.on("click",".flat_pm_out .flat_pm_crs",function(){jQuery(this).parent().removeClass("show").addClass("closed")})}countMode&&(flat_count["block_"+a.ID]={},flat_count["block_"+a.ID].count=1,flat_count["block_"+a.ID].click=0,flat_count["block_"+a.ID].id=a.ID)}catch(a){console.warn(a)}}function flatPM_start(){let a=flat_pm_arr.length;if(0==a)return flat_pm_arr=[],void jQuery(".flat_pm_start, .flat_pm_end").remove();flat_body=flat_body||jQuery("body"),!flat_counter&&countMode&&(flat_counter=!0,flat_body.on("click","[data-flat-id]",function(){let a=jQuery(this),b=a.attr("data-flat-id");flat_count["block_"+b].click++}),flat_body.on("mouseenter","[data-flat-id] iframe",function(){let a=jQuery(this),b=a.closest("[data-flat-id]").attr("data-flat-id");flat_iframe=b}).on("mouseleave","[data-flat-id] iframe",function(){flat_iframe=-1}),jQuery(window).on("beforeunload",()=>{jQuery.isEmptyObject(flat_count)||jQuery.ajax({async:!1,type:"POST",url:ajaxUrlFlatPM,dataType:"json",data:{action:"flat_pm_ajax",data_me:{method:"flat_pm_block_counter",arr:flat_count}}})}).on("blur",()=>{-1!=flat_iframe&&flat_count["block_"+flat_iframe].click++})),flat_userVars.init();for(let b=0;bflat_userVars.textlen||void 0!==a.chapter_sub&&a.chapter_subflat_userVars.titlelen||void 0!==a.title_sub&&a.title_subc&&cc&&c>d&&(b=flatPM_addDays(b,-1)),b>e||cd||c-1!=flat_userVars.referer.indexOf(a))||void 0!==a.referer.referer_disabled&&-1!=a.referer.referer_disabled.findIndex(a=>-1!=flat_userVars.referer.indexOf(a)))&&(c=!0),c||void 0===a.browser||(void 0===a.browser.browser_enabled||-1!=a.browser.browser_enabled.indexOf(flat_userVars.browser))&&(void 0===a.browser.browser_disabled||-1==a.browser.browser_disabled.indexOf(flat_userVars.browser)))){if(c&&void 0!==a.browser&&void 0!==a.browser.browser_enabled&&-1!=a.browser.browser_enabled.indexOf(flat_userVars.browser)&&(c=!1),!c&&(void 0!==a.geo||void 0!==a.role)&&(""==flat_userVars.ccode||""==flat_userVars.country||""==flat_userVars.city||""==flat_userVars.role)){flat_pm_then.push(a),flatPM_setWrap(a),flat_body.hasClass("flat_pm_block_geo_role")||(flat_body.addClass("flat_pm_block_geo_role"),flatPM_ajax("flat_pm_block_geo_role")),c=!0}c||(flatPM_setWrap(a),flatPM_next(a))}}}let b=jQuery(".flatPM_sticky");b.each(function(){let a=jQuery(this),b=a.data("height")||350,c=a.data("top");a.wrap("
");let d=a.parent()[0];flatPM_sticky(this,d,c)}),debugMode||countMode||jQuery("[data-flat-id]:not([data-id-out]):not([data-id-modal])").contents().unwrap(),flat_pm_arr=[],jQuery(".flat_pm_start, .flat_pm_end").remove()}
 

Николай Сергеев

Назначение

Данное устройство предназначено и применяется для проверки источников питания постоянного тока, напряжением до 150В. Устройство позволяет нагружать блоки питания током до 20А, при максимальной рассеиваемой мощности до 600 Вт.

Общее описание схемы

Рисунок 1 – Принципиальная электрическая схема электронной нагрузки.

Приведенная схема на рисунке 1 позволяет плавно регулировать нагрузку испытуемого блока питания. В качестве эквивалента нагрузочного сопротивления используются мощные полевые транзисторы T1-T6 включенные параллельно. Для точного задания и стабилизации тока нагрузки, в схеме применяется прецизионный операционный усилитель ОУ1 в качестве компаратора.

Опорное напряжение с делителя R16, R17, R21, R22 поступает на неинвертирующий вход ОУ1, на инвертирующий вход поступает напряжение сравнения с токоизмерительного резистора R1. Усиленная ошибка с выхода ОУ1 воздействует на затворы полевых транзисторов, тем самым стабилизируя заданный ток. Переменные резисторы R17 и R22 вынесены на лицевую панель устройства с градуированной шкалой.

R17 задает ток нагрузки в пределах от 0 до 20А, R22 в пределах от 0 до 570 мА. Измерительная часть схемы выполнена на основе АЦП ICL7107 со светодиодными цифровыми индикаторами. Опорное напряжение для микросхемы составляет 1В.

Для согласования выходного напряжения токоизмерительного датчика с входом АЦП применяется неинвертирующий усилитель с регулируемым коэффициентом усиления 10-12, собранный на прецизионном операционном усилителе ОУ2. В качестве датчика тока используется резистор R1, что и в схеме стабилизации. На панели индикации отображается либо ток нагрузки, либо напряжение проверяемого источника питания.

Переключение между режимами происходит кнопкой S1. В предлагаемой схеме реализованы три вида защиты: максимальная токовая защита, тепловая защита и защита от переполюсовки. В максимальной токовой защите предусмотрена возможность задания тока отсечки. Схема МТЗ состоит из компаратора на ОУ3 и ключа, коммутирующего цепь нагрузки.

В качестве ключа используется полевой транзистор T7 с низким сопротивлением открытого канала. Опорное напряжение (эквивалент току отсечки) подается с делителя R24-R26 на инвертирующий вход ОУ3. Переменный резистор R26 вынесен на лицевую панель устройства с градуированной шкалой. Подстроечный резистор R25 задает минимальный ток срабатывания защиты.

Сигнал сравнения поступает с выхода измерительного ОУ2 на неинвертирующий вход ОУ3. В случае превышения тока нагрузки заданного значения, на выходе ОУ3 появляется напряжение близкое к напряжению питания, тем самым включается динисторное реле MOC3023, которое в свою очередь запирает транзистор T7 и подает питание на светодиод LED1, сигнализирующий о срабатывании токовой защиты.

Сброс происходит после полного отключения устройства от сети и повторного включения. Тепловая защита выполнена на компараторе ОУ4, датчике температуры RK1 и исполнительном реле РЭС55А. В качестве датчика температуры используется терморезистор с отрицательным ТКС. Порог срабатывания задается подстроечным резистором R33. Подстроечный резистор R38 задает величину гистерезиса.

Датчик температуры установлен на алюминиевой пластине, являющейся основанием для крепления радиаторов (Рисунок 2).

В случае превышения температуры радиаторов заданного значения, реле РЭС55А своими контактами замыкает неинвертирующий вход ОУ1 на землю, в результате транзисторы T1-T6 запираются и ток нагрузки стремится к нулю, при этом светодиод LED2 сигнализирует о срабатывании тепловой защиты. После охлаждения устройства, ток нагрузки возобновляется. Защита от переполюсовки выполнена на сдвоенном диоде Шоттки D1. Питание схемы осуществляется от отдельного сетевого трансформатора TP1. Операционные усилители ОУ1, ОУ2 и микросхема АЦП подключены от двухполярного источника питания собранного на стабилизаторах L7810, L7805 и инверторе ICL7660.

Для принудительного охлаждения радиаторов используется в непрерывном режиме вентилятор на 220В (в схеме не указан), который подключается через общий выключатель и предохранитель напрямую к сети 220В.

Настройка схемы

Настройка схемы проводится в следующем порядке. На вход электронной нагрузки последовательно с проверяемым блоком питания подключается эталонный миллиамперметр, например мультиметр в режиме измерения тока с минимальным диапазоном (мА), параллельно подключается эталонный вольтметр.

Ручки переменных резисторов R17, R22 выкручиваются в крайнее левое положение соответствующее нулевому току нагрузки. На устройство подается питание. Далее подстроечным резистором R12 задается такое напряжение смещения ОУ1, чтобы показания эталонного миллиамперметра стали равны нулю. Следующим этапом настраивается измерительная часть устройства (индикация).

Кнопка S1 переводится в положение измерения тока, при этом на табло индикации точка должна переместиться в положение сотых. Подстроечным резистором R18 необходимо добиться, чтобы на всех сегментах индикатора, кроме крайнего левого (он должен быть неактивен), отображались нули.

После этого эталонный миллиамперметр переключается в режим максимального диапазона измерений (А). Далее регуляторами на лицевой панели устройства задается ток нагрузки, подстроечным резистором R15 добиваемся одинаковых показаний с эталонным амперметром.

После калибровки канала измерения тока, кнопка S1 переключается в положение индикации напряжения, точка на табло должна переместиться в положение десятых. Далее подстроечным резистором R28 добиваемся одинаковых показаний с эталонным вольтметром. Настройка МТЗ не требуется, если соблюдены все номиналы.

Настройка тепловой защиты проводится экспериментальным путем, температурный режим работы силовых транзисторов не должен выходить за регламентируемый диапазон. Так же нагрев отдельного транзистора может быть неодинаковым. Порог срабатывания настраивается подстроечным резистором R33 по мере приближения температуры самого горячего транзистора к максимальному документированному значению.

Элементная база

В качестве силовых транзисторов T1-T6 (IRFP450) могут применяться MOSFET N-канальные транзисторы с напряжением сток-исток не менее 150В, мощностью рассеивания не менее 150Вт и током стока не менее 5А.

Полевой транзистор T7 (IRFP90N20D) работает в ключевом режиме и выбирается исходя из минимального значения сопротивления канала в открытом состоянии, при этом напряжение сток-исток должно быть не менее 150В, а продолжительный ток транзистора должен составлять не менее 20A.

В качестве прецизионных операционных усилителей ОУ 1,2 (OP177G) могут применяться любые аналогичные операционные усилители с двухполярным питанием 15В и возможностью регулирования напряжения смещения. В качестве операционных усилителей ОУ 3,4 применяется достаточно распространенная микросхема LM358.

Конденсаторы C2, С3, С8, C9 электролитические, C2 выбирается на напряжение не менее 200В и емкостью от 4,7µF. Конденсаторы C1, С4-С7 керамические либо пленочные. Конденсаторы C10-C17, а так же резисторы R30, R34, R35, R39-R41 поверхностного монтажа и размещаются на отдельной плате индикатора.

Подстроечные резисторы R12, R15, R18, R25, R28, R33, R38 многооборотные фирмы BOURNS типа 3296. Переменные резисторы R17, R22 и R26 отечественные однооборотные типа СП2-2, СП4-1. В качестве токоизмерительного резистора R1 использован шунт, выпаянный из нерабочего мультиметра, сопротивлением 0,01 Ом и рассчитанный на ток 20А.

Постоянные резисторы R2-R11, R13, R14, R16, R19-R21, R23, R24, R27, R29, R31, R32, R36, R37 типа МЛТ-0,25, R42 – МЛТ-0,125. Импортная микросхема аналого-цифрового преобразователя ICL7107 может быть заменена на отечественный аналог КР572ПВ2.

Вместо светодиодных индикаторов BS-A51DRD могут применяться любые одиночные или сдвоенные семисегментные индикаторы с общим анодом без динамического управления. В схеме тепловой защиты используется отечественное слаботочное герконовое реле РЭС55А(0102) с одним перекидным контактом. Реле выбирается с учетом напряжения срабатывания 5В и сопротивления катушки 390 Ом.

Для питания схемы может быть применен малогабаритный трансформатор на 220В, мощностью 5-10Вт и напряжением вторичной обмотки 12В.

В качестве выпрямительного диодного моста D2 может использоваться практический любой диодный мост с током нагрузки не менее 0,1A и напряжением не менее 24В.

Микросхема стабилизатора тока L7805 устанавливается на небольшой радиатор, приблизительная мощность рассеивания микросхемы 0,7Вт.

Конструктивные особенности

Основание корпуса (рисунок 2) изготовлено из алюминиевого листа толщиной 3мм и уголка 25мм. К основанию прикручиваются 6 алюминиевых радиаторов, ранее применявшихся для охлаждения тиристоров. Для улучшения теплопроводности используется термопаста Алсил-3.

Рисунок 2 – Основание.

Общая площадь поверхности собранного таким образом радиатора (рисунок 3) составляет около 4000 см2. Приблизительная оценка мощности рассеивания взята из расчета 10см2 на 1Вт. С учетом применения принудительного охлаждения с использованием 120мм вентилятора производительностью 1,7 м3/час, устройство способно продолжительно рассеивать до 600Вт.

Рисунок 3 – Радиатор в сборе.

Силовые транзисторы T1-T6 и сдвоенный диод Шоттки D1, у которого основанием является общий катод, крепятся к радиаторам напрямую без изоляционной прокладки с использованием термопасты. Транзистор T7 токовой защиты крепится к радиатору через теплопроводящую диэлектрическую подложку (рисунок 4).

Рисунок 4 – Крепление транзисторов к радиатору.

Монтаж силовой части схемы выполнен термостойким проводом РКГМ, коммутация слаботочной и сигнальной части выполнена обычным проводом в ПВХ изоляции с применением термостойкой оплетки и термоусадочной трубки. Печатные платы изготовлены методом ЛУТ на фольгированном текстолите, толщиной 1,5 мм. Компоновка внутри устройства изображена на рисунках 5-8.

Рисунок 5 – Общая компоновка.

Рисунок 6 – Главная печатная плата, крепление трансформатора с обратной стороны.

Рисунок 7 – Вид в сборе без кожуха.

Рисунок 8 – Вид в сборе сверху без кожуха.

Основа передней панели изготовлена из электротехнического листового гетинакса толщиной 6мм фрезерованного под крепления переменных резисторов и затемненного стекла индикатора (рисунок 9).

Рисунок 9 – Основа передней панели.

Декоративный внешний вид (рисунок 10) выполнен с использованием алюминиевого уголка, вентиляционной решетки из нержавеющей стали, оргстекла, подложки из бумаги с надписями и градуированными шкалами, скомпилированными в программе FrontDesigner3.0. Кожух устройства изготовлен из миллиметрового листа нержавеющей стали.

Рисунок 10 – Внешний вид готового устройства.

Рисунок 11 – Схема соединений.

Схему соединений добавил Дмитрий Майтов (bocem).

Архив для статьи

Если у Вас возникнут какие либо вопросы по конструкции электронной нагрузки, задавайте их ЗДЕСЬ на форуме, постараюсь помочь и ответить.

Новокузнецк 2014.

   Регулируемая по мощности нагрузка является частью испытательного оборудования, необходимого при налаживании различных электронных проектов.

Например, при построении лабораторного источника питания, оно может “симулировать” подключенный потребитель тока, чтобы увидеть, насколько хорошо ваша схема работает не только на холостом ходу, но и на нагрузку.

Добавление силовых резисторов для выхода можно делать только в крайнем случае, но не у каждого они есть да и долго их не продержать – сильно греются. В этой статье будет показано, как можно построить блок регулируемой электронной нагрузки с помощью недорогих компонентов, доступных для радиолюбителей.

Схема электронной нагрузки на транзисторах

   В этой конструкции максимальный ток должен быть примерно 7 ампер и он ограничен 5W резистором, который был использован, и относительно слабым полевым транзистором.

Ещё большие нагрузочные токи могут быть достигнуты с помощью резистора на 10 или 20 Вт. Входное напряжение, не должно превышать 60 вольт (максимум на эти полевые транзисторы).

Основой служит ОУ LM324 и 4 полевых транзистора.

   Два “запасных” операционных усилителя микросхемы LM324 используются для защиты и управления вентилятором охлаждения. U2C образует простой компаратор между напряжением, установленным термистором и делителем напряжения R5, R6.

Гистерезис контролируется положительной обратной связью, полученной R4. Термистор помещается в непосредственный контакт с транзисторами на радиаторах и его сопротивление уменьшается с ростом температуры. Когда температура превышает установленный порог, выход U2C будет высокий.

Вы можете заменить R5 и R6 с регулируемым переменником и вручную подбирать порог срабатывания. При настройке убедитесь, что защита срабатывает, когда температура транзисторов MOSFET чуть ниже предельно-допустимой, указанной в даташите.

Светодиод D2 сигнализирует, когда активируется функция защиты от перегрузки – он установлен на передней панели.

   В элементе U2B операционного усилителя также есть гистерезис компаратора напряжений и используется он для управления вентилятором 12 В (можно использовать от старых PC). Диод 1N4001 защищает MOSFET BS170 от индуктивный бросков напряжения. Нижний температурный порог для активации вентилятора, контролируется резистором RV2.

Сборка устройства

   Была использована для корпуса старая алюминиевая коробка от коммутатора с большим количеством внутреннего пространства для компонентов. В электронной нагрузке использовал старые AC/DC адаптеры для питания 12 В для главной цепи и 9 В для приборной панели – она имеет цифровой амперметр, чтоб сразу видеть ток потребления. Мощность вы уже рассчитаете и сами по известной формуле.

   Вот фотография тестовой установки. Лабораторный блок питания настроен на 5 В. Нагрузку показывает 0.49A. Так же подключен мультиметр на нагрузке, так что ток нагрузки и напряжение контролируются одновременно. Вы сами можете убедится в чёткой работе всего модуля.