Понятие электрического отгорания нуля

Обрыв нуля в однофазной сети

Как известно, электрический ток течет по замкнутой цепи, выполняя при этом работу. Домашняя электросеть является одним из множества ответвлений глобальной сети энергоснабжения. Это означает, что для работы домашних электроприборов необходимо, чтобы было подведено минимум два проводника, по которым будет течь ток.

По рациональным причинам, описанным ниже, их называют фазным и нулевым рабочим проводом (N). В данной статье разъясняется функция рабочего нулевого проводника, и описываются проблемы, возникающие, если происходит аварийный обрыв нуля .

Практически все взрослые люди знают, что нулевой проводник сети, работающий в штатном режиме, не представляет угрозы при прикосновении, так как на нем нет опасного для здоровья напряжения. Но, это не означает, что через провод ноля не течет ток – нужно четко различать эти понятия. В идеальной цепи ток фазного и нулевого проводника идентичен.

Функция рабочего ноля

В процессе изучения электричества ученые поняли, что земля (грунт, геологические породы и вся планета целиком) является неплохим проводником электрического тока. В принципе, для энергоснабжения было бы достаточного одного провода с электрическим потенциалом, а грунт бы выполнял функцию обратного участка цепи.

Кривая зависимости удельного сопротивления грунта от влажности

Но прогресс не пошел по этому направлению из-за необходимости создания систем заземления с большой контактной площадью, и при этом имеющих нестабильные характеристики и требующие постоянного обслуживания и защиты от влияния среды и электролитических процессов.

Поэтому дешевле и надежнее было провести два проводника, чтобы создать замкнутую цепь. Было решено один из проводов электрически соединить с землей, то есть, потенциал на данном проводнике относительно грунта равняется нолю. Данное решение было принято в целях электробезопасности ради зануления корпусов электрооборудования.

Схематическое отображение заземления и зануления

В наше время, функции защиты (зануления) выполняет защитный заземляющий проводник PE, а провод ноля используется только для протекания рабочего тока цепи. Термин «фазный провод» не имел бы смысла в однофазной сети, но, поскольку синусоидальное напряжение смещено по фазе относительно аналогичного параметра у других проводников электросети, данное название принято в обиходе.

В системах электроснабжения бытовых потребителей рабочий нулевой проводник всегда имеет контакт с землей (исключение: изолированная нейтраль).

В цикле статьей о заземлении подробно описаны принципы разделения совмещенного нулевого провода на рабочий и защитный ноль в различных системах.

Это означает, что напряжение относительно земли на рабочем ноле в однофазных и трехфазных системах нулевое (безопасное для людей и оборудования).

Схематическое отображение энергоснабжения жилого дома по системе заземления TN-C-S

Аварийное отключение рабочего ноля

Электрики знают, что и на нуле небольшой потенциал все же есть, и он зависит от величины протекающего тока (I) и удаленности от точки заземления.

Чтобы понять данный процесс, нужно вспомнить задачу из школьного курса физики о расчете напряжений (делитель U1. U2 ) в точке соединения двух последовательно включенных сопротивлений (R1. R2 ).

В нашем случае это будут сопротивления кабеля фазы и подключенной нагрузки (R1 ,) и R2 участка нулевого провода до точки заземления .

Делитель напряжения, образующий ноль в розетке

Если сопротивление нагрузки (R1 ) многократно превышает аналогичный параметр (R2 ) участка рабочего ноля, то потенциал на контакте ноля в розетке будет ничтожно малым.

При большой протяженности рабочего нуля до точки заземления, напряжение U2 гипотетически рассчитываем по школьной формуле из рисунка выше.

Но, если происходит обрыв нулевого провода, то при включенном в домашнюю сеть электрооборудовании на любом контакте ноля каждой розетки будет фазное напряжение U1 .

При обрыве ноля индикатор будет показывать две фазы в розетке

Казалось бы, при современных системах заземления, исключающим зануление, пропажа нуля, не несет никакой опасности, ведь корпусы оборудования надежно заземлены, а сами электроприборы перестанут работать из-за прекращения тока. В однофазной домашней электрической сети будет именно так, если ноль оторвался сразу при вводе в дом.

Влияние обрыва ноля на потребителей

Но, если случается обрыв нуля где-то на трехфазной линии, то на оставшейся цепи, от разрыва до дома формируется напряжение подключенной нагрузкой от других фаз соседних потребителей электроэнергии. Если бы ток нагрузки всех трех фаз был идентичен, то сформировавшийся потенциал на нулевом проводнике был бы близким к нолю.

В реальности, при аварийных ситуациях нагрузка на фазах неравномерная, что означает смещение напряжения на нулевом проводнике в сторону большего фазного тока. Соответственно, разница потенциалов между образовавшимся нулем и двумя другими фазами окажется значительно большей, чем обычное напряжение сети электропитания.

Поэтому обрыв нулевого провода для бытовых электроприборов означает провал напряжения при попадании на фазу с наибольшим количеством подключенных потребителей, или превышение потенциалов выше допустимых параметров электропитания, если не повезет оказаться на двух других фазах.

Способы защиты от обрыва ноля

Для уменьшения потенциала на нулевом проводнике и соответственно, ради увеличения эффективной разницы между штатным фазным напряжением сети и нулем применяют многократное повторное заземление совмещенного ноля. Эта мера также предназначена для уменьшения негативных последствий для потребителей вследствие обрыва нулевого проводника в сети электроснабжения.

Стрелкой указано повторное заземление ноля (PEN) на опоре воздушной линии

К сожалению, во многих провинциальных регионах, особенно в сельской местности, сопротивление повторного заземления оказывается недостаточным для надежной защиты от превышения напряжения, возникающего при обрыве нулевого провода. К тому же, на воздушных линиях сети энергоснабжения, преобладающих в сельской местности, обрыв нуля происходит гораздо чаще, чем в городских подземных или скрытых (защищенных) линиях электросети.

Обычный потребитель может влиять на качество электропитания на вводе лишь при помощи юридических инструментов – жалоб, петиций, судовых исков, и т д. Но в домашней сети, сохранить приемлемый уровень качества электроэнергии можно при помощи стабилизаторов. а обезопаситься при аварийных ситуациях получиться, применив реле напряжения или обладающие дополнительными функциями дифавтоматы.

Источник: http://electricremont.ru/obryv-nulya-v-odnofaznoj-seti.html

Что такое фаза и ноль в электричестве

Очень немного людей  понимают суть электричества. Такие понятия как “электрический ток”, “напряжение” “фаза” и “ноль” для большинства являются  темным лесом, хотя с ними мы сталкиваемся каждый день. Давайте же получим крупицу полезных знаний и разберемся, что такое фаза и ноль в электричестве.

Для обучения электричеству с “нуля” нам нужно разобраться с фундаментальными понятиями. В первую очередь нас интересуют электрический ток и электрический заряд.

Электрический ток и электрический заряд

Электрический заряд – это физическая скалярная величина, которая определяет способность тел быть источником электромагнитных полей. Носителем наименьшего или элементарного электрического заряда является электрон. Его заряд равен примерно -1,6 на 10 в минус девятнадцатой степени Кулон.

Заряд электрона – минимальный электрический заряд (квант, порция заряда), который встречается в природе у свободных долгоживущих частиц.

Заряды условно делятся на положительные и отрицательные. Например, если мы потрем эбонитовую палочку о шерсть, она приобретет отрицательный электрический заряд (избыток электронов, которые были захвачены атомами палочки при контакте с шерстью).

Такую же природу имеет статическое электричество на волосах, только в этом случае заряд является положительным (волосы теряют электроны).

Кстати, о том, что такое ток, напряжение и сопротивление можно дополнительно почитать в нашей отдельной статье, посвященной закону Ома.

Статическое электричество

Электрический ток – это направленное движение заряженных частиц (носителей заряда) по проводнику. Само движение заряженных частиц возникает под действием электромагнитного поля – одного из фундаментальных физических полей.

Электрический ток может быть постоянным и переменным. При постоянном токе направление и величина тока не меняются. Переменный ток – это ток, изменяющийся во времени.

Источником постоянного тока является, например, батарейка. Но именно переменный ток используется в бытовых розетках, которые стоят в наших домах. Причина в том, что переменные токи гораздо проще получать и передавать на большие расстояния.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Основным видом переменного тока является синусоидальный ток. Это такой ток, который сначала нарастает в одном направлении, достигая максимума (амплитуды) начинает спадать, в какой-то момент становится равным нулю и снова нарастает, но уже в другом направлении.

Электрический ток

Непосредственно о таинственных фазе и нуле

Все мы слышали про фазу, три фазы, ноль и заземление.

Простейший случай электрической цепи – однофазная цепь. В ней всего три провода. По одному из проводов ток течет к потребителю (пусть это будет утюг или фен), а по другому – возвращается обратно. Третий провод в однофазной сети – земля (или заземление).

Провод заземления не несет нагрузки, но служит как бы предохранителем. В случае, когда что-то выходит из-под контроля, заземление помогает предотвратить удар электрическим током. По этому проводу избыток электричества отводится или “стекает” в землю.

Итак, зачем нужен ноль в электричестве? Да за тем же, что и фаза! По фазному проводу ток поступает к потребителю, а по нулевому – отводится в обратном направлении. Сеть, по которой распространяется переменный ток, является трехфазной. Она состоит из трех фазовых проводов и одного обратного.

Именно по такой сети ток идет до наших квартир. Подходя непосредственно к потребителю (квартирам), ток разделяется на фазы, и каждой из фаз дается по нулю. Частота изменения направления тока в странах СНГ – 50 Гц.

В разных странах действуют разные стандарты напряжений и частот в сети. Например, в обычной домашние розетки в США подается переменный ток напряжением 100-127 Вольт и частотой 60 Герц.

Провода фазы и нуля нельзя путать. Иначе можно устроить короткое замыкание в цепи. Чтобы этого не произошло и Вы ничего не перепутали, провода приобрели разную окраску.

Каким цветом фаза и ноль обозначены в электричестве? Ноль, как правило, синего или голубого цвета, а фаза – белого, черного или коричневого. Провод заземления также имеет свой окрас – желто-зеленый.

Ноль и электричество

Итак, сегодня мы узнали, что же значат понятия «фаза» и «ноль» в электричестве. Мы будем просто счастливы, если для кого-то эта информация была новой и интересной.

Теперь, когда вы услышите что-то про электричество, фазу, ноль и землю, вы уже будете знать, о чем идет речь. Напоследок напоминаем, если вам вдруг понадобится произвести расчет трехфазной цепи переменного тока, вы можете смело обращаться в студенческий сервис.

С помощью наших специалистов даже самая дикая и сложная задача станет Вам «по зубам».

Источник: https://Zaochnik.ru/blog/chto-takoe-faza-i-nol-v-elektrichestve/

Что такое «Отгорание нуля» или обрыв нуля? Что случится если ноль отгорел? – Электрокапризам-НЕТ!

Что такое «Отгорание нуля» или обрыв нуля? Что случится если ноль отгорел?

Наверняка каждый хоть раз в жизни слышал, а кто-нибудь даже и сталкивался лично с проблемой, когда в доме/квартире вдруг подскочило напряжение и сгорела техника. Из-за чего повышается напряжение до такого значения, что сгорает бытовая техника? Кого винить в происшествии?

Загадка резкого скачка напряжения кроется в таинственном понятии «отгорание нуля». Что такое «отгорание нуля» и почему именно «отгорание». Каждый знает из школьного курса физики и из окружающей нас бытовой жизни, что в электрической сети есть ноль и есть фаза.

 И тут многие зададутся вопросом: ну отгорел нуль – значит и розетка не будет работать, нуля ведь нет)). «Отгорание нуля» это профессиональный жаргон электриков, в электротехнике используется термин— обрыв нуля.

Можно различить обрыв нуля полным, – это когда контакт с нулевой шиной полностью оборван, но часто встечается неполный контакт, что и вызывает эти самые скачки напряжения.

Так для чего же нужен нулевой проводник? Проводник нуль используется в наиболее распространенной трехфазной схеме «звезда», используемой для бытовых потребителей.

Есть еще другая схема построения трехфазных сетей – «треугольник», у которой присутствуют три фазных проводника: А, В, С, но отсутствует четвертый проводник – нулевой.

В основном схема «треугольник» используется в промышленных целях.

В схеме звезда используется четыре проводника три из которых фазные и один – нулевой. Таким образом, в многоквартирный дом приходят не два провода фаза и ноль, как некоторые могут думать, а четырехжильный или пятижильный провод (с защитным заземлением РЕ).
Мощный силовой кабель заходит в водный распределительный щит.

С этого щита электричество распределяется по подъездам, с подъезда по этажам, с этажей по квартирам. Как правило, в трехфазных схемах принято распределять мощности равномерно для обеспечения баланса работы трехфазной схемы.

Например если в подъезде 30 квартир, и в каждую квартиру подводится электричество с напряжением 220В, распределение трех фаз будет таким: фаза А – 10 квартир, фаза В – 10 квартир, фаза С – 10 квартир.

В теории все сделано правильно, и подключение квартир обустроено правильно, но только вот работу чайников/кипятильников/кондиционеров и др. техники между соседями (между фазами) согласовать просто невозможно.

Вот и получается так, что один стояк квартир (например 10 квартир на фазе А) может оказаться сильно загруженным, а другой стояк квартир (на фазе В) остается мало задействованным. В такой ситуации происходит дисбаланс (перекос по фазе) нагрузок в трехфазной схеме.

В случае если ноль отгорел и на трех фазах нагрузка равномерная, например по 5 кВт на каждой фазе – то у каждого потребителя будет напряжение 220В до тех пор, пока один из потребителей не сделает перекос по мощности на своей фазе.

В таком случае у этого потребителя в сети окажется напряжение 380В а на других фазах оно упадет до значений 20В-80В.

Поясним немного, что такое трехфазная схема звезда и как она работает.
Переменные токи каждой фазы в трех одинаковых нагрузках сдвинуты по фазе ровно на одну треть и в идеале компенсируют друг друга, поэтому нагрузка в такой схеме называется трехфазной сосредоточенной нагрузкой.

В средней точке напряжение равно нулю. При равномерной нагрузке трех фаз, например, работают трехфазные станки на заводе, потребление энергии одинаково по всем трем фазам. Нуль остается невостребованным, нет дисбаланса. В связи с чем, сечение нулевого проводника можно использовать гораздо меньше используемого по фазе.

И вот в квартире используется одна фаза, а в целом по подъезду используется трехфазная схема, соответственно ноль в перекошенной по фазе системе является сильно нагружаемым элементом. Этот ноль находится в щитке на этаже в подъезде.

Вот в этом месте он и может отгореть, но не обязательно! Отгорание обычно происходит в слабых местах, например, в плохо обжатом контакте или в неправильно подобранном сечении нулевого кабеля.

Но что же все-таки произойдет, если отгорит нуль? В нормальных условиях напряжение в однофазной сети составляет 220 В – и называется фазным напряжением (измеряется между нулем и фазой). В квартиру это напряжение приходит по двум проводам.

Когда в трехфазной схеме пропадает нуль (например в подъезде на щитке, где идет распределение фаз А,В и С по квартирам), то на тех концах, где было фазное напряжение (приходило в квартиру 220В) появляется линейное напряжение 380В. Линейное напряжение измеряется между фазами, например между фазой А и В и всегда составляет 380В.

Что делать, чтоб избежать ситуации с отгоранием нуля и как обезопасить себя от последствий обрыва нуля?Наиболее общими рекомендации могут быть следующими:- использовать сечение кабеля для соединения нуля в трехфазной схеме звезда не меньше, чем сечение кабеля для фазных напряжений;- периодически, не реже одного раза в год, осуществлять аудит проводки и мест крепления и, по необходимости, переобжимать места соединения (заменять клеммные колодки, если это необходимо);

– использовать защитные реле, отключающие квартиру от электросети при повышении напряжения больше 250В;

– использовать стабилизаторы напряжения, т.к. стабилизаторы напряжения не только спасают от обрыва нуля (скачок напряжения), но и защищают технику от  заниженного напряжения

Для получения более расширенных рекомендаций, особенно в части использования трехфазных сетей в частных домах и коттеджах, и организации правильных схем электроснабжения – рекомендуем обращаться к профессионалам.

Источник: http://electrokaprizam.net/content/46-chto-takoe-otgoranie-nulya-ili-obryv-nulya-chto-sluchitsya-esli-nol-otgorel

Отгорание нуля, что происходит и как защититься?

Привет, друзья. Сталкивались когда-нибудь с явлением «отгорание нуля»?  Если нет, то вы счастливый человек. Но знать об этом, особенно электрикам, будет полезно. Поговорим о том, почему этот таинственный ноль имеет тенденцию отгорать, что происходит при этом и какая бывает защита от отгорания нуля? Для того чтобы понять это, немного вспомним физику.

Нашел в интернете хорошее видео по теме, коротко и ясно, если не любите читать, смотрите ниже. Итак, начнем.

Ноль, для однофазной цепи, это название проводника, который не находиться под высоким потенциалом относительно земли. Фаза, это второй проводник , она имеет высокий потенциал переменного напряжения относительно земли. В России, чаще всего, это 220-230 Вольт. Ноль при этом не проявляет тенденции к отгоранию.

Основная загвоздка — все линии электропередачи, являются трехфазными. Рассмотрим традиционную схему «звезда»:

Здесь и появляется понятие «нулевой проводник».

В трех одинаковых нагрузках, переменный ток каждой фазы сдвинут по фазе на 1/3. В идеале, эти токи компенсируют друг друга. При такой нагрузке, в средней точке, векторная сумма токов равна нулю.

Получается, что через нулевой провод, подключенный к средней точке, ток не течет (он практически не нужен).

Незначительный ток на нулевом проводнике все же возникает. Это происходит, когда нагрузки на фазах не полностью компенсируют  друг друга, тоесть разные.

Прямое доказательство этому можно увидеть на практике, посмотрите на четырехжильные кабели для трехфазных цепей, нулевая жила вдвое меньшего сечения, чем фазные.

Зачем тратить дефицитную медь, если тока в жиле практически нет? Имеется смысл…

При сосредоточенной нагрузке, в трехфазной цепи, ноль тоже не расположен к отгоранию.

Интересное начинается тогда, когда к трехфазной цепи начинают подключать однофазные нагрузки (многоквартирных домах, например). Каждая нагрузка представляет случайно выбранное устройство.

При использовании одной фазы из трехфазной цепи, их стараются распределить по мощности так, чтобы на каждую приходилась  примерно одинаковая нагрузка.

Все понимают, что полного равенства при этом не достигнуть.  Жители дома будут случайным образом включать, выключать электроприборы, поэтому нагрузка будет постоянно меняться.

Полной компенсации токов в средней точке происходить не будет, но ток нулевого проводника обычно не достигает максимального значения, большего току в одной из фаз.

Ситуация предсказуемая, отгорание нуля при этом бывает крайне редко.

Почему происходит отгорание нуля?

Сегодня мы регулярно пользуемся большим количеством электрических приборов, большинство из них это импульсные источники питания. Это телевизоры, радиоприемники, компьютеры итд. Характер потребления тока этими приборами сильно отличается от прежних.

В цепи, возникают дополнительные импульсные токи, которые не компенсируются в средней точке. Прибавляем к ним некомпенсированные, вызванные разностью однофазных нагрузок и получаем ток, близкий к самому большому току одной из фаз, или даже превышающий его.

Вот мы и пришли к благоприятным условиям для отгорания нуля. Чаще всего отгорание происходит в слабых местах, где: поврежден провод, занижено сечение кабеля, плохой контакт.

С каждым днем в обиходе появляется все больше электроприборов, соответственно ситуация ухудшается. Поэтому при монтаже электропроводки, необходимо учитывать высокую вероятность отгорания нулевого проводника. Пренебрегать этим не стоит.

Что происходит при отгорании нуля?

В лучшем случае погаснет свет, перестанут работать розетки. О плохом писать не хочется, думаю, понимаете, что перегрузка приводит к нагреву провода, плавке, пробою изоляции итп.

Кроме того, при отгорании нуля, в цепи могут происходить серьезные скачки напряжения. На фазе, где было повышенное потребление, напряжение падает практически до нуля. В то же время, на фазе где потребление было меньше всего, оно вырастает до 380 Вольт. Чувствуете чем пахнет?

Подобное явление может вывести из строя вашу технику!

Что делать, спросите вы? Существует защита.

Защита от отгорания нуля

Для защиты от вышеуказанных инцестов  умные люди придумали реле контроля напряжения. Если напряжение выходит за допустимые пределы, реле отключает его, защищая тем самым все подключенные приборы и оборудование.

Напоследок небольшое видео, где наглядно можно увидеть, что происходит при отгорании нуля.

Такие вот дела. Если есть, что дополнить, оставьте комментарий.

Также советую , чтобы , получать новые статьи прямо к себе на e-mail.

Источник: http://elektrobiz.ru/zametki-elektrika/zashhita-ot-otgoranie-nulya.html

5 способов защиты от обрыва нуля: двухфазные, трехфазные системы

Всем известно, что ток в электрической сети течет по замкнутому контуру, питая при этом разнообразную бытовую технику и промышленное оборудование.

Сеть подачи электроэнергии в частные дома, квартиры и дачи является одним из направлений распределения электричества в глобальной системе энергоснабжения разнообразных объектов.

Все это говорит о том, что для питания бытовых электроприборов необходимы как минимум два электрических проводника, которые создадут замкнутую цепь электропитания домашней техники.

Эти проводники называются фазным (L) и рабочим нулевым (N). «Ноль» не опасен для человека при прикосновении к нему, так как на нем отсутствует напряжение сети. Но это не значит, что через него не протекает электрический ток.

В идеальном случае, в однофазной сети, величина тока, проходящего через фазный проводник полностью совпадает со значением этого параметра, протекающего через нейтральный провод.

В этой статье мы рассмотрим вопрос, причины обрывы или обгорания нулевого проводника, что происходит в случае такой аварийной ситуации, последствия этой аварии и какая защита от обрыва «нуля» способна исключить такое негативное явление.

Причины обрыва нулевого проводника

Обрыв или обгорание нейтрального рабочего проводника часто происходит в домах старой постройки, где электрическая сеть была спроектирована на низкую нагрузку не более 2 кВт на отдельную квартиру или дом.

В современных условиях насыщенность объектов недвижимости мощной бытовой техникой объектов недвижимости резко увеличилась и электрическая проводка часто не выдерживает таких нагрузок.

Где тонко, там и рвется! Чаще всего обгорание «нуля» происходит в месте соединения N-проводника с нулевой шиной в распределительном квартирном щите, но такая авария может произойти и в другом месте, например, на подстанции или в силовом трансформаторе.

Следует различать обрыв нулевого проводника в трехфазной и однофазной сетях. Однофазная электрическая проводка предназначена для энергоснабжения квартир и частных домов непосредственно внутри помещения.

До распределительного щита, чаще всего, электроэнергия подается по трехфазной схеме и только в нем происходит разделение на однофазные линии питания. Для дачных поселков, как правило, используется однофазная магистральная линия доставки электроэнергии до потребителя от силового трансформатора.

Все эти нюансы влияют на последствия, которые происходят после обрыва или обгорания «нуля».

Как и в однофазной, так и в трехфазной сети может произойти обрыв нейтрального проводника, но последствия будут разные.

В любом случае причиной обрыва «нуля» может быть либо перегрузка, либо некачественный монтаж проводки или другие причины: коррозия, механическое повреждение нулевой жилы и так далее. В однофазных сетях «ноль» не склонен к обгоранию, но обрыв может произойти по другим причинам.

Трехфазная сеть в большей степени склонна к обгоранию нулевого проводника. Ниже мы рассмотрим вопрос, почему происходит отгорание «нуля» в трехфазной сети.

Обрыв нулевого проводника в трехфазной сети

В однофазной электрической сети «нулем» является тот проводник, на котором отсутствует напряжение сети, но ток через него при подключенной нагрузке равен току через фазный провод.

В случае трехфазной сети все совершенно по-другому! Главная загвоздка в том, что все сети электропередач построены по трехфазной системе и подключение потребителей выполняется по традиционной схеме «звезда».

Вот здесь то и появляется термин «нулевой проводник»! Если нагрузка на каждую фазу одинаковая, то токи всех отдельных фаз компенсируются, так как они сдвинуты на 1/3 по отношению друг к другу. В этом случае, через нейтральный проводник, подключенный к средней точки «звезды», ток не течет и обгореть он не может.

Но это только в идеале! Даже в одной квартире к разным фазам могут быть подключены различные нагрузки, что уж говорить о многоквартирном доме. Невозможно предсказать, какую нагрузку может подключить к сети каждый из потребителей. Один включит одну люстру, запитанную от одной фазы, а следующий подключит несколько электроприборов, сидящих на другой фазе.

Все это приводит к колебанию мощности нагрузок, поэтому в определенный момент одна из фаз будет сильно перегружена при отсутствии тока в других фазных проводниках. При таком раскладе в нулевом проводнике возникнет сильный ток, уравнивающий систему, что может привести к обгоранию нуля.

Чтобы этого не произошло необходима защита от отгорания «нуля» в трехфазной сети.

Последствия при обрыве «нуля»

Последствия при обрыве нейтрального проводника могут быть совершенно разные. Все зависит от того в какой сети произошло аварийное отключение нуля: трехфазной или однофазной. Рассмотрим оба случая отдельно друг от друга.

  1. Трехфазная сеть. Отгорание или обрыв нейтрального проводника в трехфазной сети может привести к полному перекосу питающих фаз в результате которого на одной линии электропроводки, питающей бытовую технику и осветительные приборы может возникнуть повышенное напряжение в 380 В, а на другой понизиться вплоть до нулевой величины. Перенапряжение, а также снижение напряжения электрической сети, является опасным для любых электроприборов и электронных устройств. Предельные величины напряжения в электропроводке могут вызвать возгорание как самих проводов, так и электроприборов, что приведет к пожару в помещение.
  2. Однофазная сеть. Совершенно другая картина возникает при обрыве «нуля» в однофазной сети, которая заводится в квартиры и дома от распределительного щита. Каждая линия питания группы осветительных приборов и бытовой техники состоит из двух проводников: «нуля» и фазы. К тому же в большинстве современных многоэтажных домах кабель электропроводки имеет третью жилу для подключения к электроприборам защитного заземления, чего нет в старых постройках. При обрыве «нуля» в однофазной сети на нулевом проводе появляется опасное для человека напряжение в 220 В.

Как мы видим, при обрыве нейтрального провода в любой сети как трехфазной, так и однофазной, может возникнуть ряд негативных и опасных последствий. Что делать, чтобы исключить такое развитие событий? Конечно, выход есть! Необходима защита от отгорания «нуля» или его обрыва! Ниже мы рассмотрим все виды защиты от обрыва или отгорания «нуля» в трехфазных и однофазных сетях.

Защита от обгорания или обрыва нуля

Итак, обрыв и отгорание нейтрального проводника является очень опасным и довольно частым происшествием. Есть ли необходимость в защите электросети от этого негативного явления? Конечно же, есть! Защита от отгорания «нуля» в трехфазной сети позволит вам сохранить свою дорогостоящую бытовую технику в рабочем состоянии.

Защита от обрыва «нуля» в однофазной сети обеспечит вашу личную безопасность. Все эти виды обеспечения безопасности человека и бытовых электроприборов от последствий, возникающих при обрыве нейтрального проводника, выполняются с использованием специального оборудования и приемов электромонтажа, которые мы рассмотрим ниже.

  1. Реле максимального и минимального напряжения. Это основное устройство, которое следует использовать для защиты электросетей от обгорания или обрыва нулевого проводника. Применяется на всех типах недвижности. Промышленность изготавливает модели реле напряжения как для однофазных, так и трехфазных сетей. Принцип действия устройства заключается в разрыве цени электроснабжения при отклонении величины напряжения в сети сверх установленных значений.
  2. УЗИП — ограничитель перенапряжения. Это устройство для защиты и отключения оборудования при перенапряжении в электропроводке, возникающего вследствие обрыва или отгорания «нуля», удара молнии и по некоторым другим причинам. В основном используется в частных домовладениях. Принцип работы устройства заключен в увеличении собственного внутреннего сопротивления электротоку при больших перепадах напряжения.
  3. Устройство защитного отключения (УЗО). Такой модуль, имеющий сокращенное название УЗО, способен создать эффективную защиту для человека от удара электрическим током при обрыве нейтрального проводника в однофазных линиях. УЗО мгновенно обесточит сеть при попадании фазы на нулевой провод в том случае, если заземление бытовых приборов выполнено с нарушением ПУЭ (правил устройства электроустановок).
  4. Дифференциальный автомат с расширенными функциями. Дифавтомат — это защитное модульное устройство, позволяющее одновременно отключать фазу и нейтральный провод при возникновении любых аварийных ситуаций. Этот модуль совмещает в своей конструкции автоматический выключатель при КЗ (коротком замыкании) в нагрузке и защитное устройство (УЗО). При обгорании «нуля» в магистральных сетях с тремя фазами и обрыве нулевого провода в однофазных линиях он способен защитить электрические приборы и другую технику от выхода из строя, а человека от удара электротоком.
  5. Многократное повторное заземление. Этот технологический прием способен защитить бытовые приборы и человека от последствий обрыва и обгорания «нуля», но он сложен в исполнении, решает ограниченный спектр задач и применяют его в основном специалисты энергоснабжающих организаций на магистральных линиях электропередач.

Заключение

Полностью застраховать себя от проблем, возникающих в процессе эксплуатации электрических сетей, никто не в состоянии.

Даже если электрическая проводка в частном доме, квартире или на даче выполнена с соблюдением всех правил и норм, нейтральный проводник может оборваться или обгореть по независящим от вас причинам.

Поэтому заранее позаботьтесь о защите своей бытовой техники и собственной жизни от последствий, которые могут возникнуть вследствие обрыва «нуля»!

Видео по теме

Источник: https://ProFazu.ru/elektrooborudovanie/zaschita/zashhita-ot-obryva-nulya.html

Фаза и ноль в сети: определение понятий, поиск обрыва

От магистральных линий трансформации электрической энергии посредством электропроводов в дома обывателей поступает электрический ток.

В городах на многоэтажные дома приходит трехфазное питание, но в каждую квартиру заходит только одна фаза напряжения.

Деление квартир по фазам происходит в каждом доме (распределение нагрузки), в других населенных пунктах такое деление происходит на подстанциях.

В многоэтажном доме есть входной щит (ВРУ), на который приходит трехфазная сеть плюс ноль плюс заземление. На каждую квартиру приходит ноль, фаза и заземление, это по новым стандартам, в домах старой постройки заземление и ноль совмещены.

Что такое фаза и ноль

Каждый раз, получив квартиру или приобретая ее на вторичном рынке недвижимости, жильцы начинают ремонтные работы. В этот период важно правильно провести электрические мероприятия, умея делать разные работы, не каждый обыватель понимает, что такое фаза и ноль. Каждый раз в дом электрика вызывать не будешь, если перегорела лампочка или пропало питание в розетке.

Важно каждому мастеру понять истину, что главное — не искать сразу причину поломки и устранять проблему, а соблюсти правила безопасной работы с электричеством, чтобы не попасть под воздействие электротока.

Конструкции электрических приборов выполнены таким образом, чтобы защитить человека от попадания на действие тока. Фаза – это токопроводящий провод, по которому протекает электрический ток.

Ноль в сети — это провод, который не имеет направленного движения электронов и соединен с нулем распределяющей электрическую энергию подстанцией. На фото ниже представлено распределение по квартире фазного и нулевого проводов:

Схема

Прежде чем что-то чинить в доме, что касается сети электропитания, надо почитать о безопасной работе с электричеством.

Бытовая электрическая проводка

Рассмотрим подробно, по какой схеме поступает ноль и фаза в квартиру или дом. В многоквартирный дом — от подстанции, которая принимает, преобразовывает высоковольтное напряжение в знакомые нам 380 вольт.

Обмотки трансформатора подстанции соединяются по схеме (Y), в общей точке соединения — нуле, другие концы являются фазами (А), (B), (C)

Собранные и подключенные концы в одной точке к нулю также подключаются на контур ТП, производится раздвоение соединения:

  • ноль — рабочий, обозначен синим;
  • защитный провод, или РЕ маркирован желто-зеленым цветом.

Все дома, которые строятся, собираются по этой схеме (TN-S), когда в многоквартирный дом приходит два нуля (рабочий и защитный) и три фазы. В домах, которые построены раньше, применяется схема (TN-C), это четыре провода, три фазы и рабочий ноль. В квартиру поступает одна из фаз и ноль.

Иными словами, нулем в жилом помещении называют проводник, имеющий соединение с контуром ТП, когда он и фаза тока могут создать нагрузку на обмотку трансформатора ТП.

Провод РЕ является защитой от возможных аварий в доме и поражения человека электротоком.

Поквартирная разводка должна соблюдать характеристики векторной диаграммы ТП, что характеризует правильно распределенную нагрузку, питание в каждом помещении 220 вольт.

Чем грозит обрыв фазного или нулевого провода

С течением времени в розетках, переходных коробках, выключателях можно наблюдать обрыв провода. Это может произойти вследствие некачественного соединения, когда нагрузка была больше допустимой. Когда пропадает ноль или фаза в квартире, электротехнические устройства и приборы прекращают работу.

Определение фазы на участке квартиры

Эта же ситуация будет ставить в известность потребителя, если произойдет обрыв провода на одном из участков питания до вводного или распределительного щита, тогда не только одна, но и все квартиры, питающиеся от оборванной фазы, останутся без электричества, но другие потребители, питающиеся от других фаз, будут его получать. Когда обрывается ноль, обесточиваются все квартиры в доме.

Определение фазы и нуля в помещении

Домашним инструментом для определения фазы служит отвертка-индикатор, которая в своем устройстве имеет:

  • токопроводящий наконечник по форме отвертки, который вставляют в одно из отверстий розетки для нахождения фазы;
  • резистор ограничения тока;
  • светодиод или неоновую лампочку, назначение которых — показать, что при их горении это и есть фаза;
  • с другой стороны пробника металлический контакт для пальца руки, которым создается цепь для протекания безопасного тока.

Определение фазы тока

Когда в проверяемом контакте есть свечение светодиода, то это и есть фаза. Значит, второй контакт — ноль. Можно также для определения использовать тестер или другой измерительный прибор напряжения, когда выполнено подключение защитного провода. В этом случае между фазой и рабочим нулем будет показываться 220 В, а между защитой и нулем стрелка не будет отклоняться.

Поиск неисправностей

Работоспособность схемы питания квартиры изображена простым определением. Наличие фазы или рабочего нуля — не совсем правильный подход, так как кроме этого надо соблюсти еще ряд мероприятий — учесть положение включающих устройств, наличие в розетках потребителей с нагревательными элементами, но выключенных кнопкой на приборе.

Нахождение электричества

По этой причине поиск обрыва сети надо проводить при пустых розетках и выключенных устройствах включения (выключателях), кроме тех случаев, когда обрыв может находиться на линии от выключателя до светильника.

Типовая схема разводки электропитания в квартире — это когда на розетки приходит фаза и рабочий ноль, а на осветительный прибор через выключатель — фаза.

Ноль на светильник обычно подается напрямую от распределительной коробки, что представлено на фото ниже:

Зануление в квартире

Зануление в квартире

Электричество в современной жизни — источник создания комфортной жизни для человека. Вокруг нас постоянно работают электрические помощники бытового предназначения, это может быть кухонный комбайн или моющий пылесос, телевизор или ПК, по этой причине понимать, как получают питание эти приборы и устройства просто необходимо.

Важным аспектом безопасной эксплуатации бытовой техники является наличие в квартире рабочего нуля (N) и защитного провода (РЕ). Ноль нужен для создания нагрузки с использованием фазы, а защитный провод — зануления. В качестве защиты может применяться провод, имеющий соединение с ТП по изолированной схеме или глухо заземленной нейтралью — эффективный заземленный ноль.

Значение защитного провода можно рассмотреть на таком примере, как работа нагревательного устройства (бойлера). Вариант, который можно часто встретить, — это когда вследствие нагрузки и длительной работы элемент нагревания ТЭН делает пробой, иными словами, корпус лопается, и нить спирали касается воды.

В этом случае вода — токопроводящая жидкость — касается корпуса обогревателя, но когда произойдет включение бойлера от терморегулятора, автомат защиты сработает от КЗ между корпусом и фазой, так как он был занулен защитным проводом, и человек не попадет под воздействие электротока.

Не существует выражения «нулевая фаза», это противоположные понятия.

Вывод

Важно, чтобы при работе по определению фазы или нуля всегда соблюдалась техника безопасной работы с электричеством, которая описывается в электротехнике.

Допустимый инструмент для самостоятельного поиска фазы в электрике — мультиметр.

Когда один щуп зажимаем в руке и выставляем на приборе замеры переменного напряжения, а вторым щупом ищем фазу, если касаемся фазного провода, прибор покажет напряжение. Можно пользоваться индикатором поиска фазы.

Источник: https://domelectrik.ru/baza/teoriya/faza-i-nol

Почему в квартире 380 вольт? Отгорел ноль! – Homo habilis. Журнал для умелых людей

Sookie (416style), flickr.com CC BY

Ветреным и дождливым вечером особенно приятно сидеть в квартире, ничего не делая и наслаждаясь теплом и уютом.

К сожалению, эта идиллия иногда неожиданно прерывается – лампочки внезапно раскаляются до невыносимой белизны, холодильник гудит и трясется, а телевизор показывает черный экран, да еще с дымком.

В электрической сети резко повысилось напряжение! Почему такое происходит и как с этим бороться?

Первое, что приходит в голову – ошибка электрика.

Но зажимы фазных и нулевого проводов по внешнему виду, цвету проводов, способу крепления здорово отличаются друг от друга, и перепутать их профессиональный электрик может разве что в бессознательном состоянии. Более вероятной причиной появления в квартире 380 вольт является обрыв нулевого провода. На профессиональном жаргоне это называется отгоранием нуля.

Почему отгорает ноль?

В последнее время такие ситуации происходят все чаще. Это связано как с общим износом электрических сетей, так и с техническими решениями, применявшимися при массовом строительстве домов в 50-70 годы ХХ века. При использовании трехфазной сети все квартиры в доме разбивались на три группы, присоединенные к трем разным фазам.

Тогда мало кто мог представить какую-нибудь электрическую нагрузку в квартире, кроме лампочек освещения и пары маломощных электрических приборов. Нагрузка в многоквартирном доме была практически полностью активной, линейной и симметричной.

При этом токи в фазных проводах компенсировали друг друга, а ток в нулевом проводе был сравнительно небольшим. Это привело к очевидному решению – нечего на столь мало работающий провод тратить много материала.

Нулевой провод решили делать тоньше фазных.

Современная жизнь внесла значительные коррективы. Не редки ситуации, когда в одной квартире установлены пара лампочек и телевизор, а в соседней – электрические теплые полы, электрический котел, несколько кондиционеров и джакузи.

Кроме того, почти вся современная техника имеет импульсные блоки питания, сильно искажающие форму тока в сети. Нагрузка в домах перестала быть симметричной и линейной – компенсации фазных токов не происходит. Подчас ток в нулевом проводе даже больше токов в фазных проводах.

Естественно, что более тонкий провод перегревается и не выдерживает.

Почему происходит перенапряжение?

Надо сказать, что при обрыве нуля «везет» далеко не всему дому. Перенапряжение может произойти только на одной или двух фазах. Остальным повезло и на этот раз без кавычек. Проще всего это понять на примере дома из трех квартир.

Каждая квартира питается от своей отдельной фазы А, В или С и нулевого провода N. Напряжение между фазой и нулем 220 вольт – это именно то напряжение, которое нужно в квартире.

Напряжение между любыми двумя фазными проводами – 380 вольт. Это неотъемлемое свойство трехфазной электрической сети переменного тока.

Такое напряжение в квартире совершенно не требуется, и в исправной сети оно туда и не попадает.

Представим, что в квартире 3 все потребители выключены – это позволит временно исключить ее из рассмотрения вместе с питающей ее фазой С.

И вот в такой ситуации нулевой провод на питающей линии обрывается. Очевидно, что обе квартиры становятся подключенными последовательно, но между двумя фазными проводами. А напряжение между фазами — те самые 380 вольт!

Если представить всех потребителей в квартирах в виде двух сопротивлений, то получится классический делитель напряжения.

Обе квартиры поделят 380 вольт между собой, но отнюдь не по-братски. Напряжения распределятся обратно пропорционально мощности электрических приборов. Чем больше электроприборов включено в одной квартире по сравнению с другой, тем ниже в ней будет напряжение.

Если в одной квартире включена одна лампочка на 40 Вт, а в другой — один электрический котел на 3 кВт, то лампочка получит 375 вольт, а котел — оставшиеся 5 вольт.

Естественно, что лампочка мгновенно перегорит и обесточит последовательную цепочку потребителей. В данном случае лампочка будет играть роль предохранителя для электрического котла. И это — самый благоприятный вариант.

В реальности в каждой квартире включено множество потребителей. И с точки зрения электротехники включены они параллельно. Поэтому выход из строя одного прибора не спасет остальные. Более того, выход из строя каждого прибора будет уменьшать общую нагрузку в квартире, и увеличивать приходящееся на нее напряжение, выводя из строя все новые и новые приборы.

А если сложнее? Углубимся в теорию..

Если потребители имеются во всех трех квартирах, то ситуация сложнее. В этом случае для понимания придется углубиться в теоретические основы электротехники. Но совсем немного – вы увидите, что такой путь даже проще и нагляднее, чем рисунки с квартирами.

Три напряжения в трехфазной сети имеют одинаковую частоту 50 Гц, равны по амплитуде и различаются по фазе (сдвигу колебаний друг относительно друга) на 120 градусов.

Такие напряжения принято условно отображать в виде векторной диаграммы. Каждое напряжение выражается отрезком, длина которого пропорциональна величине напряжения, а угол поворота относительно вертикали равен фазе.

При соединении потребителей звездой – каждая квартира между фазой и нулем – напряжения изображают выходящими из одной центральной точки. Это точка нулевого потенциала, она соответствует нулевому проводу. Концы векторов соответствуют фазным проводам.

Векторы эти непрерывно крутятся вокруг нейтральной точки, делая 50 оборотов в секунду, так как частота переменного тока 50 герц. Но взаимное расположение остается неизменным, что и позволяет рассматривать их условно неподвижными.

Напряжения между фазными проводами можно найти геометрически по теореме Пифагора. Эти напряжения называются линейными, они равны фазному напряжению, умноженному на квадратный корень из 3.

Нетрудно подсчитать, что для фазного напряжения 220 вольт линейное равно 380 вольтам. Подаваемое в квартиру напряжение 220 вольт зафиксировано между фазным и нулевым проводом. Если нагрузка в трех квартирах одинакова, то токи в фазных проводах одинаковы и компенсируют друг друга.

Нулевой провод вступает в игру лишь при разбалансе мощностей по фазам. В этом случае он необходим для отвода имеющейся разницы фазных токов. Если нулевой провод обрывается, то напряжения на фазах распределяются таким образом, чтобы фазные токи могли компенсировать друг друга сами. Фазы начинают напоминать крыловских лебедя, рака и щуку, тянущих точку нулевого потенциала каждый на себя.

Потенциал точки соединения потребителей (остаток нулевого провода) перестает фиксироваться и уходит в сторону от точки нулевого потенциала.

В зависимости от усилий животных (мощности на фазах) изменяется и фазное напряжение — от 0 до 380 вольт. Только в данном случае проигравший получает больше и его это не радует. Перенапряжение может происходить на одной или двух фазах из трех, это очевидно из рисунка.

Что делать, если в сети 380 вольт?

Если в электрической сети внезапно повысилось напряжение, то раздумывать нечего. Чем скорее вы выключите электрические приборы, тем больше шансов сохранить их в работоспособном состоянии.

Обратите внимание, что у современных электронных приборов нужно именно физически вытащить шнур питания из розетки. Дело в том, что даже в выключенном состоянии часть схемы остается под напряжением, чтобы обеспечить возможность включения от кнопок управления или пульта.

Конечно, выключать приборы по отдельности долго, лучше выключать сразу все в квартирном электрическом щитке.

Иногда встречаются советы при перенапряжении быстрее включить мощную технику – электрический чайник, обогреватель, утюг. Смысла в этом никакого нет. Во-первых, неизвестно какая нагрузка включена на других фазах поврежденного участка.

Очень может быть, что конкурировать вы будете с десятком квартир и максимум, чего добьетесь – снизите напряжение на 5-10 вольт. А телевизору абсолютно безразлично, от какого напряжения сгореть – 350 или 340 вольт.

Во-вторых, время, затрачиваемое на включение чайника, а тем более – поиски утюга, гораздо больше, чем на щелчок автоматических выключателей. Поэтому самым правильным будет отключение в квартирном щитке. Это быстрее и намного надежнее.

После отключения электроприборов лучше всего скооперироваться с соседями и вызвать электрика управляющей компании или аварийную бригаду. Работы по устранению таких аварий производятся бесплатно, за счет платежей на содержание и текущий ремонт общего имущества в многоквартирном доме или платежей за электроэнергию (в зависимости от места повреждения).

Самостоятельно исправлять повреждения даже в этажном щитке, а тем более – в вводно-распределительном устройстве многоквартирного дома или воздушной линии электропередач смертельно опасно.

Тут-тук, я переменный ток! Есть кто дома?

Ситуация с повышением напряжения может возникнуть и тогда, когда дома никого нет.

А постоянно работающего оборудования в современных квартирах более чем достаточно – холодильники, кондиционеры, водонагреватели, работающие в дежурном режиме телевизоры и музыкальные центры, компьютерная техника.

Здесь нужно надеяться только на автоматику. Для защиты в квартирном щитке устанавливается специальное устройство – реле защиты от перенапряжения.

При выходе напряжения за допустимые пределы реле отключит подачу электроэнергии в квартиру, а при восстановлении нормальных значений – автоматически подключит снова. Стоимость такого устройства 1200-3000 рублей в зависимости от мощности и сервисных функций.

Рекомендуем прочитать

Источник: https://homo-habilis.ru/remont-i-pochinka/234-pochemu-v-kvartire-380-volt-otgorel-nol

Трёхфазная сеть: почему происходит отгорание нуля

По большей части запитка бытовых потребителей происходит по однофазной схеме. Но частично всё же электроснабжение проводится с использованием трёхфазных кабелей.

Конечно, качественная кабельная продукция характеризуется строгими техническими и проводниковыми показателями, а значит необходимостью прокладывать и эксплуатировать их по правилам, учитывая допустимые параметры нагрузки.

Что же означает фраза электрика «Отгорел ноль!»? Почему ноль намного чаще отгорает в трёхфазной сети, а не в однофазной? Каковы прогнозы? Эти и другие вопросы возникают у владельцев домов и других объектов с подобным электроснабжением. Разберемся вместе, как предупредить развитие таких ситуаций, тем самым уменьшив последствия и проблемы.

Понятие «нуля» в однофазной цепи

«Ноль» для однофазной цепи – это один из двух проводников, которые не имеет высокого потенциала относительно «земли». Второй проводник – это «фаза», который имеет высокий потенциал (220 В для бытовых сетей).

  Электрический ток, который проходит по фазе, всегда равен току, который идет по «нулю». Именно поэтому нет предпосылок для отгорания нуля в однофазной сети. Ко всему прочему, линия, как правило, защищена качественной и недорогой автоматикой.

Вот так это выглядит схематически:

Понятие «нуля» в трёхфазной цепи

Как многим известно, трёхфазные линии бывают двух видов относительно нагрузки к фазам. Так выделяют такие виды как: «звезда» и «треугольник».

В случае подключения по типу «треугольник» ноль отсутствует чисто физически, а значит проблемы отгорания попросту нет. А вот схема «звезда» в трёхфазном подключении имеет ноль, как особый проводник.

Рассмотрим подробнее.
Схема подключения «звезда» в трёхфазной цепи:

В данном случае по каждой из 3-х фаз проходит равная по значению нагрузка переменного электротока. При этом они сдвигаются по временной фазе на 120 градусов либо на 1/3 всего периода.

В результате получается сумма равных, но смещенных значений векторов, которые дают суммарное нулевое значение. По сути, это идеальный случай, когда по нулевому проводу идет такой нулевой ток.

А по факту, обесточенный ноль не нужен совершенно.

Реальная ситуация отличается от идеальной. Ведь нагрузки всех фаз в большинстве случаев хоть немного, но отличаются. То есть суммарный вектор не равен нулю. В результате, не происходит компенсации токов, а значит, по нулевому проводнику проходит небольшой уравнительный ток. Именно поэтому во многих кабелях с 3-мя фазами есть 4-я жила – нулевая, которая характеризуется меньшим сечением, чем сечение фазных проводников. Основания причина – экономия электротехнической меди либо алюминия. При более детальном рассмотрении становится понятно, что таких токов недостаточно, чтобы вызвать отгорания нуля. В чем же тогда причина?
Причина в том, что трёхфазная линия включает несимметричные однофазные нагрузки. И при этом, разница в величине нагрузок может быть очень значительной, что электрики характеризуют как «перекос фаз». На стадии проекта проводится работа по максимальному уравнению нагрузок на фазы, но в действительности, распределение мощностей не всегда эффективно. При включении бытовых приборов высокой мощности по одной фазе нет возможности предугадать или компенсировать нагрузку на остальные фазы. В результате, разность нагрузки присутствует.
Обращая внимание на собственный быт, разве многие из нас задавались вопросом – насколько сильно отразится на кабельных линиях нагрузка при включенных одновременно стиральной машине и электрочайнике? Сложно думать о уравнительных токах и нулевой жиле, когда об этом ничего не знаешь.
Даже в таких случаях, когда суммарное значение фазных токов не равняется нулю, экстремальных ситуаций не развивается. Ноль может отгореть очень редко.

Отгорание нуля – когда происходит

Когда же происходит это пресловутое отгорание? И стоит ли об этом говорить? И вот здесь есть одно небольшое «но». Еще с 90-х годов в наш обиход прочно вошло такое понятие, как импульсный блок питания, который используют в целях экономии электроэнергии. Его применяют везде – компьютерах, различной бытовой технике.

При этом, в таких блоках питания ток проходит только лишь в одной трети от полного одного полупериода. В результате, в трёхфазных сетях начинают протекать никак не скомпенсированные токи, которые идут без всякого контроля в нулевой провод. По «нулю» идут токи разных фаз от ассиметричной нагрузки.

При суммировании этих данных, выходит, что ток нуля может соответствовать значению, близком или превышающему номинальное фазное значение. А вот это как раз чревато тем самым отгоранием нуля.
Что спасет ситуацию? Конечно, это хорошая защитная автоматика. Главное, чересчур не экономить и не покупать трёхфазный автомат без нулевой клеммы.

Ведь по сути по каждой фазе проходит электрический ток в пределах номинала и автомат продолжает защищать фазы, а вот ноль остается не у дел.
Еще одна причина, в результате которой может произойти отгорание нуля, это обрыв одной из фаз при наличии больших нагрузок.

В данном случае, суммарное значение токов двух фаз будет намного больше допустимого.
Важно помнить, что не стоит ставить отдельный автомат на нулевой кабель, так как это реально опасно. При отключении провода уравнительные токи будут искать выход через провода фазы. И в этом случае результат всегда предсказуем и опасен.

Лучшее решение – работа со специалистами еще на этапе проектных работ, а также покупка кабельной продукции хорошего качества с соответствующими эксплуатационными характеристиками.

Источник: https://vse-e.com/novosti/trehfaznaia-set-pochemu-proishodit-otgoranie-nulia

Ссылка на основную публикацию
Adblock
detector
",css:{backgroundColor:"#000",opacity:.6}},container:{block:void 0,tpl:"
"},wrap:void 0,body:void 0,errors:{tpl:"
",autoclose_delay:2e3,ajax_unsuccessful_load:"Error"},openEffect:{type:"fade",speed:400},closeEffect:{type:"fade",speed:400},beforeOpen:n.noop,afterOpen:n.noop,beforeClose:n.noop,afterClose:n.noop,afterLoading:n.noop,afterLoadingOnShow:n.noop,errorLoading:n.noop},o=0,p=n([]),h={isEventOut:function(a,b){var c=!0;return n(a).each(function(){n(b.target).get(0)==n(this).get(0)&&(c=!1),0==n(b.target).closest("HTML",n(this).get(0)).length&&(c=!1)}),c}},q={getParentEl:function(a){var b=n(a);return b.data("arcticmodal")?b:(b=n(a).closest(".arcticmodal-container").data("arcticmodalParentEl"),!!b&&b)},transition:function(a,b,c,d){switch(d=null==d?n.noop:d,c.type){case"fade":"show"==b?a.fadeIn(c.speed,d):a.fadeOut(c.speed,d);break;case"none":"show"==b?a.show():a.hide(),d();}},prepare_body:function(a,b){n(".arcticmodal-close",a.body).unbind("click.arcticmodal").bind("click.arcticmodal",function(){return b.arcticmodal("close"),!1})},init_el:function(d,a){var b=d.data("arcticmodal");if(!b){if(b=a,o++,b.modalID=o,b.overlay.block=n(b.overlay.tpl),b.overlay.block.css(b.overlay.css),b.container.block=n(b.container.tpl),b.body=n(".arcticmodal-container_i2",b.container.block),a.clone?b.body.html(d.clone(!0)):(d.before("
"),b.body.html(d)),q.prepare_body(b,d),b.closeOnOverlayClick&&b.overlay.block.add(b.container.block).click(function(a){h.isEventOut(n(">*",b.body),a)&&d.arcticmodal("close")}),b.container.block.data("arcticmodalParentEl",d),d.data("arcticmodal",b),p=n.merge(p,d),n.proxy(e.show,d)(),"html"==b.type)return d;if(null!=b.ajax.beforeSend){var c=b.ajax.beforeSend;delete b.ajax.beforeSend}if(null!=b.ajax.success){var f=b.ajax.success;delete b.ajax.success}if(null!=b.ajax.error){var g=b.ajax.error;delete b.ajax.error}var j=n.extend(!0,{url:b.url,beforeSend:function(){null==c?b.body.html("
"):c(b,d)},success:function(c){d.trigger("afterLoading"),b.afterLoading(b,d,c),null==f?b.body.html(c):f(b,d,c),q.prepare_body(b,d),d.trigger("afterLoadingOnShow"),b.afterLoadingOnShow(b,d,c)},error:function(){d.trigger("errorLoading"),b.errorLoading(b,d),null==g?(b.body.html(b.errors.tpl),n(".arcticmodal-error",b.body).html(b.errors.ajax_unsuccessful_load),n(".arcticmodal-close",b.body).click(function(){return d.arcticmodal("close"),!1}),b.errors.autoclose_delay&&setTimeout(function(){d.arcticmodal("close")},b.errors.autoclose_delay)):g(b,d)}},b.ajax);b.ajax_request=n.ajax(j),d.data("arcticmodal",b)}},init:function(b){if(b=n.extend(!0,{},a,b),!n.isFunction(this))return this.each(function(){q.init_el(n(this),n.extend(!0,{},b))});if(null==b)return void n.error("jquery.arcticmodal: Uncorrect parameters");if(""==b.type)return void n.error("jquery.arcticmodal: Don't set parameter \"type\"");switch(b.type){case"html":if(""==b.content)return void n.error("jquery.arcticmodal: Don't set parameter \"content\"");var e=b.content;return b.content="",q.init_el(n(e),b);case"ajax":return""==b.url?void n.error("jquery.arcticmodal: Don't set parameter \"url\""):q.init_el(n("
"),b);}}},e={show:function(){var a=q.getParentEl(this);if(!1===a)return void n.error("jquery.arcticmodal: Uncorrect call");var b=a.data("arcticmodal");if(b.overlay.block.hide(),b.container.block.hide(),n("BODY").append(b.overlay.block),n("BODY").append(b.container.block),b.beforeOpen(b,a),a.trigger("beforeOpen"),"hidden"!=b.wrap.css("overflow")){b.wrap.data("arcticmodalOverflow",b.wrap.css("overflow"));var c=b.wrap.outerWidth(!0);b.wrap.css("overflow","hidden");var d=b.wrap.outerWidth(!0);d!=c&&b.wrap.css("marginRight",d-c+"px")}return p.not(a).each(function(){var a=n(this).data("arcticmodal");a.overlay.block.hide()}),q.transition(b.overlay.block,"show",1*")),b.overlay.block.remove(),b.container.block.remove(),a.data("arcticmodal",null),n(".arcticmodal-container").length||(b.wrap.data("arcticmodalOverflow")&&b.wrap.css("overflow",b.wrap.data("arcticmodalOverflow")),b.wrap.css("marginRight",0))}),"ajax"==b.type&&b.ajax_request.abort(),p=p.not(a))})},setDefault:function(b){n.extend(!0,a,b)}};n(function(){a.wrap=n(document.all&&!document.querySelector?"html":"body")}),n(document).bind("keyup.arcticmodal",function(d){var a=p.last();if(a.length){var b=a.data("arcticmodal");b.closeOnEsc&&27===d.keyCode&&a.arcticmodal("close")}}),n.arcticmodal=n.fn.arcticmodal=function(a){return e[a]?e[a].apply(this,Array.prototype.slice.call(arguments,1)):"object"!=typeof a&&a?void n.error("jquery.arcticmodal: Method "+a+" does not exist"):q.init.apply(this,arguments)}}(jQuery)}var debugMode="undefined"!=typeof debugFlatPM&&debugFlatPM,duplicateMode="undefined"!=typeof duplicateFlatPM&&duplicateFlatPM,countMode="undefined"!=typeof countFlatPM&&countFlatPM;document["wri"+"te"]=function(a){let b=document.createElement("div");jQuery(document.currentScript).after(b),flatPM_setHTML(b,a),jQuery(b).contents().unwrap()};function flatPM_sticky(c,d,e=0){function f(){if(null==a){let b=getComputedStyle(g,""),c="";for(let a=0;a=b.top-h?b.top-h{const d=c.split("=");return d[0]===a?decodeURIComponent(d[1]):b},""),c=""==b?void 0:b;return c}function flatPM_testCookie(){let a="test_56445";try{return localStorage.setItem(a,a),localStorage.removeItem(a),!0}catch(a){return!1}}function flatPM_grep(a,b,c){return jQuery.grep(a,(a,d)=>c?d==b:0==(d+1)%b)}function flatPM_random(a,b){return Math.floor(Math.random()*(b-a+1))+a}