Простой стабилизатор напряжения с высоким коэффициентом стабилизации

Параметрический стабилизатор напряжения

Содержание:

В слаботочных схемах с нагрузками не более 20 мА используется устройство с низким коэффициентом полезного действия, известное как параметрический стабилизатор напряжения.

В конструкцию данных приборов входят транзисторы, стабисторы и стабилитроны. Они используются преимущественно в компенсационных стабилизирующих устройствах как опорные источники напряжения.

В зависимости от технических характеристик, параметрические стабилизаторы могут быть однокаскадными, многокаскадными и мостовыми.

Стабилитрон, находящийся в составе конструкции, напоминает обратно включенный диод. Однако пробой напряжения в обратном направлении, характерный для стабилитрона, является основой его нормального функционирования.

Данное свойство широко применяется для различных схем, в которых нужно создать ограничение входного сигнала по напряжению. Параметрические стабилизаторы относятся к быстродействующим устройствам, они защищают чувствительные участки схем от импульсных помех.

Использование этих элементов в современных схемах стало показателем их высокого качества, обеспечивающего стабильную работу оборудования в различных режимах.

Схема параметрического стабилизатора

Основой параметрического стабилизатора является схема включения стабилитрона, использующаяся также и в других типах стабилизаторов в качестве источника опорного напряжения.

Стандартная схема состоит из делителя напряжения, который, в свою очередь включает в себя балластный резистор R1 и стабилитрон VD. Параллельно стабилитрону включается сопротивление нагрузки RH. Данная конструкция стабилизирует выходное напряжение при изменяющемся напряжении питания Uп и токе нагрузки Iн.

Работа схемы происходит в следующем порядке. Напряжение, увеличивающееся на входе стабилизатора, вызывает увеличение тока, проходящего через резистор R1 и стабилитрон VD.

Напряжение стабилитрона остается неизменным за счет его вольтамперной характеристики. Соответственно, не изменяется и напряжение на сопротивлении нагрузки. В результате, все измененное напряжение будет поступать на резистор R1.

Принцип работы схемы дает возможность для расчетов всех необходимых параметров.

Расчет параметрического стабилизатора

Качество работы стабилизатора напряжения оценивается по его коэффициенту стабилизации, определяемого по формуле: КстU= (ΔUвх/Uвх) / (ΔUвых/Uвых). Далее расчет параметрического стабилизатора напряжения на стабилитроне осуществляется в соответствии с сопротивлением балластного резистора Ro и типом используемого стабилитрона.

Для расчета стабилитрона применяются следующие электрические параметры: Iст.макс – максимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Iст.

мин – минимальный ток стабилитрона на рабочем участке вольтамперной характеристики; Rд – дифференциальное сопротивление на рабочем участке вольтамперной характеристики. Порядок расчета можно рассмотреть на конкретном примере.

Исходные данные будут следующие: Uвых= 9 В; Iн= 10 мА; ΔIн= ± 2 мА; ΔUвх= ± 10%Uвх.

В первую очередь в справочнике выбирается стабилитрон марки Д814Б, параметры которого составляют: Uст= 9 В; Iст.макс= 36 мА; Iст.мин= 3 мА; Rд= 10 Ом.

После этого выполняется расчет входного напряжения по формуле: Uвх=nстUвых, в которой nст является коэффициентом передачи стабилизатора.

Работа стабилизирующего устройства будет наиболее эффективной когда nст, составляет 1,4-2,0. Если nст = 1,6, то Uвх= 1,6 х 9 = 14,4В.

На следующем этапе выполняется расчет сопротивления балластного резистора (Ro). Для этого применяется следующая формула: Rо= (Uвх–Uвых) / (Iст+Iн). Значение тока Iст выбирается по принципу: Iст ≥ Iн.

В случае одновременного изменения Uвх на величину ΔUвх и Iн на величину ΔIн, не должно быть превышения током стабилитрона значений Iст.макс и Iст.мин.

В связи с этим, Iст берется как среднее допустимое значение в данном диапазоне и составляет 0,015А.

Таким образом, сопротивление балластного резистора будет равно: Rо= (14,4 – 9) / (0,015 + 0,01 ) = 216 Ом. Ближайшее стандартное сопротивление составит 220 Ом.

Для того чтобы выбрать нужный тип резистора, нужно выполнить расчет мощности, рассеиваемой на его корпусе. Используя формулу Р = I2Rо, получаем значение Р = (25· 10-3)2х 220 = 0,138 Вт.

То есть стандартная мощность рассеивания резистора будет 0,25Вт. Поэтому для схемы лучше всего подойдет резистор МЛТ-0,25-220 Ом ± 10 %.

После выполнения всех расчетов нужно проверить, правильно ли выбран режим работы стабилитрона в общей схеме параметрического стабилизатора. Вначале определяется его минимальный ток: Iст.мин= (Uвх–ΔUвх–Uвых) /Rо – (Iн+ΔIн), с реальными параметрами получается значение Iст.мин= (14,4 – 1,44 – 9) х 103/ 220 – (10 + 2) = 6 мА.

Такие же действия выполняются для определения максимального тока: Iст.макс= (Uвх+ΔUвх–Uвых) /Rо – (Iн–ΔIн). В соответствии с исходными данными, максимальный ток составит: Iст.макс= (14,4 + 1,44 – 9) · 103/ 220 – (10 – 2) = 23 мА.

Если полученные значения минимального и максимального тока выходят за допустимые пределы, то в этом случае нужно изменить Iст или сопротивление резистора Rо. В некоторых случаях требуется замена стабилитрона.

Параметрический стабилизатор напряжения на стабилитроне

Для любой радиоэлектронной схемы обязательно наличие источника питания. Они могут быть постоянного и переменного тока, стабилизированными и нестабилизированными, импульсными и линейными, резонансными и квазирезонансными. Такое разнообразие дает возможность выбора источников питания для разных схем.

В наиболее простых электронных схемах, где не требуется высокая стабильность питающего напряжения или большая выходная мощность, чаще всего применяются линейные источники напряжения, отличающиеся надежностью, простотой и низкой стоимостью. Их составной частью служат параметрические стабилизаторы напряжения и тока в конструкцию которых входит элемент, имеющий нелинейную вольтамперную характеристику. Типичным представителем таких элементов является стабилитрон.

Данный элемент относится к особой группе диодов, работающих в режиме обратной ветви вольтамперной характеристики в области пробоя. При включении диода в прямом направлении от анода к катоду (от плюса к минусу) с напряжением Uпор, через него начинает свободно проходить электрический ток.

Если же включено обратное направление от минуса к плюсу, то через диод проходит лишь ток Iобр, составляющий всего несколько мкА. Увеличение на диоде обратного напряжения до определенного уровня приведет к его электрическому пробою. При достаточной величине силы тока диод выходит из строя под действием теплового пробоя.

Работа диода в области пробоя возможна в случае ограничения тока, проходящего через диод. В различных диодах напряжение пробоя может составлять от 50 до 200В.

В отличие от диодов, вольтамперная характеристика стабилитрона имеет более высокую линейность, в условиях постоянного напряжения пробоя. Таким образом, для стабилизации напряжения с помощью этого устройства обратная ветвь вольтамперной характеристики. На участке прямой ветви работа стабилитрона происходит точно так же, как и у обычного диода.

В соответствии со своей вольтамперной характеристикой, стабилитрон обладает следующими параметрами:

  • Напряжение стабилизации – Uст. Зависит от напряжения на стабилитроне во время протекания тока Iст. Диапазон стабилизации у современных стабилитронов находится в пределах от 0,7 до 200 вольт.
  • Максимально допустимый постоянный ток стабилизации – Iст.max. Ограничивается величиной максимально допустимой рассеиваемой мощности Рmax, которая, в свою очередь тесно связана с температурой окружающей среды.
  • Минимальный ток стабилизации – Iст.min. Зависит от минимального значения тока, проходящего через стабилитрон. При этом токе должно быть полное сохранение работоспособности устройства. Вольтамперная характеристика стабилитрона между параметрами Iст.max и Iст.min имеет наиболее линейную конфигурацию, а изменение напряжения стабилизации очень незначительно.
  • Дифференциальное сопротивление стабилитрона – rст. Данная величина определяется как отношение приращения напряжения стабилизации на устройстве к малому приращению тока стабилизации, вызвавшему это напряжение (ΔUCT/ ΔiCT).
Читайте также:  Вариант регулируемого стабилизатора

Параметрический стабилизатор на транзисторе

Работа параметрического стабилизатора на транзисторах почти ничем не отличается от аналогичного устройства на стабилитроне.

В каждой схеме напряжение на выходах остается стабильным, поскольку их вольтамперные характеристики затрагивают участки с падением напряжения, слабо зависящим от тока.

То есть, как и в других параметрических стабилизаторах, стабильные показатели тока и напряжения достигаются за счет внутренних свойств компонентов.

Падение напряжения на нагрузке будет таким же, как и разность падения напряжения стабилитрона и р-п перехода транзистора. Падение напряжения в обоих случаях слабо зависит от тока, отсюда можно сделать вывод, что выходное напряжение также является постоянным.

Нормальная работа стабилизатора характеризуется наличием напряжения в диапазоне от Uст.max до Uст.min. Для этого необходимо, чтобы и ток, проходящий через стабилитрон, находился в пределах от Iст.max до Iст.min.

Таким образом, течение максимального тока через стабилитрон будет осуществляться в условиях минимального тока базы транзистора и максимального входного напряжения.

Поэтому транзисторный стабилизатор имеет существенные преимущества над обычным устройством, поскольку значение выходного тока может изменяться в широком диапазоне.

Источник: https://electric-220.ru/news/parametricheskij_stabilizator_naprjazhenija/2017-03-10-1197

Стабилизаторы напряжения

В промышленной сети напряжение не постоянно в течение суток: в зависимости от потребления энергии промышленными предприятиями, электрическим транспортом и расхода в наших квартирах напряжение в сети то возрастает, то убывает.

Следовательно, при питании аппаратуры от этой сети будет изменяться напряжение и на обмотках трансформатора, а значит, и на выходах выпрямителя и фильтра. Если колебания напряжения сети составляют ±10%, то в таких же пределах изменяется и величина выпрямленного напряжения.

При изменении питающего напряжения нарушается режим работы электронных приборов (транзисторов, электронных ламп), что приводит к ухудшению параметров всего устройства. Например, в радиоприемнике при изменении режима работы транзисторов могут возникнуть сильные искажения звука, хрипы, гудение.

Такие же явления наблюдаются в нем при питании от химических источников тока, напряжение которых по мере разрядки уменьшается. Чтобы этого не происходило, напряжение питания электронных устройств часто стабилизируют.

Здесь возможны два способа: стабилизация переменного напряжения на входе силового трансформатора или стабилизация выпрямленного напряжения. В первом случае применяют специальные феррорезонансные стабилизаторы. Их недостатками являются большие габариты и вес. Чаще прибегают к стабилизации выпрямленного напряжения, осуществляемой с помощью электронных стабилизаторов.

Стабилитроны и стабисторы
Стабилитроны и стабисторы — это полупроводниковые диоды, предназначенные для стабилизации, т. е. поддержания постоянства напряжения в цепях питания радиоэлектронной аппаратуры.

Конструкции стабилитронов широкого применения аналогичны плоскостным выпрямительным диодам.

Но работает стабилитрон не на прямой, как выпрямительные или высокочастотные диоды, а на том участке обратной ветви вольт-амперной характеристики, где незначительное обратное напряжение вызывает значительное увеличение обратного тока через прибор. Разобраться в сущности действия стабилитрона поможет его вольт-амперная характеристика, показанная на рис. 1.

Напряжение на стабилитрон подают в обратной полярности, т. е. включают так, чтобы его анод был соединен с минусом, а катод с плюсом источника питания. При таком включении через стабилитрон течет обратный ток Iобр. По мере увеличения обратного напряжения обратный ток растет очень мало — характеристика идет почти параллельно оси Uобр.

Но при некотором напряжении Uобр (на рис. 1 — около 9,5 В) p-n переход стабилитрона пробивается и через него начинает течь значительный обратный ток. Теперь вольт-амперная характеристика резко поворачивает и идет вниз почти параллельно оси Iобр. Этот участок и является для стабилитрона рабочим.

Пробой же p-n перехода не ведет к порче прибора, если ток через него не превышает некоторой допустимой величины.

Стабистор, как и выпрямительный диод, работает на прямой ветви вольт-амперной характеристики (рис.2).

Стабистор открывается при незначительном прямом напряжении Uпр и через него начинает течь нарастающий по величине прямой ток Iпр. Прямая ветвь вольт-амперной характеристики стабистора проходит почти параллельно оси Iпр; при значительном изменении прямого тока через стабистор падение напряжения на нем изменяется очень мало. Это свойство стабистора и используется для стабилизации напряжения.

Вот наиболее важные параметры (характеристики) стабилитронов и стабисторов: напряжение стабилизации Uст , ток стабилизации Iст, минимальный ток стабилизации Iст.мин и максимальный ток стабилизации Iст.макс.

Параметр Uст – это падение напряжения, которое создается между выводами стабилизатора или стабистора в рабочем режиме.

Минимальный ток стабилизации Iст.мин – это: для стабилитрона — наименьший ток через прибор, при котором начинается устойчивая работа в режиме «пробоя» (на рис.1 — линия Iст.

мин); для стабистора – наименьший прямой ток, при котором крутизна вольт-амперной характеристики резко уменьшается (на рис.2 — на уровне линии Iст.мин).

С уменьшением этого тока приборы перестают стабилизировать напряжение.

Максимально допустимый ток стабилизации Iст.макс – это наибольший ток через прибор, при котором температура его р-n перехода не превышает допустимой (на рис. 1 и 2 — линии Iст.макс). Превышение тока Iст.макс ведет к тепловому пробою р-n перехода и, естественно, к выходу прибора из строя.

Параметрический стабилизатор напряжения
Простейшим стабилизатором напряжения является стабилизатор на кремниевом стабилитроне, схема которого приведена на рис. 3.

Схема на стабисторе выглядит аналогично с той лишь разницей, что полярность включения стабистора прямая.

Для нормальной работы такого стабилизатора необходимо, чтобы ток IСТ, протекающий через стабилитрон, не был меньше, чем IСТ.МИН, и больше, чем IСТ.МАКС.

При изменении тока, протекающего через стабилитрон в этих пределах, на нем и на подключенной параллельно ему нагрузке RH напряжение, называемое напряжением стабилизации UСТ стабилитрона, будет оставаться постоянным. Однако для стабилитронов одного и того же типа это напряжение будет неодинаковым.

Поэтому в справочниках приводятся обычно минимальная и максимальная границы значений напряжения или указывается номинальное напряжение стабилизации UCT и его допустимый разброс ?UCT.

Если напряжение UВХ, поступающее на вход стабилизатора (рис. 3), в процессе работы может изменяться от некоторого наименьшего значения UBX.МИН до наибольшего UBX.

МАКС, то при неизменном напряжении на стабилитроне все изменения входного напряжения должны гаситься на резисторе R1. Поэтому резистор R1 называют гасящим, или балластным.

Читайте также:  Что такое геркон?

Чтобы при этом изменения тока, протекающего через стабилитрон, не выходили за пределы, ограниченные значениями IСТ.МИН и IСТ.МАКС, нужно правильно рассчитать сопротивление этого резистора.

Отношение относительного изменения напряжения на входе стабилизатора

(?UВХ/UВХ) к относительному изменению напряжения на его выходе (?UВыХ/UВыХ) называют коэффициентом стабилизации (КСТ).

Следовательно,

Стабилизатор на кремниевом стабилитроне имеет еще одно свойство. Дело в том, что стабилитрон обладает очень малым сопротивлением переменному (пульсирующему) току, называемым дифференциальным сопротивлением — rд.ст.

Чем круче характеристика в области пробоя, тем меньше дифференциальное сопротивление стабилитрона. Для большинства маломощных стабилитронов rд.ст=5…15 Ом. Вместе с резистором R1 дифференциальное сопротивление стабилитрона образует делитель (рис.

4), между плечами которого распределяются как постоянная составляющая выпрямленного напряжения, так и его пульсации.

Если амплитуду пульсаций на входе стабилизатора обозначить через UП.ВХ, а на выходе — через UП.ВХ, то в соответствии с рис. 4 получим

Так как rд.ст >> R1, то rд.ст/(R1+ rд.ст)

Источник: http://hamlab.net/begun/stab.html

Урок 1.12 Стабилизаторы напряжения

Стабилизатор напряжения, это устройство, которое при изменении входного напряжения и тока нагрузки удерживает выходное напряжение на заданном неизменном уровне.

Простейший стабилизатор напряжения, схема:

Основным элементом стабилизатора является стабилитрон, на схеме он обозначен VD. Стабилитрон, это диод, с определенным пробивным обратным напряжением. Напряжение, при котором наступает пробой, называется напряжением стабилизации.

Это напряжение остается постоянным при изменении тока через стабилитрон от значения Iст мин до Iст макс. (показано на графике ниже). Величина тока стабилизации задается балластным резистором R.

Именно ограничение тока не позволяет выходить из строя стабилитрону при пробивном напряжении на нем. Пробивное напряжение у стабилитрона является рабочим и называется напряжением стабилизации.

Как работает стабилизатор напряжения, рассмотрим на конкретном примере.

Допустим, на выходе нужно иметь постоянное напряжение 12 В, при напряжении на входе 220 В. Задаем диапазон допустимого изменения напряжения на входе, например ±10%. Это значит, что напряжение будет изменяться от 198 В до 242 В. Напряжение после выпрямления диодами так же будет изменяться на ±10%.

Но даже уменьшенное на 10% оно должно превышать необходимое на выходе 12 В на величину падения напряжения на балластном резисторе R. С учетом этого, для работы стабилизатора выберем трансформатор, вторичная обмотка которого будет обеспечивать после диодов 15 В, при напряжении на входе трансформатора 220 В.

Тогда, при изменении напряжения на входе на ±10% напряжение после выпрямления диодами будет изменяться от 13,5 В до 16,5 В. На балластном резисторе будет падать максимум 4,5 В. Ток стабилитрона возьмем приблизительно средний, 20 мА (смотри слева на вольт-амперной характеристике).

Это напряжение делим на выбранный ток стабилитрона 20 мА (0,02 А) и получаем величину сопротивления балластного резистора:

4,5 : 0,02 = 225 Ом, выбираем ближайший стандартный номинал 220 Ом, мощность рассеиваемая этим резистором составит 4,5 В × 0,02 А = 0,09 Вт, ближайший стандарт 0,125 Вт.

Для наглядности сведем эти данные в таблицу:

Напряжение сети Напряжение после выпрямителя Ток стабилитрона Напряжение на нагрузке
220 В 15 В 14 мА 12 В
198 В 13,5 В 7 мА 12 В
242 В 16,5 В 20 мА 12 В

Вывод.

При изменении напряжения на первичной обмотке трансформатора от 198 В до 242 В, напряжение после выпрямления диодами будет меняться от 13,5 В до 16,5 В, а на выходе стабилизатора напряжение будет оставаться равным 12 В. Все лишнее напряжение будет падать на балластном резисторе R.

Другими словами при повышении напряжения ток через стабилитрон будет увеличиваться, что приведет к увеличению падения напряжения на балластном резисторе, в результате чего на выходе стабилизатора напряжение останется неизменным.

Основным недостатком рассмотренной схемы является то, что ток нагрузки не может превышать 0,1 тока через стабилитрон. В нашем примере, максимальный ток нагрузки не может превышать 20 мА × 0,1 = 2 мА. Если ток будет больше, то выходное напряжение не сможет удерживаться на заданном уровне 12 В.

Стабилизатор напряжения с усилителем на транзисторе.

Чтобы стабилизатор мог обеспечивать больший ток в нагрузке, применяют усилители на транзисторах. Ниже приводится простейшая схема стабилизатора напряжения с усилителем на одном транзисторе.

Принцип работы этого стабилизатора аналогичный описанному выше. Отличие состоит в том, что ток нагрузки не течет через стабилитрон, а течет через коллектор-эмиттер транзистора.

Стабилитрон поддерживает на базе транзистора стабильное напряжение, такое же стабильное напряжение, отличающееся на небольшое (меньше 1 вольта) падение напряжения на открытом pn переходе база-эмиттер транзистора, будет и на нагрузке.

Максимальный ток нагрузки будет равен току стабилитрона, умноженному на коэффициент усиления транзистора, который может быть равен 10 и намного выше.

Для повышения коэффициента стабилизации при больших токах нагрузки может применяться несколько транзисторов. Выпускаются микросхемы, внутри которых собраны все детали стабилизатора. Эти микросхемы имеют всего три вывода для подключения: вход, общий и выход. Стабилизаторы, схемы которых построены по такому принципу, называются компенсационными.

Основной недостаток компенсационных стабилизаторов – большая мощность, рассеиваемая на регулирующем элементе. При больших токах обязательно применение радиаторов для охлаждения. Такой принцип не позволяет достигать высоких значений коэффициента полезного действия (кпд).

Импульсный стабилизатор напряжения.

Для повышения кпд стабилизаторов был разработан принцип на основе широтно-импульсного модулятора.

Суть этого принципа в следующем. Переменное напряжение после выпрямления диодами подается на схему, состоящую из импульсного ключа и генератора прямоугольных импульсов частотой несколько килогерц. Эти импульсы открывают и закрывают мощный транзисторный ключ.

После прохождения ключа импульсы преобразуются в постоянное напряжение. Чем больше длительность этих импульсов, тем выше постоянное напряжение.

Если на выходе поставить устройство контроля за величиной постоянного напряжения и связать его с управлением длительностью импульсов генератора, то получим эффективный стабилизатор.

Например, зададим выходное напряжение 12 В. Если оно начнет по каким-либо причинам увеличиваться устройство контроля начнет уменьшать длительность импульсов генератора и вернет выходное напряжение в норму. Если выходное напряжение начнет уменьшаться, то по этой же причине длительность импульсов генератора начнет увеличиваться и компенсирует это уменьшение.

Мощный ключ в такой схеме имеет два устойчивых состояния – полностью открыт или полностью закрыт. При этом величина выходного напряжения прямо пропорциональна времени открытого состояния ключа. Падение напряжения на нем минимально и он практически не греется, что существенно повышает кпд таких стабилизаторов.

Читайте также:  Расценки на электрику

Пример структурной схемы импульсного стабилизатора напряжения показан ниже:

Источник: http://radiomasterinfo.org.ua/urok-1-12-stabilizatory-napryazheniya/

Параметрические стабилизаторы напряжения. Расчёт простейшего параметрического стабилизатора на стабилитроне

Параметрический стабилизатор напряжения — это устройство, в котором стабилизация выходного напряжения достигается за счет сильной нелинейности вольт-амперной характеристики электронных компонентов, использованных для построения стабилизатора (т.е. за счет внутренних свойств электронных компонентов, без построения специальной системы регулирования напряжения).

Для построения параметрических стабилизаторов напряжения обычно используются стабилитроны, стабисторы и транзисторы.

Из-за низкого КПД такие стабилизаторы находят применение в основном в слаботочных схемах (с нагрузками до нескольких десятков миллиампер). Наиболее часто они используются как источники опорного напряжения (например, в схемах компенсационных стабилизаторов напряжения).

Параметрические стабилизаторы напряжения бывают однокаскадными, многокаскадными и мостовыми.

Рассмотрим простейший параметрический стабилизатор напряжения, построенный на основе стабилитрона (схема приведена ниже):

  1. Iст — ток через стабилитрон
  2. Iн — ток нагрузки
  3. Uвых=Uст — выходное стабилизированное напряжение
  4. Uвх — входное нестабилизированное напряжение
  5. R0 — балластный (ограничительный, гасящий) резистор

Работа стабилизатора основана на том свойстве стабилитрона, что на рабочем участке вольт-амперной характеристики (от Iст min до Iст max) напряжение на стабилитроне практически не изменяется (на самом деле конечно изменяется от Uст min до Uст max, но можно считать, что Uст min = Uст max = Uст).

В приведенной схеме, при изменении входного напряжения или тока нагрузки — напряжение на нагрузке практически не меняется (оно остаётся таким же, как и на стабилитроне), вместо этого изменяется ток через стабилитрон (в случае изменения входного напряжения и ток через балластный резистор тоже).

То есть, излишки входного напряжения гасятся балластным резистором, величина падения напряжения на этом резисторе зависит от тока через него, а ток через него зависит в том числе от тока через стабилитрон, и таким образом, получается, что изменение тока через стабилитрон регулирует величину падения напряжения на балластном резисторе.

Уравнения, описывающие работу данной схемы:

Uвх=Uст+IR0, учитывая, что I=Iст+Iн, получим

Uвх=Uст+(Iн+Iст)R0 (1)

Для нормальной работы стабилизатора (чтобы напряжение на нагрузке всегда было в пределах от Uст min до Uст max) необходимо, чтобы ток через стабилитрон всегда был в пределах от Iст min до Iст max. Минимальный ток через стабилитрон будет течь при минимальном входном напряжении и максимальном токе нагрузки. Зная это, найдём сопротивление балластного резистора:

R0=(Uвх min-Uст min)/(Iн max+Iст min) (2)

Максимальный ток через стабилитрон будет течь при минимальном токе нагрузки и максимальном входном напряжении. Учитывая это и сказанное выше относительно минимального тока через стабилитрон, с помощью уравнения (1) можно найти область нормальной работы стабилизатора:

Перегруппировав это выражение, получим:

Или, по другому:

Если считать, что минимальное и максимальное напряжение стабилизации (Uст min и Uст max) отличаются незначительно, то первое слагаемое в правой части можно считать равным нулю, тогда уравнение, описывающее область нормальной работы стабилизатора, примет следующий вид:

   (3)

Из этой формулы сразу виден один из недостатков такого параметрического стабилизатора — мы не можем сильно менять ток нагрузки, поскольку это сужает диапазон входного напряжения схемы, более того, можно увидеть, что диапазон изменения тока нагрузки не может быть больше, чем диапазон изменения тока стабилизации стабилитрона (поскольку в этом случае правая часть уравнения вообще становится отрицательной)

Если ток нагрузки постоянен или изменяется незначительно, тогда формула для определения области нормальной работы становится совсем элементарной:

   (4)

Далее, давайте рассчитаем КПД нашего параметрического стабилизатора. Он будет определяться отношением мощности, отдаваемой в нагрузку к входной мощности: КПД=Uст*Iн/Uвх*I. Если учесть, что I=Iн+Iст, то получим:

   (5)

Из последней формулы видно, что чем больше разница между входным и выходным напряжением, а также чем больше ток через стабилитрон — тем хуже КПД.

Чтобы понять, что значит «хуже» и насколько вообще плохо обстоит дело с КПД у этого стабилизатора — давайте, используя формулы выше, попробуем прикинуть, что будет, если понижать напругу скажем с 6-10 Вольт до 5-ти. Возьмём самый обычный стабилитрон, скажем КС147А.

Ток стабилизации у него может меняться в пределах от 3-х до 53-х мА.

Чтобы при таких параметрах стабилитрона получить область нормальной работы шириной в 4 Вольта — нам нужно взять балластный резистор на 80 Ом (воспользуемся формулой 4, как будто ток нагрузки у нас постоянный, поскольку если это не так, то всё будет ещё хуже).

Теперь из формулы 2 можно посчитать на какой именно ток нагрузки мы можем в этом случае рассчитывать. Получается всего 19,5 мА, а КПД в этом случае будет, в зависимости от входного напряжения, в пределах от 14% до 61%.

Если для этого же случая посчитать на какой максимальный выходной ток мы можем рассчитывать при условии, что выходной ток не постоянный, а может меняться от нуля до Imax, то решив совместно системы уравнений (2) и (3), получим R0=110 Ом, Imax=13,5 мА. Как видите, максимальный выходной ток получился почти в 4 раза меньше максимального тока стабилитрона.

Более того, выходное напряжение, полученное на таком стабилизаторе, будет обладать значительной нестабильностью в зависимости от выходного тока (у КС147А на рабочем участке ВАХ напряжение меняется от 4,23 до 5,16В), что может оказаться неприемлемым.

Единственный путь борьбы с нестабильностью в данном случае — взять более узкий рабочий участок ВАХ — такой, на котором напряжение меняется не от 4,23 до 5,16В, а скажем от 4,5 до 4,9В, но в этом случае и рабочий ток стабилитрона будет уже не 3..53мА, а скажем 17..40мА.

Соответственно, и без того небольшая область нормальной работы стабилизатора станет ещё меньше.

Итак, единственный плюс такого стабилизатора — это его простота, тем не менее, как я уже говорил, такие стабилизаторы вполне себе существуют и даже находят активное применение в качестве источников опорного напряжения для более сложных схем.

Простейшая схема, позволяющая получить существенно больший выходной ток (или существенно более широкую область нормальной работы, или и то и другое) — параметрический стабилизатор на транзисторе.

Источник: http://radiohlam.ru/?p=1165

Ссылка на основную публикацию
Adblock
detector