Вертикальная многодиапазонная антенна

ODXC

Сергей RW3XA, октябрь 2005 English version

Как правило, для работы вертикальной антенны на нескольких диапазонах, в вибратор антенны вводятся специальные конструктивные элементы для настройки антенны в резонанс на разных диапазонах.

Эти  элементы могут быть сосредоточенными (LC, L, C, например, антенна Cushcraft R7000) или распределенными (шлейфы, линии, например, антенна GAP-Titan). Т.е. вибратор «разбит» на несколько частей между которыми и находятся те самые настроечные элементы, обеспечивающие резонанс антенны на рабочих диапазонах.

Чем больше таких элементов, тем больше сложностей с их оптимальной настройкой, да и надежность конструкции в целом оставляет желать лучшего из-за того что вибратор «разрезан» изоляторами.

  Конечно, за счет того что антенна является многорезонансной, для смены диапазона достаточно переключить диапазон в трансивере — просто и удобно, но не все так хорошо если ваши близкорасположенные соседи по хобби активны в эфире — шорохи и щелчки от сигналов соседей с других диапазонов являются обычным делом.

Многодиапазонную вертикальную антенну можно сделать и по совершенно другому конструктивному принципу:  излучающая часть антенны цельная и подключается к контуру,  согласующему импеданс антенны с фидером. Другими словами, входное сопротивление вибратора на любой частоте имеет комплексную величину, т.е.

активную и реактивную составляющие, а  контур согласует (преобразовывает) комплексную величину входного сопротивления вибратора с активным сопротивлением фидера. Естественно, для оптимального согласования на каждый диапазон нужен отдельный переключаемый согласующий контур.

Совмещенный многодиапазонный контур не лучший выбор — очень сложно добиться оптимального согласования (ведь для разных диапазонов и схемы согласования могут быть разные) и обеспечить необходимую добротность, соответственно, будет больше потерь чем при отдельном согласовании для каждого диапазона.

Материалов о подобных конструкциях сравнительно мало (например, QST, ARRL), хотя они имеют некоторые достоинства перед другими  вертикалами. Например:   1. Механическая прочность вибратора из-за отсутствия изоляторов.   2. Возможность и удобство оптимальной настройки КСВ на стыке антенна-фидер (т.е. настройка контура).   3. Простота при установке за счет меньшего веса практически «голой» трубы (если не считать короткой емкостной нагрузки вверху в моем случае).   4. За счет переключаемого резонанса вибратора, улучшается подавление вне диапазонных сигналов на прием и гармоник на передачу.

Как это ни странно звучит, но данная антенна является реализацией идеи использования любой «железяки» в качестве КВ антенны.

🙂 Конечно в данном случае я не имею ввиду совсем крайние случаи, например, телескопическую антенну длинной 1 метр от бытового радиоприемника, раскачанную от ГТ321А до свечения неонки, хотя, в начале 80-х подобный опыт был (может кто помнит радиолюбительское троеборье РЛТ и CW тест на 3.5МГц?)…

  Итак, в данном случае я хотел бы поделиться конкретными результатами того что в итоге получилось.

Безусловно, это не панацея и полноразмерная одно диапазонная антенна может работать и лучше, но в ряду многодиапазонных антенн, а речь идет об антеннах на 9 КВ диапазонов, на мой взгляд, данная конструкция явно заслуживает внимания, особенно для тех у кого нет возможности установить что-нибудь солидное, а с DX работать хочется.

Естественно, под «любой длинной» подразумевается разумная длина при которой теоретический КПД на наименьшей частоте (1.8МГц) будет хотя бы несколько десятков процентов, т.е. общая длинна должна быть хотя бы метров 10. Далее, с помощью отдельного LC контура для каждого КВ диапазона, антенна согласуется с 50-омной активной нагрузкой, т.е.

50-омный фидер может быть произвольной длинны. Т.е. получается такая блок-схема антенной системы: антенна — блок согласующих переключаемых контуров — фидер. Антенна вертикальная, без трэпов, шлейфов и подобных согласующих (и ненадежных) элементов в вибраторе. Образно говоря, просто вертикальная труба.

А для некоторого электрического удлинения использована простая, ненастраиваемая емкостная нагрузка вверху вибратора. В общем, исходя из того какие трубы были в наличии на момент изготовления (а это было еще в 1996 году), общая длина получилась около 13 метров.

Отмерено шагами :-), а для проверки идеи точнее и не надо было! Только через пару лет при замене растяжек и по просьбе друзей, измерил точную длину антенны, получилось 12.85 м. По большому счету, конкретная длина не критична — все можно согласовать контурами. Однако, надо иметь в виду, что даже сравнительно небольшое изменении общей длинны антенны (см. ниже) может повлиять на настройку согласующих контуров и даже на схему их включения, в итоге настройка может получится достаточно трудоемкой и длительной. Именно для того чтобы упростить  настройку, минимизировать мучительные творческие изыскания при согласовании, поделиться реальными результатами и написан этот материал.

Конструкция.
5 метров самой нижней трубы (см. рис.1)  — диаметр 50мм, далее 5 метров диаметр 40мм, 2м -диаметр 20мм, 85см -диаметр 10мм. Все трубы из дюралюминия, общая длинна 12.85м. На расстоянии 2.85м от верхнего конца антенны, т.е.

на стыке 40мм и 20мм труб, закреплены (и гальванически соединены с вибратором) 4 провода емкостной нагрузки из 3мм медного канатика длинной по 1.4 метра. На концах проводов установлены изоляторы к которым крепятся 4 капроновые растяжки верхнего яруса. Нижний ярус (тоже из 4 растяжек) расположен на уровне 5 м от основания.

К торцу нижней 50мм трубы жестко прикручен керамический изолятор, который соединен с втулкой опирающейся на стальной шарик диаметром 10мм (см. рис.2). Т.е. получается, что вся антенна стоит только на этом шарике.

Рис.1. Общие размеры антенны. Рис.2. Конструкция опорного узла.

Очень похоже на конструкцию обнинской Высотной метеорологической мачты (ВММ310), которая введена в эксплуатацию в 1959г., имеет высоту 310м, и шарик там всего 30 см диаметром.

Достоинство данного решения в том, что за счет шарика к керамическому изолятору прилагается только безопасное усилие на сжатие, а не на изгиб, соответственно, в вертикальной трубе антенны весьма эффективно гасятся механические резонансы и вибрация от ветровой нагрузки. К основанию подключены 8 противовесов (4шт. длинной 20м, 4 шт.

длиной 10м), а также и контур заземления проходящий по крыше 9-этажного жилого дома. У основания антенны установлен блок согласования, представляющий из себя герметизированную металлическую коробку размерами 390x250x120 мм, в которой находятся 8 штук двух обмоточных реле типа «хлопушка». Реле установлены якорем вниз, т.е.

в неактивном состоянии якорь свободно висит между замыкаемыми контактами. Управление на реле подается по 8-ми жильному кабелю UTP (витая пара для локальной сети) от двух полярного источника питания 24V/1A (лучше если будет 27V).

Для повышения электрической прочности к наведенному электричеству все схемы согласующих LC контуров выполнены с гальваническим связью антенны и фидера с землей. Для согласования диапазонов 14 и 21 МГц используется один и тот же контур, поэтому левая замыкающая группа реле Р5 (см. схему) используется для переключения фидера на другую антенну. Фидер с волновым сопротивлением 50 Ом может иметь произвольную длину.

Рис.3. Схема блока коммутации диапазонов.
Рис.4. Конструкция блока коммутации (фото)
Намоточные данные катушек индуктивности.
L внутренний  диаметр каркасамм диаметр  провода мм длина  намотки мм количество витков отвод
L1* 35 4 45 7.5 3
L2* 35 4 55 8 4.5
L3 40 1.8 в/в 47
L4 40 1.8 в/в 35 6/11
L5 36 2.5 52 18.5 8.5
L6* 35 4 55 9 8.5
L7 32 2.5 50 13 4.5
( * бескаркасная намотка, в/в — виток к витку)

 

Настройка.
Настройка антенны, а точнее согласующих контуров, производилась с помощью анализатора AEA HF SWR Analyst и трансивера Yaesu FT-990AC с приоритетом в CW участках КВ диапазонов.. Анализатор использовался для общей, визуальной настройки и подбора схем включения контуров.

Надо иметь ввиду, что анализатор производит измерения при очень маленькой мощности и, соответственно, чувствителен к эфирным сигналам, что может проявляться в хаотических искажениях диаграммы КСВ. Трансивером проверялись итоговые настройки КСВ, но они только подтвердили то, что было настроено с помощью анализатора. Измерения КСВ после фидера (т.

е. уже внизу) дали те же зависимости по диапазонам, а уровень КСВ не изменился или стал еще ниже (примерно на 0.1) за счет потерь в кабеле. КСВ всегда можно настроить в «1», зависит от кропотливости и потраченного времени. В моем случае уровень КСВ до 1.1-1.

2 показался вполне достаточным на момент настройки, с расчетом «потом настрою еще лучше», но «потом» почему-то так и не наступило 🙂

Результаты.
Опыт эксплуатации показал (работаю на такой антенне на всех КВ диапазонах с 1997г.), хотя теория и пугала невысокой эффективностью (особенно на 1.

8) и сравнительно высокими лепестками в вертикальной плоскости (на 18МГц и выше), но на практике оказалось все даже очень не плохо! Хотя, давать объективную оценку качеству работы всенаправленной антенны достаточно сложно,  т.к. в этом участвует много факторов, например: прохождение, мощность передатчика, опыт оператора и т.п.. Но те кто принимал участие в охоте за DX до середины 2004г (т.

к. c этого времени я пока не активен в эфире по независящим от HAMRADIO причинам), наверняка вспомнят мой позывной и это было бы более весомо чем моя субъективная оценка… Прямое сравнения с другими антеннами в моем случае невозможно, т.к. она у меня всего одна. Однако, косвенные сравнения при работе с DX говорят о достаточно высокой эффективности на всех КВ диапазонах.

На эту антенну и 100W (это 90% QSO, остальные с помощью 3хГУ50 и только на 3.5/7/14Mc) c 1997 и до 2004г. сработано 325 стран по DXCC, из них 322 CW. Здесь можно посмотреть часть QSO из лога. На НЧ диапазонах ближняя зона явно ослабляется (в сравнении с соседями). Особенно была заметна разница при косвенном сравнении c R7000+, совсем не в пользу последней.

Несколько раз, во время выезда в полевые условия, блок согласования снимался с крыши и подключался к антенне с аналогичными размерами, но из труб меньшего диаметра (примерно в 1.5. раза меньше). Антенна устанавливалась на земле с изолятором и такими же 8-ю радиалами. Относительно антенны установленной на крыше, КСВ изменялся максимум на 0.2-0.

3 и то за счет незначительно сдвига КСВ по частоте. Графики значений КСВ антенны (установленной на крыше 9-эт. панельного дома) на различных КВ диапазонах приведены ниже. При приеме, ослабление сигналов  на других диапазонах (т.е.

если антенна включена  не на «свой» диапазон)  составляет в среднем 10-20дб, и эта дополнительная фильтрация очень даже пригодилась: значительно снижалась помеха от моего соседа RA3XO, работающего на соседнем диапазоне на вертикальную антенну находившуюся в 12м от моей. Такая же по принципу антенна, но высотой около 18м для повышения эффективности на НЧ диапазонах, используется у RW3XW. При этом, естественно, параметры LC контуров получились совершенно другие.

Рекомендации.
1. В процессе эксплуатации (через год, два) стал проявляться эффект отсутствия приема на некоторых диапазонах. Именно «на прием», т.к. после передачи даже одной короткой точки (на минимальной мощности) все встает на свои места…

Оказалось, что причиной является окисление открытых посеребренных контактов реле. Замена на реле того же типа, но с другим покрытием, уменьшает вероятность этой проблемы процентов на 90 и тем не менее «редко, но бывает». В этой связи, желательно вместо открытых реле использовать вакуумные замыкатели, например В1В.
2. Т.к.

конденсаторы подключены к «горячим концам» согласующих контуров, то при передаче на них может присутствовать весьма значительное напряжение (примерно до 1KVpp при 100-200W). Мною использовались конденсаторы КВИ (импульсные, реактивная мощность для них не нормируется) на напряжения 5-10KV.

При таком запасе по напряжению, КВИ достаточно стабильны, а при номинальных напряжениях  могут значительно греться и, соответственно, доставить массу хлопот, т.к. КВИ это импульсные и не подходят для мощностей более 500Вт…

  Если предполагается излучение большей мощности, то рекомендуется ставить только конденсаторы К15-У с соответствующей реактивной мощностью (КВар) и запасом по напряжению (не менее 1.5).
КСВ по диапазонам.

Читайте также:  Детектор света

P.S.
Применительно к HAMRADIO, любая антенна (впрочем, как трансивер, PA, компьютер) является всего лишь инструментом для проведения QSO. Инструмент может быть эффективным или «не очень», японским или самодельным и т.д.

(кому что нравится), но сам по себе он не является определяющим фактором! Эти «железки» могут только повысить эффективность работы оператора, но никак не заменить его.

И даже в цифровых RTTY и PSK, уж про CW и не говорю, именно оператором определяется что, где, когда и как, хотя непосвященному и кажется что все делает компьютер. А тех операторов у которых в шеке главным является «железо», пусть и достойное, очень даже хорошо «слышно».

В смысле, «уши мои бы не слышали..». Давайте гармонично совершенствовать и аппаратуру и свою квалификацию как оператора, ведь в этой гармонии и есть смысл HAMRADIO! 

Источник: http://www.odxc.ru/gpxa

Кв антенны

Главная > Антенны > Кв антенны

Даже представить себе невозможно, сколько антенн становится вокруг нас: мобильный телефон, телевизор, компьютер, беспроводной роутер, радиоприемники. Есть даже антенные устройства для экстрасенсов.

Что такое антенна кв? Большинство людей, не связанных с радио, ответит, что это длинный провод или телескопический штырь. Чем он длиннее, тем лучше приём радиоволн. Доля истины в этом есть, но ее очень мало.

Так каких же размеров должна быть антенна?

Эффективная КВ антенна

Важно! Размеры всех антенн должны быть соизмеримы с длиной радиоволны. Минимальная резонансная длина антенны равна половине длины волны.

Слово резонанс означает, что такая антенна может эффективно работать только в узкой полосе частот. Большинство антенн именно резонансные. Существуют и широкополосные антенны: за широкую полосу приходится расплачиваться эффективностью, а именно коэффициентом усиления.

Почему же работает стереотип, что чем длиннее кв антенны, тем они эффективнее? На самом деле это так, но до определённых пределов, так как это характерно только для средних и длинных волн. А с увеличением частоты размеры антенн можно уменьшить. На коротких волнах (это длины примерно от 160 до10 м) размеры антенн уже могут быть оптимизированы для эффективной работы.

Диполи

Самые простые и эффективные антенны – это полуволновые вибраторы, их ещё называют диполями. Запитываются они в центре: в разрыв диполей подаётся сигнал от генератора.

Радиолюбительские портативные антенны могут работать как передающие, так и как приёмные.

Правда, передающие антенны отличаются толстым кабелем, большими изоляторами – эти особенности позволяют им выдерживать мощность передатчиков.

КВ диполь на крыше дома

Самое опасное место у диполя – это его концы, где создаются пучности напряжения. Максимум тока у диполя получается посередине. Но это не страшно, потому что пучности тока заземляют, тем самым, защищая приемники и передатчики от грозовых разрядов и статического электричества.

Обратите внимание! При работе с мощными радиопередатчиками можно получить удар от высокочастотных токов. Но ощущения будут не такими, как от удара от розетки.

Удар будет ощущаться как ожог, без тряски в мышцах. Это получается из-за того, что высокочастотный ток течёт по поверхности кожи и вглубь тела не проникает.

То есть от антенны можно подгореть снаружи, но внутри остаться нетронутым.

Многодиапазонная антенна

Довольно часто необходимо установитъ более одной антенны, но это не удается. И ведь помимо радиоантенны на один диапазон нужны антенны и на другие диапазоны. Решение задачи – использовать многодиапазонную антенну кв диапазона.

Обладая довольно приличными характеристиками, многодиапазонные вертикальные антенны могут решить антенную проблему для многих коротковолновиков. Они становятся очень популярными по ряду причин: нехватка пространства в стеснённых городских условиях, рост числа любительских радиодиапазонов, так называемая жизнь «на птичьих правах» при съёме квартиры.

Многодиапазонная антенна в городе

Многодиапазонные вертикальные антенны не требуют много места для своей установки. Портативные конструкции можно расположить на балконе либо выйти с этой антенной куда-нибудь в близлежащий парк и поработать там в полевых условиях. Самые простые Кв антенны представляют собой одиночный провод с несимметричной запиткой.

Кто-то скажет укороченная антенна – это не то. Волна любит свой размер, поэтому кв антенна должна быть большой и эффективной. С этим можно согласиться, но чаще всего нет возможности для приобретения такого устройства.

Изучив интернет и посмотрев конструкции готовых изделий от разных фирм, приходишь к выводу: их очень много, и они очень дорогие. А всего в этих конструкциях провод для кв антенн и полтора метра штырька. Поэтому будет интересен, особенно начинающему, быстрый, простой и дешевый вариант самодельного изготовления эффективных кв антенн.

Вертикальная антенна (Ground Plane)

Ground Plane – это вертикальная антенна для радиолюбителей с длинным штырем, равным четверти длины волны. Но почему четверти, а не половине? Здесь недостающая половина диполя – это зеркальное отражение вертикального штыря от поверхности земли.

Но так как земля очень плохо проводит электричество, то в качестве нее используют либо листы металла, либо просто несколько проводов, раскинутых ромашкой. Их длину тоже выбирают равной четверти длины волны. Это и есть антенна Ground Plane, в переводе значит земляная площадка.

Заземление Ground Plane антенны

Большинство автомобильных антенн для радиоприёмников сделано по такому же принципу. Длина волны радиовещательной УКВ диапазона – это около трёх метров. Соответственно четверть полуволны будет 75 см. Второй луч диполя отражается в корпусе автомобиля. То есть такие конструкции должны принципиально монтироваться на металлической поверхности.

Коэффициент усиления антенны – отношение напряженности поля, получаемого от антенны, к напряженности поля в той же точке, но полученного от эталонного излучателя. Это отношение выражается в децибелах.

Рамочная магнитно-петлевая антенна

В тех случаях, когда простейшая антенна не может справиться с задачей, может использоваться вертикальная магнитно-петлевая антенна. Её можно сделать из дюралевого обруча. Если в горизонтальных рамочных антеннах на их технические показатели не оказывает влияние геометрическая форма и способ запитки, то на вертикальные антенны это оказывает влияние.

Магнитная антенна из обруча

Такая антенна функционирует на трёх диапазонах: десять, двенадцать и пятнадцать метров. Перестраивается с помощью конденсатора, который должен быть надежно защищен от атмосферной влаги. Питание осуществляется любым кабелем 50-75 Ом, потому как согласующее устройство обеспечивает трансформацию выходного сопротивления передатчика в сопротивление антенны.

Укороченная дипольная антенна

Существуют укороченные антенны на 7 МГц, длина плеч которых составляет всего около трёх метров. Конструктив антенны включает в себя:

  • два плеча порядка трех метров;
  • изоляторы на краях;
  • веревочки для оттяжек;
  • катушка удлинительная;
  • небольшой шнур;
  • центральный узел.

Длина намотки катушки составляет 85 миллиметров и 140 намотанных вплотную витков. Точность здесь не так важна. То есть если витков будет больше, то это можно компенсировать длиной плеча антенны. Можно укорачивать и длину намотки, но это более сложно, придётся распаивать концы крепления.

Длина от края намотки катушки до центрального узла составляет порядка 40 сантиметров. В любом случае после изготовления антенну придётся настраивать подбором длины.

Вертикальная кв антенна своими руками

Как смастерить самому? Взять ненужную (или купить) недорогую удочку из карбона, 20-40-80. Наклеить на нее с одной стороны бумажную полоску с разметками точек.

В отмеченные места вставить клипсы для подключения перемычек и шунтирования ненужной катушки. Таким образом, антенна будет переключаться с диапазона на диапазон.

В заштрихованных областях будут намотаны укорачивающая катушка и указанное количество витков. В саму «удочку» вставляется штырь.

Походная антенна из удочки

Также понадобятся материалы:

  • медный обмоточный провод используется диаметром 0,75 мм;
  • провод для противовеса диаметром 1,5 мм.

Штыревая антенна обязательно должна работать с противовесом, иначе она не будет эффективной. Итак, при наличии всех этих материалов останется только намотать проволочный бандаж на удилище так, чтобы получилась сначала большая катушка, затем меньше и ещё меньше. Процесс переключения диапазонов антенны: от 80 м до 2 м.

Выбор первого кв трансивера

При выборе коротковолнового трансивера начинающего радиолюбителя в первую очередь надо уделить внимание тому, как его купить, чтобы не ошибиться. Какие тут есть особенности? Существуют необычные узкоспециализированные радиостанции – это не подходит для первого трансивера. Не нужно выбирать носимые радиостанции, предназначенные для работы на ходу со штыревой антенной.

Трансивер PICASTAR

Такая радиостанция не удобна для того, чтобы:

  • ее использовать в качестве радиолюбительского обычного аппарата,
  • начать проводить связь;
  • научиться ориентироваться в радиолюбительском коротковолновом эфире.

Также есть радиостанции, которые программируются исключительно с компьютера.

Простейшие самодельные антенны

Для радиосвязи в полях бывает нужно связаться не только на расстояния в сотни километров, но и на небольшие расстояния с маленьких носимых радиостанций. Не всегда возможна устойчивая связь даже на небольшие расстояния, так как рельеф местности и крупные постройки могут мешать распространению сигнала. В таких случаях может помочь подъём антенны на небольшую высоту.

Высота даже такая, как 5-6 метров, может дать значительную прибавку в сигнале. И если с земли была слышимость очень плохая, то при подъёме антенны на несколько метров ситуация может значительно улучшиться.

Конечно, установкой десятиметровой мачты и многоэлементной антенны однозначно улучшится и дальняя связь. Но мачты и антенны есть не всегда.

В таких случаях выручают самодельные антенны, поднятые на высоту, например, на ветку дерева.

Немного слов о коротковолновиках

Коротковолновиками являются специалисты, обладающие знаниями в области электротехники, радиотехники, радиосвязи. К тому же они владеют квалификацией радиста, способны вести радиосвязь даже в таких условиях, в которых не всегда соглашаются работать профессионалы-радисты, а в случае необходимости способные быстро найти и устранить неисправность в своей радиостанции.

Молодые коротковолновики

В основе работы коротковолновиков лежит коротковолновое любительство – установление двусторонней радиосвязи на коротких волнах. Самыми юными представителями коротковолновиков являются школьники.

Антенны мобильных телефонов

Ещё десяток лет тому назад из мобильных телефонов торчали небольшие пипочки. Сегодня ничего такого не наблюдается. Почему? Так как базовых станций в то время было мало, то повысить дальность связи можно было, только увеличив эффективность антенн. В общем, наличие полноразмерной антенны мобильного телефона в те времена повышало дальность его работы.

Сегодня, когда базовые станции натыканы через каждые сто метров, такой необходимости нет. К тому же с ростом поколений мобильной связи есть тенденция увеличения частоты. Вч диапазоны мобильной связи расширились до 2500 МГц. Это уже длина волны всего 12 см. И в корпус антенны можно вставить не укороченную антенну, а многоэлементную.

Без антенн в современной жизни не обойтись. Их разнообразие такое огромное, что о них можно рассказывать очень долго. Например, существуют рупорные, параболические, логопериодические, направленные антенны.

Видео

Источник: https://elquanta.ru/antenna/kv.html

Сайт «Cner»

Получившие среди коротковолновиков широкое распространение вертикальные антенны типа «Ground Plane» не обладают достаточной широкополосностью и без дополнительной подстройки могут быть применены для работы только в узкой полосе частот.

Так называемые «толстые» вертикальные антенны, излучающая поверхность которых имеет разнообразные формы, свободны от этого недостатка и удовлетворительно работают в диапазоне частот с коэффициентом перекрытия до 3. Наибольшее распространение получили конические (рис.

1, а) и экспоненциальные (рис.1, б) антенны. Волновое сопротивление конической антенны постоянно вдоль ее длины и зависит от угла  α при вершине конуса.

Широкополосные свойства антенны возрастают с увеличением  α и достигают оптимума при α=б0—70°; в этом случае волновое сопротивление антенны равно примерно 70—80 ом.

Экспоненциальная антенна, волновое сопротивление которой возрастает вдоль её длины приблизительно по экспоненциальному закону, обладает такими же широкополосными свойствами, как и коническая.

Читайте также:  Устройство, регулировка и ремонт блоков радиоканалов телевизионных тюнеров

В то же время экспоненциальная антенна имеет большое преимущество — ее максимальный диаметр в 3 раза меньше, чем у конической.

Для коротковолнового диапазона практически не представляется возможным осуществить антенну со сплошной излучающей поверхностью в виде фигур, изображенных на рис. 1.

Подобные антенны выполняют из трубок или проводов. Для экспоненциальных антенн, кроме того, плавную огибающую заменяют ломаной.

На радиостанции UW4HW используется экспоненциальная антенна на диапазоны 14, 21 и 28 мГц, конструкция которой показана на рис. 2. Излучающая система антенны образована шестью проводами, расположенными в вертикальных плоскостях под углом 60° один к другому. В основании и на вершине антенны провода электрически соединены вместе и с помощью изоляторов укреплены на несущей мачте.

Последняя изготовлена из трех одинаковых по длине отрезков труб, соединенных изолирующими вставками. В качестве несущей мачты можно использовать также деревянный шест. Форма антенны обеспечивается распорками, укрепленными на уровне одной трети общей высоты антенны. Каждая распорка заканчивается изолятором, через который проходит провод антенны.

При необходимости можно отказаться от установки распорок и обеспечить форму антенны с помощью растяжек, крепящихся к проводам в точках перегиба с применением изоляторов. В этом случае, если мачта имеет достаточную жесткость, можно обойтись без дополнительных растяжек. Питание антенны осуществляется с помощью коаксиального кабеля с волновым сопротивлением 75 ом.

Центральную жилу подсоединяют к нижней точке антенны, а экранирующую оплетку — к хорошему заземлению при установке антенны непосредственно на земле или к искусственной земле, если антенна устанавливается на крыше дома. Искусственной землей может служить металлическая крыша или шесть горизонтальных проводов, радиально расходящихся от основания антенны.

Провода искусственной земли располагаются в одних вертикальных плоскостях с соответствующими излучающими проводами антенны и имеют длину, равную длине излучающих проводов.

Антенна и искусственная земля выполнены из медного провода диаметром 1,5 мм. Практически измеренные значения КСВ в диапазоне частот от 14,0 до 29,7 мГц находятся в пределах 1,2—1,9.

Расчет размеров антенны для других диапазонов частот несложно произвести, задаваясь длиной проводов антенны в пределах (0,24—0,28) λмин и углом α у основания антенны в пределах 60—70°.

Опыт использования описываемой антенны показывает, что по своим характеристикам она превосходит антенну типа «Ground Plane» и благодаря простоте исполнения может успешно применяться в радиолюбительской практике.

Источник: http://cner.ucoz.net/publ/drugie_stati/stati_iz_literatury/mnogodiapazonnaja_vertikalnaja_antenna/3-1-0-204

Многодиапазонные вертикальные антенны

Антенны с электрически управляемой диаграммой направленности давно занимают важное место как в профессиональной, так и радиолюбительской практике.

Один из примеров таких антенн — разнообразные фазированные антенные решетки (ФАР), которые, оставаясь неподвижными относительно земли (самолета, ракеты), позволяют сканировать пространство в радиолокации. У радиолюбителей это — антенны с переключаемой диаграммой направленности, чаще всего — двухэлементные с переключением «вперед — назад».

На наиболее длинноволновых любительских KB диапазонах им, по-видимому, вообще нет альтернативы, так как построение вращающихся монстров суперзатратно. Кроме того, по сравнению с поворотными антеннами такие антенны обладают замечательным свойством — диаграмму можно изменять мгновенно и в любом желаемом направлении.

В свое время девятиэлементную KB ФАР разработал и успешно применял замечательный спортсмен и конструктор Георгий Румянцев (UA1DZ), который, к сожалению, не оставил общедоступного ее описания. Однако известные детали этой конструкции хорошо поясняют общие проблемы построения таких антенн.

Так, выбор типа и числа элементов диктуется желаемым усилением, а в ФАР еще и соображениями симметрии. Вертикальные элементы обладают осевой симметрией диаграммы направленности, что облегчает получение одинакового усиления во всех направлениях.

Георгием был сделан, по-видимому, трудный выбор в пользу четвертьволновой электрической длины элементов, что заставило изготовить громоздкую и конструктивно непростую сетку из проводов над крышей, симулирующую необходимую для таких элементов проводящую поверхность.

Ну и, насколько мне известно, значительной проблемой оказалось обеспечение многодиапазонности. В результате был создан элемент, обеспечивший работу антенны в полосе 10…30 МГц. Антенна в целом отвечала самым высоким требованиям UA1DZ — спортсмена мирового уровня. Интересно, что фазирующая система позволяла ему управлять диаграммой как по азимуту, так и по возвышению главного лепестка, что позволяет оптимизировать работу антенны для различных трасс.

Исходя из известных общих положений теории антенн и собственных условий и требований, я изготовил двухэлементную фазируемую антенну для дачной «позиции». Исходил, прежде всего, из наличия на садовом домике кровли из гофрированного алюминия. Можно было рассчитывать на то, что такая крыша близка к «идеально проводящей поверхности».

Это предопределило выбор четвертьволновых элементов. Сравнительно небольшие ее размеры меня не смущали — имеются работы, доказывающие, что качество заземления вблизи основания чертвертьволнового излучателя важнее его размеров.

Длина конька крыши (5 м) продиктовала расстояние между излучателями, которое, кстати, является вполне приемлемым компромиссом для диапазонов 40—10 метров. В этом смысле антенна UA1DZ тоже, конечно, компромиссная.

Тем, кто совсем не знаком с антеннами данного типа, достаточно будет заглянуть в любое издание книги К.Ротхаммеля.

А тем, кто хочет не просто повторить, но творчески переработать антенну, рекомендую замечательную книгу И. Гончаренко «Антенны KB и УКВ», ч. 2, где раздел 3.2 целиком посвящен особенностям реальных вертикальных антенн.

Теоретический предел усиления двух четвертьволновых излучателей над идеально проводящей поверхностью — 8,14 дБи, что примерно соответствует усилению трехэлементной Яги или двойного квадрата. Но как к нему приблизиться? Это, впрочем, непросто и в случае любых других антенн.

Формулы для расчета длины дополнительной фазирующей линии для получения в идеальном случае максимального усиления или ослабления малополезны, так как они не учитывают потери в элементах и кровле, влияние собственно земли, взаимное влияние, а также неизбежные комплексность, разброс и частотную зависимость параметров элементов.

Моделирование в MMANA снимает эти вопросы только отчасти, хотя подтверждает возможность получения самых различных диаграмм — от кардиоиды до классического главного лепестка с вариантами подавленного заднего (задних). Тем не менее очень рекомендую «поиграть» в этой программе.

Два одинаковых четвертьволновых излучателя над идеальной землей создаются в ней элементарно, а предусмотренные в программе возможности регулировки фаз и амплитуд питающих токов позволят вам многое проверить.

Не забывая о теории, я полностью доверился практике. В качестве элементов применил два многодиапазонных траповых вертикала BTV4 на 40, 20, 15 и 10 метров. Очень приличные антенны, которые выпускает фирма Hustler (США). Обладая отменной электрической и механической прочностью, они без оттяжек легко выдерживают любые ветры на московских многоэтажках.

При этом среди подобных они, видимо, самые недорогие. Легко настраиваются перемещением трапов. Они лишь требуют небольшого удлинения вверху, так как рассчитаны на американский вариант диапазона 40 метров (7000…7400 кГц). Некоторая настройка, прежде всего, по критериям одинаковости, а также по минимуму КСВ все же потребовалась. Взаимное влияние элементов очень сильное.

Я настраивал каждый из них в присутствии второго, но нагруженного на 50 Ом. Сразу заложил возможность оперативного управления длиной фазирующей линии. Ориентиром служила ее теоретическая длина для диапазона 20 метров и расстояния между элементами 5 м. С кабелем со сплошной полиэтиленовой изоляцией, имеющим коэффициент укорочения 0,66, она должна быть 3,3 м.

Предусмотрел возможность переключения длины через каждые 0,5 м, начиная с нуля. Наиболее просто коммутация осуществляется обычными галетными переключателями на 11 положений. Первый из них подключает одну из линий с длинами 0; 0,5; 1; … 5 м. Второй подключает, последовательно с первой линией, вторую с длинами 0; 5; 10; 15 м.

Позже выяснилось, что вторая секция нужна только для диапазона 40 метров, на котором оптимальная длина линии около 7 м. Такая секция, однако, будет необходима для диапазонов 80 и 160 метров, если вы осуществляете фазирование и на этих диапазонах. Кабеля нужно много. Я остановился на недорогом кабеле RG-58 со сплошным полиэтиленом.

По сравнению с встречающемся в продаже кабелем RG- 58 со вспененным полиэтиленом он имеет меньший коэффициент укорочения и поэтому меньшую физическую длину. Он достаточно тонок, чтобы все перечисленные выше отрезки поместились в небольшом настольном блоке размерами 30x25x25 см. Кабель электрически прочен, чтобы легко выдержать в линии половину моих 500…700 Вт.

При выборе кабеля и переключателей не надо забывать, что в двухэлементной антенне фидеры, линии и переключатели работают при половинной мощности (в четырехэлемент- ной при четверти мощности и т. д.).

В 50-омной цепи галетный переключатель при близких к единице КСВ в фидерах и фазирующей линии описываемой антенны вполне обеспечивает хорошую надежность при половине от разрешенной мощности 1 кВт. Я все же везде включал в параллель две галеты на точку коммутации. Любителям QRO, конечно, надо подумать о выборе более мощных элементов и кабеля.

При этом, скорее всего, придется пожертвовать возможностью произвольно изменять длину линии в широких пределах. Теоретически, в узкой полосе частот, возможна эквивалентная замена любого отрезка кабеля двухэлементной LC-цепью.

При синтезе такой цепи можно учесть комплексность входного сопротивления элементов, необходимость обеспечения не только требуемого соотношения фаз, но и амплитуд. Техническая реализация «в точке» при этом очень проста — катушка индуктивности и конденсатор. Однако оптимизация диаграммы в диапазоне частот все равно потребует набора LC-цепей, как и набора отрезков кабеля.

Переменные L и С позволяют определить при настройке оптимальные параметры и заменить их затем постоянными элементами. Фазирующая цепь вместо линии привлекательна тем, что в ней одновременно с обеспечением необходимой фазы можно получить и практически произвольный коэффициент передачи, что должно улучшать эффект сложения (вычитания) полей.

Помня, что «практика — критерий истины», я поместил вдоль линии элементов, на удалении около 20 м (на заборе участка), индикатор поля. На всех диапазонах от 40 до 10 метров наблюдалась замечательная картина переключения «вперед—назад», с отчетливыми максимумами усиления и подавления.

Точные значения F/B едва ли представляют интерес, так как при угле возвышения 0 градусов (поле на высоте забора) мы имеем отнюдь не достоверную картину усиления, так как главный лепесток на самом деле приподнят. Было хорошо видно, что максимум усиления и подавления совпадает только для диапазона 20 метров.

Именно поэтому полезно иметь возможность изменения фазы, позволяющую выбрать максимум усиления, подавления или что-то компромиссное. Так, если вы зовете уверенно слышного DX, вы предпочтете максимум усиления. Если вы боретесь за прием — приоритет за подавлением помех мешающих станций или за улучшением соотношения сигнал/шум.

То и другое вы можете получить изменением длины фазирующей линии. Для своей антенны я определил следующие физические длины фазирующей линии: диапазон 10 метров — 1,5 м; 15 метров — 2 м; 20 метров — 3 м; 40 метров — 7 м. Особенности прохождения, «затачивание» антенны под DX или под контест, борьба с помехами и прочее требуют изменения длины в пределах 10—20 %.

Конечно, захотелось попробовать заставить антенну работать и на диапазоне 80 метров. Для этого пришлось применить два тьюнера в основании элементов в виде удлиняющей индуктивности с отводом для подключения кабеля. Мои антенны настроились на 80 метров при подключении катушки диаметром 100 мм, длиной намотки около 100 мм и числе витков — 15.

Понимая, что в этом элементе протекают большие реактивные токи, я не экономил на проводе, намотав катушку проводом сечением 4 кв. мм. От положения отвода, от 1/8 до 1/4 от заземленного конца, зависят значение КСВ и полоса частот. Остановился на значении КСВ < 3 в полосе частот 3,5...3,8 МГц, хотя за счет сужения полосы частот можно сделать КСВ сколь угодно близким к единице.

Направленность на этом диапазоне выражена слабо, так как мало расстояние между элементами. Поэтому на 80 метрах я включаю элементы параллельно (синфазное включение). При этом работает она просто прекрасно, как хорошая антенна с малым углом возвышения и круговой диаграммой. Ну а на основных диапазонах наблюдается классическая работа направленной антенны.

Читайте также:  Filtered noise generator

На 20 метрах субъективно — очень хорошо, только чуть хуже — на 10 и 40 метрах. При диаграмме типа кардиоиды, т.е. с неподавленными боками, не испытываю особого дискомфорта из-за наличия только двух направлений. Мгновенное переключение позволяет быстро выбирать «бок», который в данный момент меньше страдает от замираний.

Не забывайте, что в точке подключения TRX сопротивление антенны будет примерно вдвое меньше сопротивления каждого из элементов (в идеале 25 Ом). Любой РА с обычным П-контуром обеспечит необходимое согласование «на передачу».

А вот рассогласование с неизменным стандартным входным сопротивлением TRX 50 Ом искажает картину приема — максимум громкости не обязательно означает максимум усиления. Связываю прекрасную работу антенны, прежде всего, с малыми потерями в алюминиевой крыше, в добротно выполненных алюминиевых же элементах, а также фидерах и линии, работающих при малых КСВ.

Налицо хорошие условия для формирования в ближней зоне реактивного поля с малыми тепловыми потерями. Ну а согласно закону сохранения энергии, вся подведенная энергия, независимо от размеров антенны, если не теряется, то обязательно излучается. Отсюда все разнообразие маленьких антенн, которые очень нередко показывают прекрасные результаты.

Нет никаких принципиальных препятствий для фазирования и электрически полуволновых мультибендов, например, GAP TITAN или UT1MA. Такие антенны, вполне уместные на наших железобетонных крышах, имеют, однако, примерно вдвое большую высоту, а также требуют подъема над поверхностью крыши (земли). Хочу обратить внимание контестменов на способность многодиапазонных ФАР осуществлять прием одновременно на нескольких диапазонах и направлениях. Перемещая точку подключения приемника (приемников) вдоль фазирующей линии, можно получить все разнообразие возможных диаграмм. Так как линия является частью 50-омного кабеля, соединяющего элементы, весь этот кабель или любую его часть можно рассматривать как фазирующую линию. Поэтому потенциально точек подключения много и возможна одновременная многодиапазонная работа антенны. Разумеется, потребуется анализ влияния входного сопротивления приемников, которое можно ослабить применением развязывающих устройств, выполняющих одновременно функцию защиты приемников в режиме передачи. Убежден, что именно ФАР являются альтернативой тупиковому при ограниченных ресурсах обычному подходу к оборудованию радиостанций как эконом-, так и самого высокого класса.

Вячеслав Власов (RX3AJ).

Источник: http://hfdx.at.ua/publ/mnogodiapazonnye_vertikalnye_antenny/9-1-0-119

Фазирование многодиапазонных вертикальных антенн

Сохрани ссылку в одной из сетей:

ФАЗИРОВАНИЕ МНОГОДИАПАЗОННЫХ ВЕРТИКАЛЬНЫХ АНТЕНН

Власов В.П. (RX3AJ), к.т.н.

Антенны с электрически управляемой диаграммой направленности давно занимают важное место как в профессиональной, так и радиолюбительской практике.

Яркий пример таких антенн – разнообразные фазированные антенные решётки (ФАР), которые, оставаясь неподвижными относительно земли, самолёта, ракеты позволяют сканировать пространство в радиолокации.

У радиолюбителей это — антенны с переключаемой диаграммой, чаще всего – двухэлементные с переключением «вперёд – назад». На наиболее длинноволновых любительских КВ диапазонах им, по-видимому, вообще нет альтернативы, так как построение вращающихся монстров суперзатратно.

Кроме того, по отношению к поворотным антеннам, антенны с управляемой диаграммой обладают замечательным свойством — диаграмму можно изменять мгновенно и в любом желаемом отношении – например, изменяя угол наклона главного лепестка.

В своё время 9 — элементную КВ ФАР разработал и успешно применял замечательный спортсмен и конструктор Г. Румянцев, который, к сожалению, не оставил общедоступного описания своей легендарной антенны. Однако известные детали этой конструкции хорошо поясняют общие проблемы построения таких антенн.

Так, выбор типа и количества элементов антенны диктуется желаемым усилением, а в ФАР еще и соображениями симметрии. Вертикальные элементы обладают осевой симметрией диаграммы направленности, что облегчает получение одинакового усиления во всех направлениях.

Георгием был сделан, по-видимому, трудный выбор в пользу четвертьволновой электрической длины элементов, что заставило изготовить громоздкую и конструктивно непростую сетку из проводов над крышей, моделирующую необходимую для таких элементов проводящую поверхность.

Ну и, насколько мне известно, значительной проблемой оказалось обеспечение многодиапазонности. В результате был создан элемент, обеспечивший работу антенны в полосе 10 – 30 МГц. Антенна в целом отвечала самым высоким требованиям Г. Румянцева – спортсмена мирового уровня.

Интересно, что фазирующая система позволяла ему управлять диаграммой как по азимуту, так и по возвышению главного лепестка, что позволяет оптимизировать работу антенны для различных трасс.

Исходя из известных общих положений теории антенн и собственных условий и требований я изготовил двухэлементную фазируемую антенну для дачной «позиции». Исходил, прежде всего, из наличия на садовом домике кровли из гофрированного алюминия.

Сравнительно небольшие её размеры меня не смущали – имеются работы, доказывающие, что качество заземления вблизи основания чертвертьволнового излучателя важнее его размеров. Это предопределило выбор четвертьволновых элементов.

Длина конька крыши – 5 м — продиктовала расстояние между ними, которое, кстати, является хотя и компромиссным, но вполне приемлемым для диапазонов 40 — 10 м. В этом смысле антенна Румянцева тоже, конечно, компромиссная.

Тем, кто совсем не знаком с антеннами данного типа, достаточно будет взглянуть в любое издание книги К. Ротхаммеля. Тем, кто хочет не просто повторить, но творчески переработать антенну, особенно рекомендую замечательную книгу И. В. Гончаренко «Антенны КВ и УКВ», ч.2, где раздел 3.2 целиком посвящен особенностям реальных вертикальных антенн.

Теоретический предел усиления двух четвертьволновых излучателей над идеально проводящей поверхностью – 8,14 dBi, что примерно соответствует усилению трехэлементной Яги или двойного квадрата. Но как к нему приблизиться (что, впрочем, непросто и в случае любых других антенн)?

Формулы для расчета длины дополнительной фазирующей линии для получения максимального усиления или ослабления в идеальном случае малополезны, так как они не учитывают потери в элементах и кровле, влияние собственно земли, взаимное влияние, а так же неизбежные комплексность, разброс и частотную зависимость параметров элементов. Моделирование в ММАNА снимает эти вопросы только отчасти, хотя подтверждает возможность получения самых различных диаграмм – от кардиоиды до классического главного лепестка с вариантами подавленного заднего (задних). Тем не менее, очень рекомендую «поиграть» в этой программе. Два одинаковых четвертьволновых излучателя над идеальной землёй создаются в ней элементарно, а предусмотренные в программе возможности регулировки фаз и амплитуд питающих токов позволят вам многое проверить.

Не забывая о теории, я полностью доверился практике. В качестве элементов применил два мультибендовых траповых вертикала BTV4 (40, 20, 15 и 10 м). Очень прилично сделано, производство Hustler, USA. Отменная электрическая и механическая прочность, без оттяжек легко выдерживает любые ветры на московских многоэтажках.

При этом среди подобных видимо, самые недорогие. Легко настраиваются перемещением трапов. Требуют небольшого удлинения вверху, так как рассчитаны на американский диапазон 7000 – 7400 кГц. Некоторая настройка, прежде всего, по критерию одинаковости, а так же минимуму КСВ, все же потребовалась.

Взаимное влияние элементов очень сильное, и я настраивал каждый из них в присутствии второго, нагруженного на 50 Ом.

Сразу заложил возможность оперативного управления длиной фазирующей линии. Ориентиром служила её теоретическая длина для диапазона 20 м и расстояния между элементами 5 м. С кабелем со сплошной полиэтиленовой изоляцией, имеющим коэффициент укорочения 0.66 она составляет 3,3 м.

Предусмотрел возможность переключения длины через каждые 0,5 м начиная с нуля. Наиболее просто коммутация осуществляется обычными галетными переключателями на 11 положений. Первый из них подключает одну из линий с длинами 0; 0,5; 1; … 5 м.

Второй подключает, последовательно к первой линии, вторую с длинами 0; 5; 10; 15 м. Впоследствии выяснилось, что вторая секция нужна только для диапазона 40 м, на котором оптимальная длина линии составляет около 7 м.

Такая секция, однако, будет необходима для диапазонов 80 и 160 м, если вы осуществляете фазирование на этих диапазонах.

Кабеля нужно много. Я остановился на недорогом RG-58 со сплошным полиэтиленом. По сравнению с RG-58 со вспененным полиэтиленом он имеет меньший коэффициент укорочения и, поэтому, меньшую физическую длину.

Он достаточно тонок, чтобы все перечисленные выше отрезки поместились в небольшом настольном блочке размером 30*20*20 см. Электрически прочен, чтобы легко держать в линии половину моих 500 – 700 Вт.

При выборе кабеля и переключателей не забывайте, что элементы, фидеры, линия и переключатели работают в 50 – омной цепи при половинной мощности в двухэлементной антенне, при четверти мощности в четырёхэлементной и т. д.

В 50 – омной цепи галетный переключатель, при характерном для близкого к единице КСВ в фидерах и фазирующей линии описываемой антенны, вполне обеспечивает хорошую надёжность при половине от разрешённой мощности 1 кВт.

Я все же везде запараллелил две галеты на точку коммутации. Любителям QRO, конечно, надо подумать о выборе более мощных элементов и кабеля.

При этом, скорее всего, придётся пожертвовать возможностью произвольно изменять длину линии в широких пределах.

Теоретически, в узкой полосе частот, возможна эквивалентная замена любого отрезка кабеля двухэлементной LC-цепью. При синтезе такой цепи можно учесть комплексность входного сопротивления элементов, необходимость обеспечения не только необходимого соотношения фаз, но и амплитуд.

Техническая реализация «в точке» при этом очень проста — катушка индуктивности и конденсатор. Однако функция оптимизации диаграммы в диапазоне частот всё равно потребует набора LC-цепей, как и набора отрезков кабеля.

Переменные L и C позволяют определить при настройке оптимальные параметры и заменить их затем постоянными элементами.

Фазирующая цепь вместо линии привлекательна тем, что в ней, одновременно с обеспечением необходимой фазы можно получить и практически произвольный коэффициент передачи, что должно улучшать эффект сложения (вычитания полей).

Помня, что практика — критерий истинности, я поместил вдоль линии элементов, на удалении около 20 м (на заборе участка) индикатор поля. На всех диапазонах 40 – 10 м наблюдалась замечательная картина переключения «вперёд-назад», с отчётливыми максимумами усиления и подавления.

Точные значения F/B едва ли представляют интерес, так как при угле возвышения 0 градусов (поле на высоте забора) мы имеем отнюдь не достоверную картину усиления, так как главный лепесток на самом деле приподнят. Было хорошо видно, что максимум усиления и подавления совпадают только для диапазона 20 м.

Именно поэтому полезно иметь возможность изменения фазы, позволяющую выбрать максимум усиления, подавления или что-то компромиссное. Так, если вы зовёте уверенно слышного DX, вы предпочтёте максимум усиления. Если вы боретесь за приём — приоритет за подавлением мешающих станций или за максимальным сигнал/шум.

То и другое вы можете получить изменением длины фазирующей линии.

Для своей антенны я определил следующие средние физические длины фазирующей линии: диапазон 10 м – 1,5 м; 15 м – 2 м; 20 м – 3 м; 40 м – 7 м. Особенности прохождения, «затачивание» антенны под DX`а или под контест, борьба с помехами и прочее требуют изменения длины в пределах 15 – 30 %.

Конечно, захотелось попробовать заставить антенну работать и на диапазоне 80 м.

Для этого пришлось применить два «тьюнера» в основании элементов в виде удлиняющей индуктивности с отводом для подключения кабеля.

Мои антенны настроились на 80 м при подключении катушки диаметром 100 мм, длиной намотки около 100 мм и числе витков – 15. Понимая, что в этом элементе протекают большие реактивные токи, я не экономил на проводе, намотав катушку проводом 4 кв. мм.

От положения отвода, от 1/8 до 1/4 от заземлённого конца, зависит значение КСВ и полоса частот. Остановился на значении КСВ

Источник: https://gigabaza.ru/doc/69871.html

Ссылка на основную публикацию