Основы wi-fi

Принцип действия и характеристики Wi-Fi

Wi-Fi – технология беспроводной передачи сетевых пакетов информации. Означает полный отказ от проводов, что очень удобно во многих ситуациях.

Например, российские СМИ похвастались: отныне наземная трансляция телеметрии (бортовых параметров) ракет Союз-5 будет осуществляться посредством Wi-Fi (группа стандартов IEEE 802.11). Система имитирует связку роутер-рабочая станция.

Проект проходит стадию разработки конструкторской документации. Руководству космодрома надоели кабели, устилающие взлётную полосу. Новая система ощутимо повысит надёжность, удобство эксплуатации.

Беспроводная связь позволит подключить, собрать воедино буквально несовместимые иным образом устройства.

Недавно инженеры Q-Stick предложили владельцам телевизоров оригинальное решение: сделайте аппарат полнофункциональным настольным компьютером.

Неудивительно, умное устройство уже снабжено процессором, графическими ускорителями, операционной системой. Осталось немного оперативной памяти добавить, а встроенная точка доступа поможет наладить общение домашним гаджетам.

Использование

Ядром системы выступает широковещательный роутер (точка доступа, базовая станция). Чтобы стать участником сети, компьютер, телефон, должны быть оснащены беспроводными модулями.

Указанную комбинацию оборудования принято называть станцией. Передача пакета центром происходит широковещательно. Приём несущей не гарантирует стопроцентную доставку.

Многое определяется внешними условиями, уровнем сигнала.

Провайдеры, общественные заведения украшают стены характерными стикерами, предоставляя безлимитный, либо платный доступ. Дома ставят роутеры, настраивая условия использования ресурса самостоятельно.

Роутер

Эволюционно роутером стала базовая станция топологии звезда, использованной доисторическими гавайскими разработчиками (60-70-е годы XX века). Принцип широковещательной трансляции доныне эксплуатируется сетевым оборудованием. Причём не только эфирным.

Удивительно, но сегодня изложение принципа действия роутера логично начинать кабельными вариантами. Радиоканал больше напоминает общественное мероприятие, где диктор, захвативший микрофон, доводит информацию аудитории.

Соседние ряды слышат друг друга, и это стало технической подоплёкой внедрения концепции ad-hoc (связь без роутера), Однако голос диктора все-таки громче.

Маршрутизатором традиционно называют блок оборудования, занимающийся перенаправлением сетевых пакетов данных. Подразумевается наличие минимум двух компьютерных сетей.

Домашний домен отделяется от внешнего значениями присваиваемых IP-адресов. Иногда (офис крупной компании) блок выступает приёмников услуг нескольких провайдеров, подразделений и т. п.

Снаружи все ПК видятся наблюдателю имеющими одинаковый IP. Хотя mac различаются.

Движение сетевого пакета часто представляют цепочкой передачи информации меж узловыми роутерами. Электроника считывает адрес пакета, передавая информацию в нужном направлении.

Нисходящий беспроводной поток часто организуется широковещательно. Информацию передают одновременно всем участникам.

Профессиональный маршрутизатор пользуется таблицей адресов, протоколом, подменяя адреса, однако домашние администраторы зачастую избегают сложной настройки.

Общеизвестные роутеры просто организуют шлюз меж домашним сегментом и тем, что находится снаружи (провайдер, интернет и так далее).

Интерфейсы и возможности

Отвечая запросам аудитории, производители непременно снабжают роутер беспроводным каналом. Входящий трафик минует физический канал Ethernet, либо оптическое волокно. Не исключены гибридные варианты, однако это касается больше крупных предприятий.

Внутренние таблицы позволят создавать плеяды подсетей, однако домашний пользователь редко оценивает полный спектр возможностей. Выходными интерфейсами чащи выступают кабели Ethernet и беспроводной канал Wi-Fi. Корпоративные версии, наподобие Cisco CRS-1, по-настоящему уникальны. Многие модели по-прежнему снабжены возможностью вещать протокол IEEE 802.11.

Разновидности

Часто роутеры набираются ветками древовидной структуры, где пропускная способность каналов понемногу снижается. Домашний интернет не является исключением. Абонентские модели принято обозначать ёмким термином SOHO.

Согласно традиции сюда входит оборудование, обслуживающее 1-10 рабочих станций. Законодательство отдельных стран проводит дальнейшее уточнение, согласно которому закупается, выпускается оборудование.

Например, новозеландцы считают малым офисом группу 6-19 служащих. Цифры ниже описывают термином «микро».

Модели каждого уровня древовидной структуры сильно отличаются. Выпускают специальные модели для домашних пользователей, организаций, провайдеров. Коммерческий успех технологии обеспечивается охватом максимальной целевой аудитории минимальными усилиями. Приходится сильно снижать цены, делая концепцию доступной широким массам.

SOHO

Ниже будет показано разнообразие беспроводных стандартов, как дань европейским традициям. Пока же отметим особенности аппаратной реализации роутеров, отвечающие историческим аспектам развития офисов на западе.

Крупным достижением техники компьютерных коммуникаций конца XX века стала возможность территориального разнесения (деления) крупных отделов.

Децентрализация зачастую сильно повышала производительность, вызывая необходимость производства роутеров SOHO.

Постепенно малогабаритные модели достигли частных домовладений. И сегодня ещё число каналов роутера ощутимо превышает среднестатистические запросы населения. Некоторые модели даже оснащены собственными операционными системами (Linux).

Масштабируемость

Типичные роутеры нацелены легко масштабировать сеть путём простой экспансии и использования центральной станции. Скорость периферии ощутимо падает, резко снижая пользу технологии. Отдельной строкой стоит безопасность. Сегодня считается доказанным вред излучения СВЧ-диапазона, включая 2,4 ГГц, используемые коммерческой связью.

Этимология

Коммерческое использование ныне существующего названия началось не ранее августа 1999 года. С Wi-Fi возилась американская рекламная компания Interband с британскими корнями. Среди детищ креативного гиганта 5-уровневый метод оценки экономической стоимости бренда. Годовой отчёт 2016 года содержит следующие первые 10 строчек:

  1. Apple.

Источник: https://setinoid.ru/wifi/printsip-deystviya-i-harakteristiki-wi-fi

Основы радиочастотного планирования применительно к Wi-Fi Cisco

Введение

Данная статья сфокусирована на описании основных величинах и понятиях, которые требуется знать при проектировании радиосети и настройке беспроводного оборудования Wi-Fi. Настройка оборудования и рекомендации приведены на примере точек доступа серии 1600, 2600, 3600, а так же контроллера 2504.

 Частоты и каналы

Для беспроводных сетей Wi-Fi определено 2 диапазона:

  • 2.4 ГГц (2.4 – 2.4835 ГГц)
  • 5 ГГц (5.15 – 5.35 и 5.725 – 5.825 ГГц)

Каждый диапазон имеет свои характеристики. Так, диапазон 5 ГГц имеет меньшую площадь покрытия, но при этом большую пропускную способность по сравнению с 2.4 ГГц. В разных странах есть свои ограничения на использования частотного спектра и мощность передатчика. Так появились разные регуляторные домены. Вот основные из них:

Домен Страны Диапазон 2.4 ГГц
FCC Америка, Австралия, Новая Зеландия, части Азии и пр.). 11 каналов
ETSI (EMEA) Россия, Европа, Восток, Африка, части Азии и пр.) 13 каналов (их них 3 не перекрывающихся канала: 1,6,11)
MKK Япония 14 каналов

У производителя есть обязанность производить продукцию, подходящую под законодательство разных стран, то есть сертификацию в определенных регуляторных доменах.

В диапазоне 5 ГГц есть три поддиапазона:

1.Полоса 5150-5250 МГц имеет следующие каналы:

36: 5180 МГц

40: 5200 МГц

44: 5220 МГц

48: 5240 МГц 

2. Полоса 5250-5350 МГц имеет следующие каналы:

52: 5260 МГц

56: 5280 МГц

60: 5300 МГц

64: 5320 МГц

3. Полоса 5650-5825 МГц имеет следующие каналы:

149: 5745 МГц

153: 5765 МГц

157: 5785 МГц

161: 5805 МГц

1.     Основные термины и величины

дБ (dB). Децибел – это логарифмическое отношение сигнала к условной единице. Например, в таблице ниже происходит сравнение с 1 Вт

дБ Вт
1
3 2
6 3,98
9 7,94
10 10
13 20
20 100

дБм (dBm). Децибел милиВатт – это логарифмическое отношение сигнала к 1 мВт

дБм мВт
1
3 2
6 3,98
9 7,94
10 10
13 20
20 100

При увеличении мощности на 9 дБм зона покрытия для помещения увеличивается примерно в 2 раза. Соответственно, при уменьшении мощности на 9 дБм – уменьшается примерно в 2 раза.

дБи (dBi). Единица измерения усиления антенн относительно «эталонной» антенны. За такую эталонную антенну принят так называемый изотропный излучатель – идеальная антенна, диаграмма направленности которой представляет собой сферу, коэффициент усиления которой равен единице и КПД которой равен 100%.

Суммарная излучаемая мощность равняется сумме мощности передатчика и усиления антенны.

Отсюда возникает ответ на один из интересующих многих вопрос: почему Cisco Systems поставляет точки доступа в Россию с ограничением мощности в 18 дБм (63мВт). Ответ заключается вот в чем. Коэффициент усиления антенн варьируется от 2 (у встроенных антенн) до 6 дБи (у направленных внешних антенн). То есть результирующая выходная мощность будет от 20 дБм (100мВт) до 24дБм (250мВт).

При планировании не следует забывать особенность излучателя клиентского устройства: как правило, мощность передатчика сетевой карты клиента не превышает 50мВт.

Соответственно, клиентское устройство будет отлично «слышать», но при этом его мощности не хватит для того чтобы точка доступа его «услышала».

Таким образом, в общем случае, выставление мощности у точки доступа более 50мВт (17 dBm) не желательно.

Помимо мощности передатчика, в дБм так же измеряется и чувствительность приемника, значения будут отрицательными числами. Чувствительность приемника – это минимальный уровень сигнала, при котором связь будет еще установлена на минимальной скорости.

RSSI (Received Signal Strength Indicatio) – это переведенное в целые числа (от 0 до 255) значения мощности принимаемого сигнала. Для каждого производителя перевод может осуществляться по-своему.

SNR (Signal-to-Noise Ratio) – отношение уровня сигнала к уровню шума, в Дб. Как правило, отношение сигнал-шум должно не превышать 5 дБ для передачи данных и 25 дБ для передачи голоса.

2.     Радиочастотное планирование Wi-Fi

При разворачивании беспроводной сети нет общего шаблона, все индивидуально в каждой инсталляции. Однако есть набор основных правил, которых следует придерживаться. Ниже приведены основные вводные данные для радиочастотного планирования.

При радиочастотном планировании следует учитывать следующие основные характеристики беспроводной сети:

  1. Выбор типа сети (передача данных, голоса или позиционирование)
  2. Плотность пользователей
  3. Требования к покрытию и скорости передачи данных
  4. Особенности клиентских устройств (мощности передатчика, поддерживаемые диапазоны и каналы, поддерживаемые скорости передачи данных)
  5. Требования к безопасности сети

Эти характеристики могут быть выполнены при помощи манипулирования следующими физическим величинами:

  1. Диапазон (2.4 ГГц или 5ГГц)
  2. Используемые каналы выбранного диапазона
  3. Мощность передатчика
  4. Тип и коэффициент усиления антенны
  5. Разрешенные скорости передачи данных

Далее, каждый из «рычагов» разберем подробно.

В диапазоне 5 ГГц большее число непересекающихся каналов и большая пропускная способность, но на данный момент не все клиентские устройства поддерживают этот диапазон. В диапазоне 2.4 ГГц имеется только 3 непересекающихся канала: 1, 6 и 11. Соответственно радиочастотное планирование должно быть проведено с учетом этого.

Не следует размещать рядом две точки доступа, которые будут работать на одной и той же частоте, это приведет к высокому значению сигнал-шум. В местах высокой плотности пользователей (например, конференц-зал) можно установить до трех точек доступа в целях повышения пропускной способности сети, они будут работать на разных каналах и не мешать друг другу.

Следует заметить, что радиус зоны покрытия в диапазоне 5 ГГц существенно меньше чем в диапазоне 2.4 ГГц.

Для сети передачи данных необходимо определить минимальную скорость передачи данных на краях зоны покрытия и производить планирование сети с учетом этих данных.

Так, например для одного и того же офиса может понадобится 6 точек доступа, чтобы покрыть со скоростью не ниже чем 11Мбит/с и 12 точек доступа чтобы покрыть со скоростью не ниже 24 Мбит/с.

Если же необходимо ограничить радиус действия точки доступа, но при этом не уменьшать мощность и не проиграть в скорости, можно запретить ряд скоростей, например, с 1 по 11 Мбит/с на контроллере. Тогда на границах сети скорость будет не меньше 11 Мбит/с.

Источник: https://telecom-sales.ru/content/stati/osnovy-radiochastotnogo-planirovaniya-primenitelno-k-wi-fi-cisco/

Построение сетей Wi-Fi. Краткий ликбез

Давайте прежде всего разберемся, что такое Wi-Fi, какие преимущества и недостатки имеет данная технология. Собственно термин Wi-Fi возник как игра слов и не имеет расшифровки, в настоящий момент он применяется для обозначения беспроводных сетей по стандарту IEEE 802.11, точнее группы стандартов. Наиболее распространены стандарт 802.

11g предусматривающий работу на скорости до 54 Мб/с и 802.11n, теоретически допускающий работу на скоростях до 600 Мб/с, наиболее распространенные устройства стандарта n поддерживают скорости до 150 Мб/с.

В России для работы Wi-Fi устройств выделено 13 каналов в диапазоне 2,4 ГГц, без регистрации можно эксплуатировать сети только внутри помещений и производственных территорий, также с 15 июля 2010 года разрешено использование диапазона 5 ГГц, однако переход на него затруднен из-за необходимости обеспечивать совместимость с оборудованием не поддерживающим работу в этом диапазоне частот (а это практически все оборудование ввезенное, как минимум, до июля 2010 года). Поэтому в дальнейшем мы будем рассматривать работу в диапазоне 2,4 ГГц.

Сейчас мы подошли к очень важному моменту, понимание которого необходимо для грамотного планирования и развертывания сетей.

Для передачи данных Wi-Fi использует некий частотный канал, шаг сетки каналов составляет 5 МГц, а ширина канала – 20 МГц. Это значит, что работающее на соседних каналах устройства будут оказывать взаимные помехи друг другу.

Для лучшего понимания ситуации ниже приведено схематическое изображение распределения каналов в диапазоне 2,4 ГГц.

Как можно заметить, в диапазоне есть только три независимых канала, которые могут работать без взаимных помех, например 1, 6 и 11.

В диапазоне 5 ГГц дела обстоят лучше, можно использовать 22 независимых канала, однако, как мы уже говорили, развертыванию сетей в этом диапазоне препятствуют проблемы совместимости. Стандарт 802.

11n допускает использование широких каналов (шириной 40 МГц), которые используют полосу двух смежных непересекающихся каналов, например 1+5 или 5+9, таким образом можно организовать работу только двух, условно независимых каналов. 

Почему мы уделяем этому так много внимания? Потому что данные факторы напрямую влияют на скорость работы беспроводного канала.

Следует помнить, что полоса пропускания канала используется для передачи данных в обоих направлениях, в том числе служебной информации, также скорость сильно зависит от расстояния между точками и наличия помех. Максимально достижимая скорость на практике обычно не превышает половины доступной скорости канала, для 802.

11g это значение редко превышает 20-22 Мб/с. Доступная полоса канала делится между использующими ее устройствами, что тоже следует учитывать при планировании сети и расчете ее пропускной способности.

Все это серьезно осложняет построение производительных Wi-Fi сетей, особенно при наличии соседних сетей, поэтому стоит использовать беспроводные сети в основном для доступа в интернет, электронной почте, терминальным службам и т.п. сервисам, не требующих высокой пропускной способности сети. Категорически не рекомендуем использовать беспроводное подключение для требовательных к скорости канала узлов сети.

Перед тем как приступить к планированию не помешает произвести разведку обстановки в эфире. Для этих целей можно использовать бесплатную программу inSSIDer, ниже показана ситуация в диапазоне 2,4 ГГц в обычном многоэтажном жилом доме.

Программа позволяет видеть, что по соседству работает большое количество устройств стандарта 802.11n, использующих широкий канал.

В тоже время реальные помехи нашей сети способен создать передатчик стандарта 802.11g, работающий на канале 11. Располагая подобной информацией можно выбрать наименее загруженные участки диапазона для использования в своей сети.

Однако не все так радужно, большинство оборудования “из коробки” настроено на автоматический выбор канала, поэтому через некоторое время ситуация может измениться. 

Для построения беспроводной сети нам потребуется, как минимум, одна точка доступа. Если вы разворачиваете сеть масштаба предприятия или планируете в дальнейшем расширять область покрытия, то мы рекомендуем применять именно точки доступа, отказавшись от беспроводных маршрутизаторов и прочих комбинированных устройств.

Дело в том, что стандарт не описывает взаимодействие между точками доступа и разные производители используют разные технологии, что делает их несовместимыми с оборудованием других производителей или даже собственным оборудованием других типов.

Поэтому мы советуем использовать оборудование одного производителя и желательно одной модели, в противном случае необходимо дополнительно уточнять возможность совместной работы в интересующем режиме.

Первая и единственная точка доступа должна работать в одноименном режиме (Acceess Point), в этом случае устройство обслуживает клиентские подключения, но не устанавливает соединений с другими точками доступа.

Отличительной чертой любой беспроводной сети является ее идентификатор SSID, уникальный для каждой сети, в пределах одной сети все устройства должны иметь одинаковый идентификатор, в тоже время несколько SSID позволяют разбить сеть на подсети, например с разным уровнем безопасности.

Дома или в малом офисе одной точки доступа обычно достаточно и большинство перечисленных нами проблем вряд ли окажутся актуальными, другое дело сети с относительно большой площадью покрытия, когда мощности одного устройства недостаточно.

Здесь можно пойти двумя путями: использовать антенну с более высоким коэффициентом усиления или развертывать инфраструктуру используя несколько точек доступа.

Первый путь при всей своей простоте таит ряд опасностей, ваша сеть может оказаться доступной за пределами здания (территории) и может создавать помехи соседним сетям, в этом случае не избежать проблем с контролирующими органами. Также это не всегда приемлемо с точки зрения безопасности. 

Что-же делать когда одной точки доступа недостаточно? Поставить вторую. Ниже мы рассмотрим какими способами это можно сделать, их достоинства и недостатки.

Если вам нужна сеть с высокой пропускной способностью и в местах расположения точек доступа есть проводная сеть, то дополнительные точки также стоит включать в режиме “точки доступа” (Acceess Point), в этом режиме каждая точка доступа обеспечивает в зоне своего покрытия полную скорость канала, не разделяя его с другими точками.

Обе точки должны иметь одинаковый SSID и одинаковые параметры шифрования, но должны работать на разных каналах, лучше всего на независимых. Взаимное расположение точек следует подобрать таким образом, чтобы  зоны покрытия пересекались без существенного ослабления сигнала.

Клиентские устройства принимают решение о подключении к той или иной точке доступа автоматически, на основании уровня сигнала. Таким образом мобильные пользователи могут свободно перемещаться по все зоне покрытия без обрыва связи.

Если необходимо использовать более 3 точек, то необходимо чередовать независимые каналы таким образом, чтобы зоны их покрытия не пересекались.

Данная схема оптимальна, когда требуется развернуть беспроводную сеть поверх проводной, например гостевой интернет для клиентов фирмы или в кафе. Однако ее реализация сопряжена с наибольшими сложностями, так как требуется использовать несколько независимых каналов, что может быть не всегда возможно. 

Бывают ситуации когда надо расширить зону покрытия на площадь не имеющую проводных коммуникаций, что делает невозможным применение первой схемы, в таком случае дополнительную точку доступа можно сконфигурировать как повторитель (Repeater), которая будет ретранслировать сигнал основной точки доступа.

Обе точки должны иметь одинаковый SSID, одинаковые параметры шифрования и работать на одном канале, в настройках повторителя нужно указать MAC адрес точки доступа или другого повторителя, сигнал которого нужно ретранслировать.

При этом повторитель должен находиться в зоне уверенного приема другого устройства, что несколько снижает общую площадь покрытия. Следует также помнить, что канал делится на все устройства в общей зоне покрытия.

 При использовании повторителей скорость работы каждого следующего звена падает, так как  канал делится на передачу одной и той-же информации между участками сети (устройство-повторитель и повторитель-точка доступа). Т.е.

если клиентское устройство, работающее через повторитель будет использовать канал на 1 Мб/с, общая загрузка канала составит 2 Мб/с, при использовании двух повторителей 3 Мб/с и т.д.

Существует еще один режим точки доступа – беспроводной мост, он может быть типов Point-to-point или Point-to-Multipoint, в этом случае точки доступа устанавливают соединение между собой. В режиме Point-to-point можно соединить только две точки доступа, в режиме Point-to-Multipoint одна точка может устанавливать соединение с несколькими.

Данный режим обычно используют для связи двух участков сети, когда проложить кабель между ними невозможно или нецелесообразно, и не предъявляется особых требований к пропускной способности. Например для подключения тонких клиентов в отдельно стоящем складе на территории фирмы.

В этом случае целесообразно использовать направленные антенны, чтобы уменьшить зону покрытия и не создавать помех другим сетям.

Каждая точка должна иметь одинаковый SSID, канал и параметры шифрования, в настройках потребуется указать MAC адрес точки, с которой нужно установить соединение. В этом режиме точки доступа не обслуживают беспроводных клиентов.

Использование беспроводного моста имеет свои особенности, так как точки принимают передают пакеты только друг другу, то обнаружить работающий мост клиентским устройством невозможно, inSSIDer также покажет чистый диапазон.

В то-же время сети использующие смежные каналы могут испытывать сильные помехи в зоне покрытия моста.

Поэтому используйте данную схему только внутри своих помещений или территорий, не допуская пересечения иных зон, где могут быть развернуты другие беспроводные сети, также всегда старайтесь использовать направленные антенны с минимально необходимым коэффициентом усиления.

Ну и напоследок самое вкусное, режим WDS, он сочетает режим точки доступа и моста, в данном режиме точки могут устанавливать соединения друг с другом и одновременно обслуживать клиентов.

Данный режим позволяет создавать самые разнообразные конфигурации беспроводных сетей абсолютно прозрачных для клиентских устройств, точка может работать как в режиме мост, так и в режиме мост+точка доступа, что позволяет, в отличии от цепочки повторителей, обеспечить беспроводное покрытие только там, где вам надо.

Например вам нужно пробросить гостевой интернет в  другой корпус, но вы совсем не хотите, чтобы он был доступен на стоянке, где придется расположить промежуточную точку.

В этом случае также следует использовать один канал, SSID и настройки шифрования для всех точек, а также помнить что с каждым звеном скорость работы будет падать за счет передачи повторяющихся данных в общей полосе.

Также стоит избегать кольцевых схем соединения точек, если они не поддерживают Spanning Tree Protocol, так как скорость работы сети резко упадет из за широковещательного шторма.

При настройке точек следует указать режим и MAC адреса точек с которыми надо установить соединение.

В заключение хочется дать общие рекомендации: при проектировании и развертывании сетей помните о том, что частотный диапазон выделенный для Wi-Fi весьма тесен, поэтому старайтесь не использовать антенн с коэффициентом усиления больше чем необходимо, а также примите меры для недопущения помех соседним сетям. Помните нарушение правил эксплуатации беспроводных сетей влечет административную ответственность по статьям 13.3 и 13.4 КоАП, предусматривающие штраф с возможной конфискацией оборудования.

Источник: https://interface31.ru/tech_it/2011/11/postroenie-setey-wi-fi-kratkiy-likbez.html

Некоторые фундаментальные основы Wi-Fi

Несущие сигналы (несущие частоты)

В сетях передачи данных сами данные всегда передаются в виде нулей и единиц, вне зависимости от того проводные это сети или беспроводные. Поэтому передатчику необходим способ  отправки нулей и единиц к приемнику. Сами электрические виды сигналов типа АС или DC эту задачу не решают.

Однако если сигнал как-либо изменяется, то такой сигнал можно интерпретировать отличным образом и такие данные можно надежно передавать или принимать. Данный подход уже способен создать условия для того, чтобы ввести различия между нулями и единицами. Такой модифицированный сигнал, который несёт данные, называется Несущим сигналом (Carrier signal).

Метод манипулирования сигналом для формирования несущего сигнала называется Модуляцией сигнала.

Существует три основных компонента радиоволны, которые могут изменяться для формирования несущего сигнала, это: 1. Амлитуда, 2. Частота, 3. Фаза.

Все радиокоммуникации используют ту или иную форму модуляции для переноса данных. По сути модуляция это некая форма кодирования сигнала.

Амплитуда
и длина волны

Радиокоммуникации начинаются когда радиоволны генерируются на Передатчике и принимаются на другой стороне на Приемнике. Радиоволна во многом подобна волне в море. Сама волна состоит из двух компонентов: длины волны и амплитуды.

Амплитуда

это высота или сила волны. Чем больше больше электрический сигнал, генерируемый передатчиком, тем больше сила волны или амплитуда.

Длина волны
Длина волны это дистанция между идентичными точками волны (например между двуми пиками).

Частота

Частота описывает поведение волн. Волны перемещаются от источника, который их генерирует. Частота при этом описывает какое количество волн генерируется за одну секунду.

Фаза

Фаза является относительным понятием. Этот термин характеризует отношение между двумя волнами одинаковой частоты. Для определения фазы волна(длина волны) делится на 360 частей, которые называются градусами.

В качестве примера можно привести следующий: если мы имеем две волны и одна из них начинается в точке 0 градусов, а вторая волна начинается в точке 90 градусов, то эти волны Не в фазе с разнесением 90 градусов.

В идеальном мире волны могут генерироваться и передаваться без помех, переотражений и т.п.. К сожалению реальность накладывает свои условия на распространение радиоволн.

Существует множество источников интерференции и множество препятствий для распространения радиоволн на пути к приемнику, поэтому чаще всего мы будем видеть множественные копии начального сигнала с различной аплитудой, фазой, а иногда и частотой.

Методы кодирования сигнала (Keying Methods)

При отправке данных сигнал передается с передатчика. Чтобы передавать данные необходимо управлять так сигналом, чтобы принимающая сторона могла различить нули и единицы.

Метод манипуляции или управления сигналом, при котором можно представлять множественные части данных называется Методом кодирования(Keying Method). Метод кодирования это именно то, что изменяет сигнал в несущий сигнал.

Фактически это механизм, который дает возможность кодировать данные, чтобы его можно было использовать для коммуникаций или для передачи.

Существует три основных типа методов кодирования:
1. ASK (Amplitude-Shift Keying) Кодирование с изменением амплитуды, 2. FSK (Frequency-Shift Keying) Кодирование с изменением частоты, 3. PSK (Phase-Shift Keying) Кодирование с изменением фазы.

Приведенные методы кодирования сигнала также называются техниками модуляции.

Методы кодирования используют два основных подхода для представления данных:

Текущее состояние (Current State)

В технике текущего состояния именно текущее состояние используется для разделения единицы и нуля. Фактически здесь одно состояние будет представлять двоичный ноль, а другое состояние единицу.

Переходное состояние (State Transition)

В технике переходного состояния изменение (или переход) сигнала используется для разделения нулей и единиц. Например ноль может быть представлен изменением фазы сигнала (именно как процесс изменения), а единица, как статичное состояние фазы в конкретный момент времени(нет изменений в фазе).

Кодирование с изменением амплитуды (ASK).

ASK изменяет амплитуду сигнала(высота) для представления двоичных данных. Это техника текущего состояния, где один уровень амплитуды(высоты) представляет ноль, а другой уровень – единицу. Например большая амплитуда волны представляет единицу, а меньшая – ноль. Изменение амплитуды определяет  данные, которые передаются.

Подход, при котором приемник выполняет эту задачу, требует начать с определения периода, в который сигнал может приниматься – символьный период. Затем приемник может использовать это как специальный временной интервал-маску(сэмпл) для проверки волны в течении именно символьного периода для определения амплитуды волны.

После этого уже в зависимости от амплитуды волны принимающая сторона может определить двоичную величину.

Кодирование с изменением частоты (FSK).

FSK изменяет частоту сигнала для представления двоичных данных. FSK это техника текущего состояния, где одна частота представляет ноль, а другая частота представлет единицу.

Изменение частоты определяет данные, которые передаются.

Когда приемник семплирует сигнал в течении символьного периода он определяет значение частоты сигнала и в зависимости от этой частоты приемник может распознать соответствующее двоичное значение.

FSK применяется в некоторых старых технологиях 802.11 (и в некоторых существующих старых сетях). Для поддержки более высоких скоростей FSK требует более дорогих компонентов и становится все менее практичным для разработки.

Кодирование с изменением фазы (PSK).

PSK изменяет фазу сигнала для представления двоичных данных. PSK это техника изменения состояния, где изменение фазы представляет ноль, а статичное состояние фазы представляет единицу. Такое изменение и определяет двоичные данные, которые передаются. Когда приемник сэмплирует сигнал в течении символьного периода он определяет фазу волны и соответствующее состояние бита данных.

PSK широко используется для радиопередачи, что определено в стандарте 802.11-2007. Обычная реализация подразумевает, что приемник сэмплирует сигнал в течении символьного периода, сравнивает фазу текущего сэмпла с предыдущим сэмплом и определяет есть ли отличие. Угол такого отличия или диффиренциал используется для получения значения бита.

Более продвинутые версии PSK могут кодировать множество бит на символ.

Можно использовать, например, не две фазы, а четыре и каждая такая фаза может иметь два двоичных значения ноль или единица (00, 01, 10, 11), а не просто (0, 1).

Такой подход позволяет за одинаковое время занятия эфира передавать значительно больший объем данных. Когда используется более двух фаз это называется MPSK (Multiple PSK).

Для получения анонсов по выходу новых статей или появлении новых материалов на нашем сайте предлагаем подписаться на рассылку.

Источник: http://wi-life.ru/stati/wi-fi/texnicheskie-stati/some-wifi-fundamentals-1

Беспроводные технологии Wi-Fi Wi-Max

Подробности Обновлено: 01 Ноябрь 2014 Просмотров: 10649

1 1 1 1 1 1 1 1 1 1 Рейтинг 4.75 [2 Голоса (ов)]

IEEE 802.11

Wi-fi – популярная в мире и быстро развивающаяся технология беспроводных сетей, обеспечивающая беспроводное подключение мобильных пользователей к локальной сети и Интернету.

Работает в диапазоне 2.4ГГц или 5ГГц.

Wi-Fi былсозданв 1991 году NCR Corporation/AT&T.

Распространенным заблуждением является то, что термин Wi-Fi является сокращением от “Wireless Fidelity”, однако это не так. Wi-Fi является просто торговой маркой, означающей стандарт IEEE 802.11x.

Wi-Fi Alliance -организация, которой принадлежит Wi-Fi (зарегистрированная торговая марка). Изначально термин Wi-Fi использовался только для стандарта 802.

11b на частоте 2,4 ГГц, однако Wi-Fi Alliance расширил общее использование Wi-Fi термина, включая любое устройство из стандарта 802.11х.

Wi-fi – набор из нескольких стандартов, разработанных для беспроводных сетей на основе спецификации 802.11.

Wi-Fi поддерживается многими приложениями и устройствами, включая игровые консоли, домашние сети, КПК, мобильные телефоны, основные операционные системы, и другие виды потребительской электроники. Любые устройства, которые протестированы и одобрены как “Wi-Fi Certified” от Wi-Fi Alliance сертифицированы как совместимые друг с другом, даже если они от разных производителей.

Важно отметить, что в стандарте 802.11 предусматривается использование только полудуплексных приемопередатчиков, которые не могут одновременно передавать и принимать информацию. Из-за этого в беспроводных сетях 802.

11 станция в принципе не может обнаружить столкновение во время передачи (поскольку в это время не имеет возможности принимать данные). Поэтому в качестве метода доступа к среде во всех стандартах используется метод CSMA/CA (с предотвращением коллизий), позволяющий избегать столкновений.

Это приводит к дополнительным сложностям при взаимодействии и, как следствие, к существенно меньшим скоростям передачи данных, чем, например, в технологии Ethernet.

Существует два основных варианта устройства беспроводной сети:

  • Ad-hoc – передача напрямую между устройствами;
  • Hot-spot – передача осуществляется через точку доступа;

Как и у всех технологий семейства 802.11, технология 802.11 определяется нижними двумя уровнями, т.е. физическим уровнем и уровнем MAC, а уровень LLC выполняет свои стандартные общие для всех технологий LAN функции.

Уровень MAC выполняет в беспроводных сетях больше функций, чем в проводных. Функции уровня MAC:

  • Доступ к разделяемой среде. Подразделяется:
    • Распределенный режим DCF;
    • Централизованный режим PCF;
  • Обеспечение мобильности станций при наличии нескольких точек доступа;
  • Обеспечение безопасности.

DCF (Distributed Coordination Function) не имеет никаких средств централизованного управления (в этом смысле напоминая Ethernet). Реализуется алгоритм CSMA/CA (предотвращение коллизий) т.е. каждый кадр должен подтверждаться кадром положительной квитанции, если по истечению оговоренного тайм-аута квитанция не поступила, станция-отправитель считает, что произошла коллизия.

Режим доступа DCF выполняет синхронизацию станций, с помощью временных интервалов, отсчитанных от момента окончания передачи очередного кадра. Станция, которая хочет передать кадр, обязана предварительно прослушать среду.

Как только она фиксирует окончание передачи кадра, обязана отсчитать интервал времени равный межкадровому интервалу (IFS). Если после истечения IFS среда все еще свободна, то начинается отсчет слотов фиксированной длительности. Кадр можно передать только в начале какого-либо из слотов при условии, что среда свободна.

Станция выбирает для передачи слот на основании усеченного экспоненциального двоичного алгоритма отсрочки.

PCF (Point Coordination Function), подразумевает, что базовая станция (точка доступа) берет на себя функцию управления активностью всех станций. Является дополнением к режиму DCF.

Режим доступа PCF сосуществует с режимом DCF. После освобождения среды каждая станция отсчитывает время простоя среды, сравнивая его с тремя значениями:

  • Короткий межкадровый интервал (SIFS) имеет наименьшее значение, используемые для захвата среды квитанциями, которые продолжают или завершают начавшуюся передачу кадра;
  • Межкадровый интервал режима PCF (PIFS) имеет среднее значение, используется базовой станцией для контролируемого периода;
  • Межкадровый интервал режима DCF (DIFS) самый длинный интервал, используется для захвата среды передачи кадра.

Безопасность wi-fi

Для того, чтобы получить доступ к проводной сети, злоумышленник должен к ней физически подключиться. Такое действие можно заметить и пресечь.

В беспроводной сети несанкционированный доступ можно осуществить гораздо проще, достаточно оказаться в зоне распространения радиоволн этой сети, даже вне здания офиса.

Любое взаимодействие точки доступа (сети), и беспроводного клиента, построено на:

  • Аутентификации — как клиент и точка доступа представляются друг другу и подтверждают, что у них есть право общаться между собой;
  • Шифровании — какой алгоритм скремблирования передаваемых данных применяется, как генерируется ключ шифрования, и когда он меняется.

В стандарте 802.11 предусмотрены средства обеспечения безопасности, которые повышают защищенность беспроводной локальной сети до уровня обычно проводной локальной сети.

Способы шифрования беспроводных сетей:

  • WEP (WiredEquivalentPrivacy – секретность, эквивалентная проводной). Он представляет возможность шифровать данные, передаваемые через беспроводную среду, и тем самым обеспечивает их конфиденциальность;
  • WPA (Wi-FiProtectedAccess – защищенный доступ к Wi-Fi) – более защищенный вариант беспроводных локальных сетей. Одобрен в 2003г.
  • WPA2 – описывает надежное средство защиты беспроводных локальных сетей, сочетающее в себе наиболее совершенные средства аутентификации пользователей и шифрования данных. Одобрен в 2004г.

Спецификации физической среды 802.11

  • IEEE 802.11 ИК – используются длины волн 0,85 или 0,95 мкм. Возможны две скорости передачи: 1 и 2 Мбит/с. Частота 2,4 ГГц
  • IEEE 802.11a. DSSS (DirectSequenceSpreadSpectrum — передача широкополосного сигнала по методу прямой последовательности). Изначально стандарт IEEE 802.11 предполагал возможность передачи данных по радиоканалу на скорости не более 1 Мбит/с и опционально на скорости 2 Мбит/с. Один из первых высокоскоростных стандартов беспроводных сетей, определяет скорость передачи до 54 Мбит/с. Рабочий диапазон стандарта 5 ГГц.
  • IEEE 802.11b HR-DSSS (High Rate Direct Sequence Spread Spectrum — высокоскоростная передача широкополосного сигнала по методу прямой последовательности) принятый в 1999 году . Стандарт предусматривает использование диапазона частот 2,4 ГГц. Скорость передачи до 11 Мбит/с. Защита WEB
  • IEEE 802.11g OFDM принятый в 2003г. Этот стандарт предусматривает использование диапазона частот 2,4 ГГц, обеспечивая скорость передачи 54 Мбит/с. Стандарт IEEE 802.11g неофициально преодолел лимит 54 Мбит/с с помощью технологий объединения каналов Super G, AirPlusXtremeG, MIMO, Turbo и получил поддержку пропускной способности 108 и даже 150 Мбит/с. Защита WEB,WPA, WPA2 
  • IEEE 802.11n —новейшая версия стандарта IEEE 802.11 для сетей Wi-Fi. Теоретически IEEE 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с. Устройства 802.11n работают в диапазонах 2,4 —2,5 или 5,0 ГГц. Кроме того, устройства 802.11n могут работать в трёх режимах:
    • наследуемом (Legacy), в котором обеспечивается поддержка устройств 802.11b/g и 802.11a
    • смешанном (Mixed), в котором поддерживаются устройства 802.11b/g, 802.11a и 802.11n
    • «чистом» режиме —802.11n (именно в этом режиме и можно воспользоваться преимуществами повышенной скорости и увеличенной дальностью передачи данных, обеспечиваемыми стандартом IEEE 802.11n).
  • IEEE 802.

    11ac — планируется использовать в 2014г, это новый стандарт беспроводных компьютерных сетей семейства 802.11 для сетей Wi-Fi на частотах 5-6 ГГц. Устройства, которые работают по этому стандарту, обеспечивают скорость передачи данных более 1 Гбит/с (до 6 Гбит/с 8x MU-MIMO), Стандарт подразумевает использование до 8 антенн MU-MIMO и расширение канала до 80 и 160 МГц.

    По версии компании Broadcom, данный стандарт относится к сетям нового поколения 5.5G.

  • IEEE 802.11ad – является беспроводной спецификацией на стадии разработки, будет работать в диапазоне частот 60 ГГц и предлагает большие скорости передачи данных, чем предыдущие 802.11 спецификации, с теоретической максимальной пропускной способностью до 7Гбит/с (гигабит в секунду).

Wi-MAX

WiMax (англ. Worldwide Interoperability for Microwave Access) — телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов).

Основана на стандарте IEEE 802.16, который также называют Wireless MAN. Название «WiMax» было создано WiMaxForum —организацией, которая была основана в июне 2001 года с целью продвижения и развития технологии WiMax. Форум описывает WiMax как «основанную на стандарте технологию, предоставляющую высокоскоростной беспроводной доступ к сети, альтернативный выделенным линиям и DSL»IEEE 802.16.

WiMax позволяет осуществлять доступ в Интернет на высоких скоростях, с гораздо большим покрытием, чем у Wi-Fi сетей.

WiMax это система дальнего действия, покрывающая километры пространства, которая обычно использует лицензированные спектры частот (хотя возможно и использование нелицензированных частот) для предоставления соединения с интернетом типа точка-точка провайдером конечному пользователю.

  • IEEE 802.16d – Спецификация утверждена в 2004 году. Используется ортогональное частотное мультиплексирование (OFDM) поддерживается фиксированный доступ в зонах с наличием либо отсутствием прямой видимости. Скорость до 75Мбит/c, радиус действия 25-80км, частота от 1,5-11ГГц;
  • IEEE 802.16e – Спецификация утверждена в 2005 году. Применяется масштабируемый OFDM-доступ (SOFDMA), возможна работа при наличии либо отсутствии прямой видимости. Скорость до 40Мбит/c, радиус действия 1-5км, частота 2,3-13,6ГГц;
  • IEEE 802.16m или WiMax 2 – представляющем собой стандарт IEEE 802.16e, дополненный новыми возможностями, но сохранивший обратную совместимость. Скорость до 100Мбит/c или до 1Гбит/c, радиус действия и частота в разработке.

Вас также могут заинтересовать:

Источник: http://just-networks.ru/lokalnye-vychislitelnye-seti/besprovodnye-tekhnologii-wi-fi-wi-max

Организация беспроводных сетей

Аннотация: Лекция знакомит читателя с основами беспроводных сетей передачи данных, с технологией Wi-Fi и ее преимуществами перед обычными кабельными сетями. Рассматриваются основные элементы сети и их характеристики.

Подробно описаны основы передачи данных в беспроводных сетях, технологии модуляции сигналов. Не оставлены без внимания вопросы, связанные с методами доступа к среде в беспроводных сетях, технологией расширенного спектра.

Большое внимание уделено кодированию и защите от ошибок, как наиболее важному элементу при понимании технологии беспроводных локальных сетей.

WI-FI – это современная беспроводная технология соединения компьютеров в локальную сеть и подключения их к Internet. Именно благодаря этой технологии Internet становится мобильным и дает пользователю свободу перемещения не то что в пределах комнаты, но и по всему миру.

Представьте себе такую картину: вы пользуетесь своим компьютером так же, как сейчас – мобильным телефоном; вам не нужны провода, вы можете взять свой ноутбук в любую точку Москвы и войти в Internet практически отовсюду. Это – ближайшее будущее.

Под аббревиатурой “Wi-Fi” (от английского словосочетания “Wireless Fidelity”, которое можно дословно перевести как “высокая точность беспроводной передачи данных”) в настоящее время развивается целое семейство стандартов передачи цифровых потоков данных по радиоканалам.

С увеличением числа мобильных пользователей возникает острая необходимость в оперативном создании коммуникаций между ними, в обмене данными, в быстром получении информации. Поэтому естественным образом происходит интенсивное развитие технологий беспроводных коммуникаций.

Особенно это актуально в отношении беспроводных сетей, или так называемых WLAN-сетей (Wireless Local Area Network). Сети Wireless LAN – это беспроводные сети (вместо обычных проводов в них используются радиоволны).

Установка таких сетей рекомендуется там, где развертывание кабельной системы невозможно или экономически нецелесообразно.

Беспроводные сети особенно эффективны на предприятиях, где сотрудники активно перемещаются по территории во время рабочего дня с целью обслуживания клиентов или сбора информации (крупные склады, агентства, офисы продаж, учреждения здравоохранения и др.).

Благодаря функции роуминга между точками доступа пользователи могут перемещаться по территории покрытия сети Wi-Fi без разрыва соединения.

WLAN-сети имеют ряд преимуществ перед обычными кабельными сетями:

  • WLAN-сеть можно очень быстро развернуть, что очень удобно при проведении презентаций или в условиях работы вне офиса;
  • пользователи мобильных устройств при подключении к локальным беспроводным сетям могут легко перемещаться в рамках действующих зон сети;
  • скорость современных сетей довольно высока, что позволяет использовать их для решения очень широкого спектра задач;
  • WLAN-сеть может оказаться единственным выходом, если невозможна прокладка кабеля для обычной сети.

Вместе с тем необходимо помнить об ограничениях беспроводных сетей. Это, как правило, все-таки меньшая скорость, подверженность влиянию помех и более сложная схема обеспечения безопасности передаваемой информации.

Сегмент Wi-Fi сети может использоваться как самостоятельная сеть, либо в составе более сложной сети, содержащей как беспроводные, так и обычные проводные сегменты. Wi-Fi сеть может использоваться:

  • для беспроводного подключения пользователей к сети;
  • для объединения пространственно разнесенных подсетей в одну общую сеть там, где кабельное соединение подсетей невозможно или нежелательно;
  • для подключения к сетям провайдера Internet-услуги вместо использования выделенной проводной линии или обычного модемного соединения.

Для построения беспроводной сети используются Wi-Fi адаптеры и точки доступа.

Адаптер ( рис. 1.1 ) представляет собой устройство, которое подключается через слот расширения PCI, PCMCIA, CompactFlash. Существуют также адаптеры с подключением через порт USB 2.0. Wi-Fi адаптер выполняет ту же функцию, что и сетевая карта в проводной сети.

Он служит для подключения компьютера пользователя к беспроводной сети. Благодаря платформе Centrino все современные ноутбуки имеют встроенные адаптеры Wi-Fi, совместимые со многими современными стандартами.

Wi-Fi адаптерами, как правило, снабжены и КПК (карманные персональные компьютеры), что также позволяет подключать их к беспроводным сетям.

Для доступа к беспроводной сети адаптер может устанавливать связь непосредственно с другими адаптерами. Такая сеть называется беспроводной одноранговой сетью или Ad Hoc (“к случаю”). Адаптер также может устанавливать связь через специальное устройство – точку доступа. Такой режим называется инфраструктурой.

Для выбора способа подключения адаптер должен быть настроен на использование либо Ad Hoc, либо инфраструктурного режима.

Точка доступа ( рис. 1.2) представляет собой автономный модуль со встроенным микрокомпьютером и приемно-передающим устройством.

Рис. 1.1. Адаптеры

Через точку доступа осуществляется взаимодействие и обмен информацией между беспроводными адаптерами, а также связь с проводным сегментом сети. Таким образом, точка доступа играет роль коммутатора.

Рис. 1.2. Точка доступа

Точка доступа имеет сетевой интерфейс (uplink port), при помощи которого она может быть подключена к обычной проводной сети. Через этот же интерфейс может осуществляться и настройка точки.

Описание беспроводного оборудования можно найти в “Приложение А. Обзор беспроводного оборудования D-Link” .

Точка доступа может использоваться как для подключения к ней клиентов (базовый режим точки доступа), так и для взаимодействия с другими точками доступа с целью построения распределенной сети (Wireless Distributed System – WDS). Это режимы беспроводного моста “точка-точка” и “точка – много точек”, беспроводной клиент и повторитель.

Доступ к сети обеспечивается путем передачи широковещательных сигналов через эфир. Принимающая станция может получать сигналы в диапазоне работы нескольких передающих станций. Станция-приемник использует идентификатор зоны обслуживания (Service Set IDentifier – SSID) для фильтрации получаемых сигналов и выделения того, который ей нужен.

Зоной обслуживания (Service Set – SS) называются логически сгруппированные устройства, обеспечивающие подключение к беспроводной сети.

Базовая зона обслуживания (Basic Service Set – BSS) – это группа станций, которые связываются друг с другом по беспроводной связи. Технология BSS предполагает наличие особой станции, которая называется точкой доступа (access point).

Для более полного понимания работы беспроводных устройств обратимся к следующему разделу.

Источник: http://www.intuit.ru/studies/courses/966/202/lecture/5236

Ссылка на основную публикацию
Adblock
detector
",css:{backgroundColor:"#000",opacity:.6}},container:{block:void 0,tpl:"
"},wrap:void 0,body:void 0,errors:{tpl:"
",autoclose_delay:2e3,ajax_unsuccessful_load:"Error"},openEffect:{type:"fade",speed:400},closeEffect:{type:"fade",speed:400},beforeOpen:n.noop,afterOpen:n.noop,beforeClose:n.noop,afterClose:n.noop,afterLoading:n.noop,afterLoadingOnShow:n.noop,errorLoading:n.noop},o=0,p=n([]),h={isEventOut:function(a,b){var c=!0;return n(a).each(function(){n(b.target).get(0)==n(this).get(0)&&(c=!1),0==n(b.target).closest("HTML",n(this).get(0)).length&&(c=!1)}),c}},q={getParentEl:function(a){var b=n(a);return b.data("arcticmodal")?b:(b=n(a).closest(".arcticmodal-container").data("arcticmodalParentEl"),!!b&&b)},transition:function(a,b,c,d){switch(d=null==d?n.noop:d,c.type){case"fade":"show"==b?a.fadeIn(c.speed,d):a.fadeOut(c.speed,d);break;case"none":"show"==b?a.show():a.hide(),d();}},prepare_body:function(a,b){n(".arcticmodal-close",a.body).unbind("click.arcticmodal").bind("click.arcticmodal",function(){return b.arcticmodal("close"),!1})},init_el:function(d,a){var b=d.data("arcticmodal");if(!b){if(b=a,o++,b.modalID=o,b.overlay.block=n(b.overlay.tpl),b.overlay.block.css(b.overlay.css),b.container.block=n(b.container.tpl),b.body=n(".arcticmodal-container_i2",b.container.block),a.clone?b.body.html(d.clone(!0)):(d.before("
"),b.body.html(d)),q.prepare_body(b,d),b.closeOnOverlayClick&&b.overlay.block.add(b.container.block).click(function(a){h.isEventOut(n(">*",b.body),a)&&d.arcticmodal("close")}),b.container.block.data("arcticmodalParentEl",d),d.data("arcticmodal",b),p=n.merge(p,d),n.proxy(e.show,d)(),"html"==b.type)return d;if(null!=b.ajax.beforeSend){var c=b.ajax.beforeSend;delete b.ajax.beforeSend}if(null!=b.ajax.success){var f=b.ajax.success;delete b.ajax.success}if(null!=b.ajax.error){var g=b.ajax.error;delete b.ajax.error}var j=n.extend(!0,{url:b.url,beforeSend:function(){null==c?b.body.html("
"):c(b,d)},success:function(c){d.trigger("afterLoading"),b.afterLoading(b,d,c),null==f?b.body.html(c):f(b,d,c),q.prepare_body(b,d),d.trigger("afterLoadingOnShow"),b.afterLoadingOnShow(b,d,c)},error:function(){d.trigger("errorLoading"),b.errorLoading(b,d),null==g?(b.body.html(b.errors.tpl),n(".arcticmodal-error",b.body).html(b.errors.ajax_unsuccessful_load),n(".arcticmodal-close",b.body).click(function(){return d.arcticmodal("close"),!1}),b.errors.autoclose_delay&&setTimeout(function(){d.arcticmodal("close")},b.errors.autoclose_delay)):g(b,d)}},b.ajax);b.ajax_request=n.ajax(j),d.data("arcticmodal",b)}},init:function(b){if(b=n.extend(!0,{},a,b),!n.isFunction(this))return this.each(function(){q.init_el(n(this),n.extend(!0,{},b))});if(null==b)return void n.error("jquery.arcticmodal: Uncorrect parameters");if(""==b.type)return void n.error("jquery.arcticmodal: Don't set parameter \"type\"");switch(b.type){case"html":if(""==b.content)return void n.error("jquery.arcticmodal: Don't set parameter \"content\"");var e=b.content;return b.content="",q.init_el(n(e),b);case"ajax":return""==b.url?void n.error("jquery.arcticmodal: Don't set parameter \"url\""):q.init_el(n("
"),b);}}},e={show:function(){var a=q.getParentEl(this);if(!1===a)return void n.error("jquery.arcticmodal: Uncorrect call");var b=a.data("arcticmodal");if(b.overlay.block.hide(),b.container.block.hide(),n("BODY").append(b.overlay.block),n("BODY").append(b.container.block),b.beforeOpen(b,a),a.trigger("beforeOpen"),"hidden"!=b.wrap.css("overflow")){b.wrap.data("arcticmodalOverflow",b.wrap.css("overflow"));var c=b.wrap.outerWidth(!0);b.wrap.css("overflow","hidden");var d=b.wrap.outerWidth(!0);d!=c&&b.wrap.css("marginRight",d-c+"px")}return p.not(a).each(function(){var a=n(this).data("arcticmodal");a.overlay.block.hide()}),q.transition(b.overlay.block,"show",1*")),b.overlay.block.remove(),b.container.block.remove(),a.data("arcticmodal",null),n(".arcticmodal-container").length||(b.wrap.data("arcticmodalOverflow")&&b.wrap.css("overflow",b.wrap.data("arcticmodalOverflow")),b.wrap.css("marginRight",0))}),"ajax"==b.type&&b.ajax_request.abort(),p=p.not(a))})},setDefault:function(b){n.extend(!0,a,b)}};n(function(){a.wrap=n(document.all&&!document.querySelector?"html":"body")}),n(document).bind("keyup.arcticmodal",function(d){var a=p.last();if(a.length){var b=a.data("arcticmodal");b.closeOnEsc&&27===d.keyCode&&a.arcticmodal("close")}}),n.arcticmodal=n.fn.arcticmodal=function(a){return e[a]?e[a].apply(this,Array.prototype.slice.call(arguments,1)):"object"!=typeof a&&a?void n.error("jquery.arcticmodal: Method "+a+" does not exist"):q.init.apply(this,arguments)}}(jQuery)}var debugMode="undefined"!=typeof debugFlatPM&&debugFlatPM,duplicateMode="undefined"!=typeof duplicateFlatPM&&duplicateFlatPM,countMode="undefined"!=typeof countFlatPM&&countFlatPM;document["wri"+"te"]=function(a){let b=document.createElement("div");jQuery(document.currentScript).after(b),flatPM_setHTML(b,a),jQuery(b).contents().unwrap()};function flatPM_sticky(c,d,e=0){function f(){if(null==a){let b=getComputedStyle(g,""),c="";for(let a=0;a=b.top-h?b.top-h{const d=c.split("=");return d[0]===a?decodeURIComponent(d[1]):b},""),c=""==b?void 0:b;return c}function flatPM_testCookie(){let a="test_56445";try{return localStorage.setItem(a,a),localStorage.removeItem(a),!0}catch(a){return!1}}function flatPM_grep(a,b,c){return jQuery.grep(a,(a,d)=>c?d==b:0==(d+1)%b)}function flatPM_random(a,b){return Math.floor(Math.random()*(b-a+1))+a}