Радио для всех – измеритель r/l/c/esr
Источник: http://radio-kits.ucoz.ru/index/izmeritel_r_l_c_esr/0-30
Измеритель C и ESR
Прибор R/L/C/ESR-Meter для измерения малых сопротивлений, индуктивностей, емкостей конденсаторов и эквивалентного последовательного сопротивления (ЭПС) или по английски Equivalent Series Resistance (ESR) электролитических конденсаторов В связи с тем, что в настоящее время очень широкое применение получили импульсные блоки питания, инверторы и пр. преобразователи, работающие на высоких частотах, то при их ремонте возникла необходимость в приборе для измерения ESR электролитических конденсаторов. Несколько месяцев я “гулял” по просторам Интернета в поисках нужного мне прибора, собрал несколько аналоговых и цифровых приборов для измерения ESR и остановился на одном, который и предлагаю к повторению. Множество предлагаемых в Интернете приборов, в том числе и тестер полупроводниковых приборов описание которого приведено здесь, кроме своих основных функций могут измерять и ёмкости, и индуктивности, и т.д. Но, к сожалению, я не нашёл универсальный измерительный прибор, который может измерять абсолютно всё и качественно. Просмотрел кучу схем и видеороликов наYouTubeи для себя решил, что нужно иметь несколько разных приборов, умеющих делать свою работу. В любом случае, все наши самоделки не являются высокоточными измерительными приборами, но обеспечивают измерения с достаточной для нашего творчества точностью. Дополнительно радует, лично меня, то, что устройство собрано моими руками, да ещё и работает 🙂 короче говоря, кому интересно – читаем дальше о конструкторе который я всем предлагаю… С помощью конструктора можно собрать очень полезный и, что самое главное, простой в сборке и наладке прибор, который будет очень полезен в повседневной работе специалисту по ремонту радиоаппаратуры, радиолюбителю и т.д. – измеритель индуктивности, ёмкости и эквивалентного последовательного сопротивления (ЭПС или ESR) электролитических конденсаторов, очень маленьких сопротивлений (миллиомметр) – «LCM TESTER». Индикация выполнена на жидкокристаллическом дисплее 2х16 символов с функцией подсветки. Технические характеристики:
Что такое ЭПС или ESR? Зачем нужно его измерять? ESR (Equivalent Series Resistance) – эквивалентное последовательное сопротивление, представляет собой сумму последовательно включенных омических сопротивлений контактов выводов и электролита с обкладками (пластинами) электролитического конденсатора, что является важнейшим параметром электролитических конденсаторов. В русскоязычной аббревиатуре – Эквивалентное Последовательное Сопротивление – ЭПС. По сути, измеритель ESR – это омметр переменного тока, работающей на частоте 50…120 кГц. На этих частотах емкостное сопротивление электролитических конденсаторов мало (около нуля), поэтому показания этого омметра при проверке конденсаторов как раз и дают ESR. Чем меньше это сопротивление – тем качественнее электролитический конденсатор! Потери в диэлектрике, обусловленные особенностями его поляризации, составляют основную часть потерь в конденсаторе и определяются материалом, а так же толщиной слоя диэлектрика. Рассматривать детально процессы всех видов поляризации нет необходимости, но вкратце это можно пояснить следующим образом. Частицы диэлектрика, обладающие зарядом, под воздействием переменного электрического поля вынуждены совершать непроизвольные механические колебания, обусловленные их переориентацией и смещением (поляризацией). В слоях диэлектрика, близких к обкладкам, заряды, не покидая своих связей, активно участвуют в общем процессе перезаряда конденсатора.
В результате угол сдвига фаз между током и напряжением составит не 90°, как в идеальном конденсаторе, а несколько меньше. Тангенс угла δ, составляющего эту разницу с 90°, называют тангенсом угла диэлектрических потерь. Аналогичный сдвиг происходит в цепи при последовательном включении конденсатора и резистора. В связи с этим для расчётов принято понятие последовательного эквивалентного сопротивления ESR, в котором диэлектрические потери суммируются с активным сопротивлением обкладок, соединений и выводов, представляя собой, по сути, резистор, подключенный последовательно с конденсатором. В электролитических конденсаторах значимой частью ESR является сопротивление жидкого электролита, который используется в качестве составляющей одной из обкладок для обеспечения максимальной площади соприкосновения с диэлектриком.
Но, следует учитывать, что для конденсаторов большой ёмкости, используемых в фильтрах выпрямителей импульсных источников питания на рабочей частоте порядка 100 кГц, когда его реактивное сопротивление измеряется тысячными долями Ома, эта величина будет составлять достаточно большие потери. Величина диэлектрических потерь на таких частотах в электролитических конденсаторах фильтров импульсных источников питания обычно в несколько раз больше, и лишь в самых лучших случаях может быть примерно равна и даже меньше потерь в электролите. Сопротивление электролита существенно зависит от температуры по причине изменения степени его вязкости и подвижности ионов. В процессе работы происходит нагрев диэлектрика и электролита переменным током, в связи с чем, может существенно уменьшаться сопротивление электролита, тогда ESR конденсатора будет определяться, главным образом, его диэлектрическими потерями. В случаях разогрева до температуры кипения, электролит утрачивает свои первоначальные свойства и при последующем охлаждении становится более вязким, что значительно повышает его сопротивление. Дальнейшая эксплуатация будет вызывать ещё больший разогрев и ухудшение качества электролита, что, впоследствии приведёт к непригодности конденсатора для дальнейшей работы в устройстве. Обычно неисправные электролитические конденсаторы, в которых кипел электролит, определяются визуально по вздувшемуся и разгерметизированному корпусу. Для надёжности работы электролитических конденсаторов очень важен правильный выбор его типа, номинала и максимального напряжения в зависимости от режимов.
Увеличение ESR конденсатора на несколько Ом, а иногда на несколько десятых долей Ома, может являться причиной неработоспособности устройства, в котором он установлен, что иногда невозможно выявить существующими измерителями ёмкости, не способными учитывать другие параметры конденсатора! Обычно в ремонтной практике не требуется особой точности в измерении ESR, поэтому ощутимая погрешность пробников чаще не вызывает неудобств в отыскании неисправных элементов, а определение состояния конденсатора пробником может упрощаться до оценки его качества по принципу – годен или не годен для работы в конкретном узле устройства. Но, следует отметить, что для конденсаторов, работающих при больших импульсных токах, например, в фильтрах преобразователей, требуется более объективная оценка качества, а погрешность в десятые и даже сотые доли Ома может иметь существенное значение. Данная информация позаимствована с сайта http://tel-spb.ru, там размещена более подробная теоретическая информация по вопросам измерения ESR В отличие от универсальных измерителей, предлагаемых на рынке, да и измерителей специализирующихся именно на измерении ESR, данный прибор обладает высокой точностью и отображает на дисплее достоверные данные измеренных величин, а не шо попало, абы только носить гордое имя измерителя ESR – это проверено неоднократно на практике. Сборка и калибровка прибора: В набор входят: печатная плата с маской и маркировкой радиокомпонентов, все необходимые для сборки тестера радиокомпоненты, кнопки с колпачками, провод с разъёмом для батарейки типа «крона», гнездо для подключения вешнего блока питания, ЖКИ дисплей 2х16. Необходимо запаять в плату все детали согласно принципиальной схеме, смыть флюс и выполнить осмотр печатной платы на предмет отсутствия ненужных перемычек из припоя между дорожками. После этого можно подключать дисплей и источник питания. Собранное без ошибок устройство начинает работать сразу. Только необходимо при первом включении отрегулировать контрастность ЖКИ дисплея при помощи подстроечного резистора RV1. Для этого необходимо подать напряжение питания на тестер – нажать кнопку «POWER» и отрегулировать контрастность дисплея. После включения прибора необходимо выполнить его калибровку. Начальная калибровка в режиме «С» происходит при включении прибора (прибор должен быть в этом режиме при включении прибора). Если ноль “ушел”, то для калибровки нужно: 1. Включить кнопку калибровки. 2. Дождаться появления сообщения типа R=0238 Ом 3. Отключить кнопку повторным нажатием и убрать руки от прибора. 4. Дождаться сообщения о подтверждении калибровки типа С->0. Показания сопротивления должны сброситься в ноль. Если ноль “ушел”, то можно повторить калибровку. Но надо обязательно дать возможность процессору запомнить состояние, не прерывать процесс. Для режима «L» все точно также, только нужно замкнуть контакты разъема измерения индуктивности перемычкой (для режима «С» контакты открытые). Аналогично для режима ESR нужно обязательно сделать калибровку, иначе малые значения R могут “съедаться”: 1. Замкнуть контакты разъема измерения ёмкости и ESR перемычкой. 2. Нажать кнопку калибровки и будет выведена информация на экран о напряжении, прилагаемом к конденсатору, и частота измерения ESR. 3. После этого дождаться появления сообщения R= 0238 Ом, отжать кнопку. Показания сопротивления должны сброситься в ноль. Если ноль “ушел”, то можно повторить калибровку. Но надо обязательно дать возможность процессору запомнить состояние, не прерывать процесс. Ток, потребляемый устройством очень мал, порядка 8-10 мА, поэтому батарейки 6F22 «Крона» 9В хватит на очень долгое время. При этом подсветка дисплея не работает. Чтобы работала подсветка дисплея необходимо подключить к разъёму на плате внешний сетевой адаптер 7-12В. Диаграмма ESR электролитических конденсаторов: По приведенным выше графикам можно определить максимально допустимое сопротивление (значение ESR) электролитического конденсатора в зависимости от ёмкости и рабочего напряжения.
График нужно выбрать исходя из номинального рабочего напряжения конденсатора. Из точки пересечения горизонтальной прямой и графика опускаем перпендикуляр на горизонтальную ось. По шкале на горизонтальной оси определяем наибольшее допустимое значение ESR для испытываемого конденсатора. Кроме того, прибор отображает тангенс угла диэлектрических потерь диэлектрика. Отображение выполняется при помощи индикатора Bar Graph (закрашиваемый столбик). Чем больше закрашен индикатор, тем хуже состояние диэлектрика и наоборот. Что значит надпись m60 и т.п.? Эффект памяти конденсатора. Конденсатор заряжается постоянным напряжением, затем оставляется в покое на некоторое время, после этого проверяется напряжение на конденсаторе. Чем меньше “m**”, тем лучше, для m60 памяти, я думаю это что-то похожее на плохой конденсатор из какого-то блока питания, хороший же электролитический конденсатор имеет “m20” или меньше, по крайней мере большинство из них которые я измерял, имели такую величину.
Теперь понятно также, что означают буквы и цифры типа “m60” в строке где показывается емкость – это эффект памяти конденсатора. Т.е. чем меньше это значение, тем лучше качество конденсатора. Дополнительные функции: Если дополнительно изготовить простенькие щупы, то можно производить измерение ESR конденсаторов непосредственно в печатной плате без выпаивания и без вреда компонентам платы! На схеме: резистор R1 0,6-2 Вт, 22±1% Ом, конденсатор С1 полипропиленовый с малыми потерями типа WIMO, D1 и D2 диоды с барьером Шоттки типа BAT46. Доступны собранные приборы и наборы для сборки с ЖКИ дисплеем с синей подсветкой и белыми символами: В варианте с синим дисплеемподсветка включается при питании как от батарейки, так и от сетевого адаптера. Ток, потребляемый от источника питания при работе измерителя, составляет 20…22 мА. Схема электрическая принципиальная: Видео работы прибора можно увидеть здесь: Стоимость печатной платы с маской и маркировкой:90 грн. Стоимость запрограммированного микроконтроллера:110 грн. Стоимость набора для сборки измерительного прибора: 430 грн. Стоимость собранного и проверенного прибора: 460 грн. |
Взято отсюда – pro-radio.ruДавно хотел сделать устройство для проверки электролитов, которое бы наряду с ESR измеряло и емкость. Все, что попадалось в и-нете на эту тему, чем-нибудь да не устраивало. |
Опробовав некоторые идеи, остановился на варианте определения ESR путем измерения величины падения напряжения (ступеньки) при ОТКЛЮЧЕНИИ конденсатора от источника тока. Емкость определяется традиционным способом – измерение времени заряда стабильным током (10 мА)
То , что получилось в результате – см. на фото.
Пределы измерения:емкость 1-150 000 мкФ
ESR до 10 Ом
Вот еще фотография, самый большой конденсатор, который у меня был
Все самое обычное и доступное – MPLAB IDE + клон ICD2. Отлаживал вживую (только задержки проверял в симуляторе),
вот как это было в стадии макетки.
Насколько точно измерение ESR и Емкости. Естесственно, данный прибор нельзя отнести к классу образцовых.
Калибровку ESR делал по сопротивлениям 1%, потом проверял по результатам измерения: – просто конденсатор – то же конденсатор + резистор Измеренное ESR во втором случае увеличивается на величину добавленного сопротивления достаточно точно, кроме конденсаторов небольшой емкости. Если взять неэлектролит. конденсатор с заведомо низким ESR, конкретно К73 2.2.
мкФ+ последовательно резистор 1 Ом – ESR будет порядка 0.75 Ом (т.е. ошибка 0.25 Ом), для С=1.5 – ошибка увеличится до 0.5 Ом (цифры пишу по памяти, могу немного ошибаться), на 1 мкФ будет уже около ома. Так что эту систематическую погрешность надо учитывать при измерениях конденсаторов < 2...5 мкФ
Далее, АЦП в контроллере 10 разрядов, 1024 отсчета. При выбранных к-тах усиления измерительных усилителей (к1=330 и к10=33) на 1 Ом приходится 680 единиц АЦП. Поэтому отображаемый на индикаторе последний разряд (единицы миллиом) не совсем полновесный.
Про измерение емкости – при выбранном зарядном токе, тактовой частоте 20МГц на 1 мкФ приходится 15 отсчетов таймера. Т.е. в начале шкалы можно говорить о погрешности ~10% . На 100 мкФ “прыгает” третья цифра +/-1. Посему я и оставил при выводе емкости 3 значащих цифры, остальные выводятся нули.
Есть еще один подводный камень при измерении больших емкостей с ESR>3 Ом, но это как правило неисправные конденсаторы и точность здесь не нужна.
К примеру – щупами Да по неполностью разряженной емкости сетевого фильтра импульсного БП??? Защита схемы традиционна – два диода встречно-параллельно и неэффективна.
Лучше эту задачу решить механически – с помощью специальных щупов, которые в обычном состоянии замкнуты между собой через сопротивление порядка 5 Ом (чтобы сваркой на плате на заниматься), а при нажатии на щуп эта цепь размыкалась. Это будет надежнее.
Позволяет ли проводить измерение БЕЗ демонтажа Именно для этого этот прибор и задумывался. После прогрева электролиты часто восстанавливают ESR – самолично убедился в этом факте.
Напряжение на тестируемом элементе – 100 мВ = 10мА * 10 Ом.
Настройка. Первое включение – проверяем наличие +5V после 78L05 и -5V (4.7V) на выходе DA4.
Подбором R31 добиваемся нормальной контрастности на индикаторе.
Немного про кнопки: Включение прибора при нажатой кнопке Set переводит его в режим установки корректирующих коэффициентов. Их всего три – для каналов 1 Ом, 10 Ом и для емкости. Изменение коэффициентов кнопками + и -, запись в EEPROM и перебор –
той же кнопкой Set.
Имеется так же отладочный режим – в этом режиме на индикатор выводятся измеренные значения без обработки – для емкости – состояние таймера (примерно 15 отсчетов на 1 мкФ) и оба канала измерения ESR (1 шаг АЦП=5V/1024).
Переход в отладочный режим – при нажатой кнопке “+”
И еще один момент – установка нуля. Для этого замыкаем вход, нажимаем и удерживаем кнопку “+” и с помощью R4 добиваемся минимальных показаний (но не нулевых!) одновременно по обоим каналам. Не отпуская кнопку “+”, нажимаем
Set – на индикатор выведется сообщение о сохранении U0 в EEPROM.
Далее измеряем образцовые сопротивления 1 Ом (или меньше), 10 Ом и емкость (которой доверяете) , определяем поправочные коэффициенты. Прибор выключаем, включаем при нажатой кнопке Set и устанавливаем
к-ты соответственно результатам измерений.
Источник: http://radio-hobby.org/modules/news/article.php?storyid=412
Измеритель esr на микроконтроллере
Источник: http://radioskot.ru/publ/izmeriteli/izmeritel_esr_na_mikrokontrollere/15-1-0-606
Измеритель ESR+LCF v3
Источник: http://vprl.ru/publ/cifrovaja_tekhnika/mikrokontrollery/izmeritel_esr_lcf_v3/15-1-0-104
ESR метр своими руками — измеритель емкости конденсаторов. Схема и описание
ESR метр своими руками. Есть широкий перечень поломок аппаратуры, причиной которых как раз является электролитический конденсатор.
Главный фактор неисправности электролитических конденсаторов, это знакомое всем радиолюбителям “высыхание”, которое возникает по причине плохой герметизации корпуса.
В данном случае увеличивается его емкостное или, иначе говоря, реактивное сопротивление в следствии уменьшения его номинальной емкости.
Помимо этого, в ходе работы в нем проходят электрохимические реакции, которые разъедают точки соединения выводов с обкладками.
Контакт ухудшается, в итоге образуется “контактное сопротивление”, доходящее иногда до нескольких десятков Ом.
Это точно также, если к исправному конденсатору последовательно подключить резистор, и к тому же этот резистор размещен внутри него. Такое сопротивление еще именуют “эквивалентное последовательное сопротивление” или же ESR.
Существование последовательного сопротивления отрицательно влияет на работу электронных устройств, искажая работу конденсаторов в схеме. Чрезвычайно сильное влияние оказывает повышенное ESR (порядка 3…5 Ом) на работоспособность импульсных источников питания, приводя к сгоранию дорогих микросхем и транзисторов.
Ниже в таблице приведены средние величины ESR (в миллиоммах) для новых конденсаторов различной емкости в зависимости от напряжения, на которое они рассчитаны.
Не секрет, что реактивное сопротивление уменьшается с повышением частоты. К примеру, при частоте 100кГц и емкости 10мкФ емкостная составляющая будет не более 0,2 Ом.
Замеряя падение переменного напряжения имеющего частоту 100 кГц и выше, можно полагать, что при погрешности в районе 10…20% итогом замера будет активное сопротивление конденсатора.
Поэтому совсем не сложно собрать ESR метр конденсаторов своими руками.
Описание ESR метра для конденсаторов
Генератор импульсов, имеющий частоту 120кГц, собран на логических элементах DD1.1 и DD1.2. Частота генератора определяется RC-цепью на элементах R1 и C1.
Для согласования введен элемент DD1.3. Для увеличения мощности импульсов с генератора в схему введены элементы DD1.4…DD1.6. Далее сигнал проходит через делитель напряжения на резисторах R2 и R3 и поступает на исследуемый конденсатор Сх.
Блок измерения переменного напряжения содержит диоды VD1 и VD2 и мультиметр, в качестве измерителя напряжения, к примеру, М838. Мультиметр необходимо перевести в режим измерения постоянного напряжения.
Подстройку ESR метра осуществляют путем изменения величины R2.
Микросхему DD1 – К561ЛН2 можно поменять на К1561ЛН2. Диоды VD1 и VD2 германиевые, возможно использовать Д9, ГД507, Д18.
Радиодетали ESR метра расположены на печатной плате, которую можно изготовить своими руками. Конструктивно устройство выполнено в одном корпусе с элементом питания.
Щуп Х1 выполнен в виде шила и прикреплен к корпусу устройства, щуп X2 – провод не более 10 см в длину на конце которого игла.
Проверка конденсаторов возможна прямо на плате, выпаивать их не обязательно, что существенно облегчает поиск неисправного конденсатора во время ремонта.
Настройка устройства
После окончания монтажа и проверки, необходимо проверить осциллографом частоту на щупах X1 и X2. Она должна быть в пределах 120…180 кГц. Если это не так, то путем подбора резистора R1 добиваются нужной частоты. Далее необходимо подготовить набор резисторов следующих номиналов:
1, 5, 10, 15, 25, 30, 40, 60, 70 и 80 Ом.
К щупам X1 и X2 необходимо подсоединить резистор в 1 Ом и вращением R2 добиться, чтобы на мультиметре было 1мВ. Затем вместо 1 Ом подключить следующий резистор (5 Ом) и не изменяя R2 записать показание мультиметра. То же самое проделать и с оставшимися сопротивлениями. В результате этого получится таблица значений, по которой можно будет определять реактивное сопротивление.
Источник: Радиомир 03/2012
Источник: http://www.joyta.ru/4139-esr-metr-kondensatorov-svoimi-rukami/
Измеритель esr
Источник: http://elwo.ru/publ/skhemy_izmeritelnykh_priborov/izmeritel_esr/17-1-0-464
Самодельный измеритель ESR/C/R. Схема, прошивка, печатная плата, инструкция
Какой главный параметр для оценки исправности конденсаторов? Конечно их ёмкость.
Но по мере распространения импульсной высоковольтной техники, стало очевидно, что надо обратить внимание на ещё один параметр, от которого зависит надёжность и качество работы импульсных преобразователей – это эквивалентное последовательное сопротивление (ЭПС, по англ. ESR – equivalent series resistance). Применение конденсаторов с увеличенным значением ЭПС приводит к росту пульсаций выходного напряжения по сравнению с расчётными значениями, и бстрому выходу их из строя из-за повышенного нагрева за счёт выделения тепла на ЭПС, нередки даже случаи закипания электролита, деформация корпуса, а также взрывы конденсаторов. Особая выраженность негативного влияния ЭПС именно в силовых импульсных преобразователях вызвана, работой на больших токах заряда-разряда, а также тем, что с ростом рабочей частоты ЭПС возрастает. Наличие ESR объясняется конструкцией оксидного конденсатора и обусловлена сопротивлением обкладок, сопротивлением выводов, переходным сопротивлением контактов между обкладками и выводами, а также потерями в материале диэлектрика. С течением времени ESR конденсатора возрастает, что совсем не хорошо. ESR конденсаторов разных типов Естественно, проконтролировать обычным Омметром эквивалентное последовательное сопротивление конденсатора невозможно – тут нужен специальный прибор. В интернете есть несколько простых конструкций ESR-метров, но при желании, можно собрать более точный и удобный измеритель на микроконтроллере. Например из журнала Радио 7-2010. Схема измерителя ESR конденсаторов на Все необходимые файлы и прошивки – в архиве. После сборки и включения крутим регулятор контрастности до появления на экране LCD надписи в две строки. Если её нет – проверяем монтаж и правильность прошивки МК ATtiny2313. Если всё ОК – нажимаем кнопку “Калибровка” – в прошивку внесётся поправка на скорость срабатывания входной части измерителя. Далее понадобится несколько новых электролитических конденсаторов высокого качества ёмкостью 220…470 мкФ разных партий, лучше всего – на разные напряжения. Подключаем любой из них к входным гнёздам прибора и начинаем подбирать резистор R2 в пределах 100…470 ом (у меня получилось 300 ом; можно применить временно цепочку постоянный+подстроечный) так, чтобы значение ёмкости на экране ЖКИ примерно было похоже на номинал конденсатора. К большой точности пока что стремиться не стОит – ещё будет корректироваться; затем проверить и с другими конденсаторами. Для настройки измерителя ESR нужна таблица с типовыми значениями этого параметра для разных конденсаторов. Эту табличку рекомендуется приклеить на корпус прибора под дисплеем. В следующей табличке указаны максимальные значения эквивалентного последовательного сопротивления для электролитических конденсаторов. Если у измеряемого конденсатора оно будет выше, то его уже нельзя использовать для работы в сглаживающем фильтре выпрямителя: Подключаем конденсатор 220 мкФ и, незначительным подбором сопротивления резисторов R6, R9, R10 (на схеме и на моём сборочном чертеже обозначены со звёздочками), добиваемся показаний Esr, близких к указанным в таблице. Проверяем на всех имеющихся заготовленных эталонных конденсаторах, в т.ч. уже можно использовать и конденсаторы от 1 до 100 мкФ. Так как для измерения ёмкости конденсаторов от 150 мкФ и для измерителя ESR применяется один и тот же участок схемы, после подбора сопротивления этих резисторов несколько изменится точность показаний измерителя ёмкости. Теперь можно подстроить ещё сопротивление резистора R2, чтобы эти показания стали точнее. Другими словами, нужно подбирая сопротивление R2 – уточнить показания измерителя ёмкости, подстраивая резисторы в делителе компараторов – уточнить показания ESR-метра. Причём, приоритет надо отдавать измерителю внутреннего сопротивления. Теперь надо настроить измеритель ёмкости конденсаторов диапазона 0,1…150 мкФ. Так как для этого в схеме предусмотрен отдельный источник тока, измерение ёмкости таких конденсаторов можно сделать очень точным. Подключаем конденсаторы малой ёмкости к входным гнёздам прибора и, подбором сопротивления R1 в пределах 3,3…6,8 кОм добиваемся максимально точных показаний. Этого можно достичь, если в качестве эталонных применить не электролитические, а высокоточные конденсаторы К71-1 ёмкостью 0,15 мкФ с гарантированным отклонением 0,5 или 1%. Когда собрал данный измеритель ESR – схема завелась сразу, понадобилась только калибровка. Этот измеритель много раз помогал при ремонте БП, так что устройство рекомендуется к сборке. Схему разработал – DesAlex, собрал и испытал: sterc. Форум по конденсаторам |
Степан Миронов. https://www.youtube.com/watch?v=pb3G04SuJ58 Давно не секрет, что половина отказов в современной бытовой технике связана с электролитическими конденсаторами. Вздувшиеся конденсаторы видно сразу, но есть и такие, которые выглядят вполне нормально. Все неисправные конденсаторы имеют потерю ёмкости и увеличенное значение ESR, или только увеличенное значение ESR(ёмкость нормальная или выше нормы). Вычислить их – не так просто, приходится выпаивать их, если параллельно подключено несколько конденсаторов, или параллельно к измеряемому конденсатору подключены какие либо шунтирующие элементы, проверять и исправные запаивать обратно.
Поэтому радиомеханики, да и не только они, мечтают иметь прибор для проверки исправности электролитических конденсаторов, внутри-схемно, не выпаивая их. Хочу огорчить, на все 100% – это не возможно. Не возможно правильно измерять ёмкость и ESR, но проверить исправность электролитического конденсатора без выпаивания, во многих случаях возможно по увеличенному значению ESR. Неисправные конденсаторы с увеличенным ESR и нормальной ёмкостью встречаются часто, а с нормальным ESR и с потерей ёмкости нет. Уменьшение ёмкости от номинальной на 20% – не считается дефектом, это нормально даже для новых конденсаторов, поэтому для начальной дефектации электролитического конденсатора достаточно измерить ESR. Показания ёмкости при внутрисхемных измерениях, только для информации и в зависимости от шунтирующих элементов схемы, могут быть значительно завышенными или не измеряться. Ориентировочная таблица допустимых значений ESR, приведена ниже: Было разработано несколько версий измерителя ESR. Измеритель ESR+LCF v3 (третья версия), разрабатывался с учётом максимальных возможностей при внутрисхемных измерениях. Кроме основного измерения ESR (на дисплее Rx>x.xxx), имеется дополнительная функция для внутрисхемного вычисления ESR, названная анализатором – “aESR” (на дисплее a x.xx).
Эта функция не имеет прототипа, поэтому на момент подготовки основной документации, был очень не большой опыт в её использовании. На данный момент, есть множество положительных отзывов от разных людей с рекомендациями по её использованию. Данный режим не даёт сто процентного результата, но при знании схемотехники и накопленном опыте – эффективность данного режима велика. Результат внутрисхемного измерения, зависит от шунтирующего влияния элементов схемы. Полупроводниковые элементы (транзисторы, диоды) не оказывают влияния на результат измерения. Наибольшее влияние оказывают низкоомные резисторы, индуктивности, а так же другие конденсаторы, подключенные к цепям измеряемого конденсатора. В местах, где шунтирующее влияние на проверяемый конденсатор не велико, неисправный конденсатор хорошо измеряется в обычном режиме “ESR”, а в местах, где шунтирующее влияние велико, неисправный конденсатор (не выпаивая) можно вычислить только с помощью “анализатора – aESR”.
Наиболее сложными местами для измерения, являются схемы с одновременным шунтированием множеством элементов разных видов. На схеме выше, неисправный конденсатор С2+1ом, шунтируется C1+L1+C3+R2. При измерении такого конденсатора, значение ESR в норме, а анализатор показывает ”0,18” – это превышение нормы. К сожалению, не всегда удаётся внутри-схемно определить исправность электролитического конденсатора. Например: в материнских платах по питанию процессора не получится, там слишком велико шунтирование.
И так, что же может мой измеритель. Измеритель ESR+LCF v3 – измеряет
Дополнительные функции:– В режиме ESR можно измерять постоянные сопротивления 0.001 – 100Ом, измерение сопротивления цепей, имеющих индуктивность или ёмкость, невозможно (т.к. измерение производится в импульсном режиме и измеряемое сопротивление шунтируется). Для корректного измерения таких сопротивлений необходимо нажать кнопку «+» (при этом измерение производится при постоянном токе 10мА). В этом режиме диапазон измеряемых сопротивлений равен 0.001 – 20Ом. – В режиме ESR при нажатой кнопке «L/C_F/P» включается функция внутрисхемного анализатора ( подробное описание см. далее). – В режиме частотомера при нажатой кнопке «Lx/Cx_Px» включается функция «счетчик импульсов» (непрерывный счёт импульсов поступающих на вход “Fx“). Обнуление счетчика производится кнопкой «+». – Индикация разряда батареи. – Автоматическое отключение – около 4х минут (в режиме ESR-2мин.). По истечении времени простоя, загорается надпись “StBy” и в течении 10 сек, можно нажать любую кнопку и продолжится работа в том же режиме. В современной технике электролитические конденсаторы часто шунтируются индуктивностью менее 1 мкГн и керамическими конденсаторами. В обычном режиме здесь, измеритель не способен выявить неисправный электролитический конденсатор без выпаивания. Для этих целей, добавлена функция внутрисхемного анализатора. Анализатор обнаруживает нелинейные участки при заряде измеряемого конденсатора (исправный конденсатор заряжается линейно). Далее математическим путём рассчитывается предполагаемое отклонение и прибавляется к значению ESR(Rx) = aESR(a). На дисплее дополнительно выводится значение aESR (a). Наиболее эффективна данная функция при измерении ёмкостей выше 300мкФ. Для включения этой функции необходимо нажать кнопку «L/C_F/P». Принципиальная схема“Сердцем измерителя является микроконтроллер PIC16F886-I/SS. В этом измерителе также, без изменения прошивки, могут работать и микроконтроллеры PIC16F876, PIC16F877. Конструкция и деталиЖК – индикатор на основе контроллера HD44780, 2 строки по 16 знаков. Контроллер – PIC16F886-I/SS. Транзисторы BC807 – любые P-N-P, близкие по параметрам. ОУ TL082 – любой этой серии (TL082CP, AC и др.). Возможно применение ОУ MC34072. Применение других ОУ (с другим быстродействием) не рекомендуется. Полевой транзистор P45N02 – 06N03, P3055LD и др., подходит практически любой из материнской платы компьютера. Дроссель L101 – 100мкГн +-5%. Можно изготовить самому или применить готовый. Диаметр провода намотки должен быть не менее 0.2мм. С101 – 430–650пФ с низким ТКЕ, К31-11-2-Г – можно найти в КОС отечественных телевизоров 4-5 поколения ( КВП контура ).
SW1 (размер7*7mm)- обратите внимание на распиновку, встречаются двух типов. Разводка печатной платы соответствует рис 2. Печатная плата выполнена из одностороннего стеклотекстолита. Одновременно печатная плата служит основанием для корпуса. По периметру платы припаяны полоски стеклотекстолита шириной 21мм. Крышки сделаны из чёрной пластмассы. Сверху расположены кнопки управления, а спереди три гнезда типа «ТЮЛЬПАН», для съёмного щупа. Для режима “R/ESR” – гнездо более высокого качества. Конструкция щупа:В качестве щупа, использован металлический штекер типа « тюльпан». К центральному выводу припаяна игла. Из доступного материала для изготовления иглы можно использовать латунный стержень, диаметром 3мм. Через некоторое время, игла окисляется и для восстановления надёжного контакта, достаточно протереть кончик, мелкой наждачной бумагой. Ниже в архиве есть все необходимые файлы и материалы для сборки и настройки данного измерителя. Удачи всем и всего наилучшего! miron63. Архив Измеритель ESR+LCF v3. |
Измеритель esr Для проверки конденсаторов, решил собрать так называемый “измеритель ESR”. Ведь с испытанием диодов и резисторов проблем не возникает, а вот с конденсаторами сложнее. Как известно, ESR – это сокращение от Equivalent Serial Resistance, – означает “эквивалентное последовательное сопротивление”. Объясним проще. В упрощенном виде электролитический конденсатор представляет собой две алюминиевые ленточные обкладки, разделенные прокладкой из пористого материала, пропитанного электролитом (отсюда и название электролитический). Диэлектриком в таких конденсаторах является очень тонкая оксидная пленка, образующаяся на поверхности алюминиевой фольги при подаче на обкладки напряжения определенной полярности. К этим ленточным обкладкам присоединяются проволочные выводы. Ленты сворачиваются в рулон, и все это помещается в герметичный корпус.
В процессе работы внутри конденсатора протекают электрохимические процессы, разрушающие место соединения вывода с обкладками. Контакт нарушается, и в результате появляется так называемое переходное сопротивление, достигающее значения десятков ом и более, что эквивалентно включению последовательно с конденсатором резистора, который находится в самом конденсаторе. Зарядные и разрядные токи вызывают нагрев этого “резистора”, что еще больше усиливает разрушительный процесс. Другая причина выхода из строя электролитического конденсатора – это “высыхание”, когда из-за плохой герметизации происходит испарение электролита.
(Если включить, например, последовательно с конденсатором фильтра выпрямителя резистор сопротивлением десяток Ом, на выходе последнего резко возрастут пульсации выпрямленного напряжения). Особенно сильно сказывается повышенное значение ESR конденсаторов (причем всего до пары Ом) на работе импульсных блоков питания. Принцип работы данного измерителей ESR основан на измерении емкостного сопротивления конденсатора, т.е., по сути, это омметр, работающий на переменном токе. Как известно, Xс=1/2πfC, где Xс – емкостное сопротивление, Ом; f – частота, Герц; С – емкость, Фарад. Например, конденсатор емкостью 10 мкФ на частоте 100 кГц будет иметь емкостное сопротивление 0,16 Ом, 100 мкФ – 0,016 Ом и т.д. В реальном конденсаторе это значение будет несколько выше из-за наличия паразитной индуктивности, но тут особая точность измерений не нужна. Выбор частоты измерения 100 кГц обусловлен тем, что многие фирмы, производящие конденсаторы с низким ESR, максимальный импеданс конденсатора (то есть ESR) задают именно на этой частоте. Схема измерителя ESR.
Прямоугольные импульсы через разделительный конденсатор С2 подаются на первичную обмотку повышающего трансформатора Т1. Во вторичную обмотку после выпрямителя на диоде включен микроамперметр, по шкале которого отсчитывают значение ESR. Конденсатор С3 сглаживает пульсации выпрямленного напряжения. При включении питания стрелка микроамперметра отклоняется на конечную отметку шкалы (добиваются подбором резистора R2). Такое ее положение соответствует значению “бесконечность” измеряемого ESR. Если подключить исправный оксидный конденсатор параллельно обмотке I трансформатора Т1, то благодаря низкому емкостному сопротивлению конденсатор зашунтирует обмотку, и стрелка измерителя приблизится к нулю. При наличии же в измеряемом дефекта, в нем повышается значение ESR.
Трансформатор наматывают на ферритовом кольце с внешним диаметром 10…15 мм. Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,5 мм, вторичная – 200 витков ПЭВ-2 диаметром 0,1 мм. Диод обязательно должен быть германиевым, например Д9, Д310, Д311, ГД507. Кремниевые диоды имеют большое пороговое напряжение открывания (0,5… 0,7 В), что приведет к сильной нелинейности шкалы измерителя в области измерения малых сопротивлений. Градуируют измеритель ESR с помощью нескольких резисторов сопротивлением 1 Ом. Замкнув щупы, отмечают, где будет нулевая отметка шкалы. Из-за наличия сопротивления в соединительных проводах, она может не совпадать с положением стрелки при выключенном питании. Поэтому провода, идущие к щупам, должны быть по возможности короткими. Далее подключают два параллельно соединенных резистора на 1 Ом и отмечают положение стрелки, соответствующее измеряемому сопротивлению 0,5 Ом. Затем подключают резисторы на 1, 2, 3, 5 и 10 Ом и отмечают положения стрелки при измерении этих сопротивлений.
В качестве корпуса для карманного измерителя ESR был использован нерабочий стрелочный тестер, купленный 5 лет назад за доллар. Благодаря удобной большой шкале, щупам и батареечному отсеку на две пальчиковые батарейки, он идеально подошёл для заданных целей. Схемы измерительных приборов |
||||||||||||||
ESR/C/R meter by R2-D2 | Измерительные Устройства | Конденсаторы, Тестер |
Как-то в интернете наткнулся на схему интересного измерительного устройства, которое способно измерять если не все, то очень многое. Данный мультиметр состоит из модулей, которые подключаются к основному блоку, т.е. каждый может собирать не схему полного функционала, а только ту часть, которая ему необходима.
В данной статье приведен пример сборки базового блока, который измеряет емкость электролитических конденсаторов, эквивалентное последовательное сопротивление (ESR) и просто сопротивление резисторов.
К данному базовому блоку можно подключать остальные модули.
Сразу выражу огромную благодарность автору данного устройства R2-D2 и пользователям форума, которые четко и емко описывают ответы на вопросы, связанные с конструкцией и сборкой данного измерителя. Привожу на первоисточник.
В основе устройства ESR/C/R измерителя находится микроконтроллер PIC18F2520, отображение информации производится на экране от мобильного телефона NOKIA 3310. Последнюю (19ю) прошивку для МК мультиметра можно скачать ЗДЕСЬ.
Прошивку производил программатором EXTRA-PIC+, программой WinPic800. В базовую схему мной были внесены некоторые незначительные изменения, связанные с тем, что не все радиодетали были мне доступны. Схему с изменениями в формате *.spl7 можно скачать ЗДЕСЬ.
Печатная плата разводилась под имеющиеся детали, а в качестве корпуса использовался пластиковый бокс от канцелярских евро кнопок. Разводку печатной платы в формате *.lay можно скачать ЗДЕСЬ.
Подробную инструкцию по данному универсальному измерительному устройству, а также технологию его отладки можно скачать ЗДЕСЬ или на сайте первоисточника.
Базовый блок по информации автора должен измерять емкость конденсаторов от 0,2 мкФ до 300 000 мкФ, но у меня минимальной емкостью, которую «схватил» измеритель, было 0,33 uF, а максимальную, которая была под рукой – 2200 uF.
Также автор указывает, что данный ESR/C/R измеритель может замерять сопротивление с разрешением 0,001 Ом в пределах от 0 до 20 Ом, но у меня получается вполне удачно измерять сопротивления до 50 Ом, что отчетливо видно на фото.
Показания могут плыть в момент включения прибора, но ровно до того времени, пока не прогреются детали, т.е. в течение пары минут. Если Вы решите повторить данный прибор, рекомендую производить отладку минут через пять после его включения.
Если кажется, что в данной статье информации о ESR/C/R измерительном устройстве и его модулях по существу мало, то загляните в инструкцию, ее там предостаточно, а самое главное, она написана доступным языком даже для начинающих.
Ниже привожу фотографии тестов измерения емкости и внутреннего сопротивления электролитических конденсаторов разных емкостей.
Пара фотографий базового блока мультиметра со сторон разъемов.
Страницы:
Необходимо авторизоваться, чтобы комментировать.
השוואת מחירים, מגוון הגדול ביותר של
Источник: http://best-chart.ru/samodelnye-izmeritelnye-ustrojstva-testery/samodelnyj-izmeritel-esrcr-sxema-proshivka-pechatnaya-plata-instrukciya.html