Что такое радиоволны?

Теория радиоволн: ликбез

Думаю все крутили ручку радиоприемника, переключая между «УКВ», «ДВ», «СВ» и слышали шипение из динамиков. Но кроме расшифровки сокращений, не все понимают, что скрывается за этими буквами. Давайте ближе познакомимся с теорией радиоволн.

Радиоволна

Длина волны(λ) — это расстояние между соседними гребнями волны. Амплитуда(а) — максимальное отклонения от среднего значения при колебательном движении.

Период(T) — время одного полного колебательного движения Частота(v) — количество полных периодов в секунду Существует формула, позволяющая определять длину волны по частоте:Где: длина волны(м) равна отношению скорости света(км/ч) к частоте (кГц)

«УКВ», «ДВ», «СВ»

Сверхдлинные волны — v = 3—30 кГц (λ = 10—100 км).

Имеют свойство проникать вглубь толщи воды до 20 м и в связи с этим применяются для связи с подводными лодками, причем, лодке не обязательно всплывать на эту глубину, достаточно выкинуть радио буй до этого уровня.

Эти волны могут распространяться вплоть до огибания земли, расстояние между земной поверхностью и ионосферой, представляет для них «волновод», по которому они беспрепятственно распространяются.

Длинные волны(ДВ) v = 150—450 кГц (λ = 2000—670 м).

Этот тип радиоволны обладает свойством огибать препятствия, используется для связи на большие расстояния. Также обладает слабой проникающей способностью, так что если у вас нет выносной антенны, вам вряд ли удастся поймать какую-либо радиостанцию.

Средние волны (СВ) v = 500—1600 кГц (λ = 600—190 м).

Эти радиоволны хорошо отражаются от ионосферы, находящейся на расстоянии 100-450 км над поверхностью земли.Особенность этих волн в том, что в дневное время они поглощаются ионосферой и эффекта отражения не происходит. Этот эффект используется практически, для связи, обычно на несколько сотен километров в ночное время.

Короткие волны (КВ) v= 3—30 МГц (λ = 100—10 м).

Подобно средним волнам, хорошо отражаются от ионосферы, но в отличии от них, не зависимо от времени суток. Могут распространяться на большие расстояния(несколько тысяч км) за счет пере отражений от ионосферы и поверхности земли, такое распространение называют скачковым. Передатчиков большой мощности для этого не требуется.

Ультракороткие Волны(УКВ) v = 30 МГц — 300 МГц (λ = 10—1 м).

Эти волны могут огибать препятствия размером в несколько метров, а также имеют хорошую проникающую способность. За счет таких свойств, этот диапазон широко используется для радио трансляций. Недостатком является их сравнительно быстрое затухание при встрече с препятствиями. Существует формула, которая позволяет рассчитать дальность связи в УКВ диапазоне:Так к примеру при радиотрансляции с останкинской телебашни высотой 500 м на приемную антенну высотой 10 м, дальность связи при условии прямой видимости составит около 100 км.

Высокие частоты (ВЧ-сантиметровый диапазон) v = 300 МГц — 3 ГГц (λ = 1—0,1 м).

Не огибают препятствия и имеют хорошую проникающую способность. Используются в сетях сотовой связи и wi-fi сетях. Еще одной интересной особенностью волн этого диапазона, является то, что молекулы воды, способны максимально поглощать их энергию и преобразовывать ее в тепловую.

Этот эффект используется в микроволновых печах. Как видите, wi-fi оборудование и микроволновые печи работают в одном диапазоне и могут воздействовать на воду, поэтому, спать в обнимку с wi-fi роутером, длительное время не стоит.

Крайне высокие частоты (КВЧ-миллиметровый диапазон) v = 3 ГГц — 30 ГГц (λ = 0,1—0,01 м).

Отражаются практически всеми препятствиями, свободно проникают через ионосферу. За счет своих свойств используются в космической связи.

AM — FM

Зачастую, приемные устройства имеют положения переключателей am-fm, что же это такое:

AM — амплитудная модуляция

Это изменение амплитуды несущей частоты под действием кодирующего колебания, к примеру голоса из микрофона. АМ — первый вид модуляции придуманный человеком. Из недостатков, как и любой аналоговый вид модуляции, имеет низкую помехоустойчивость.

FM — частотная модуляция

Это изменение несущей частоты под воздействие кодирующего колебания. Хотя, это тоже аналоговый вид модуляции, но он имеет более высокую помехоустойчивость чем АМ и поэтому широко применяется в звуковом сопровождении ТВ трансляций и УКВ вещании. На самом деле у описанных видом модуляции есть подвиды, но их описание не входит в материал данной статьи.

Еще термины

Интерференция — в результате отражений волн от различных препятствий, волны складываются. В случае сложения в одинаковых фазах, амплитуда начальной волны может увеличиться, при сложении в противоположных фазах, амплитуда может уменьшиться вплоть до нуля.

Это явление более всего проявляется при приеме УКВ ЧМ и ТВ сигнала.Поэтому, к примеру внутри помещения качество приема на комнатную антенну ТВ сильно «плавает».

Дифракция — явление, возникающее при встрече радиоволны с препятствиями, в результате чего, волна может менять амплитуду, фазу и направление.

Данное явление объясняет связь на КВ и СВ через ионосферу, когда волна отражается от различных неоднородностей и заряженных частиц и тем самым, меняет направление распространения. Этим же явлением объясняется способность радиоволн распространяться без прямой видимости, огибая земную поверхность. Для этого длина волны должна быть соразмерна препятствию.

PS:

Источник: https://habr.com/post/158161/

Карта сайта

ЧТО ТАКОЕ РАДИОВОЛНЫ

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати, свет это тоже электромагнитные волны, обладающие схожими с радиоволнами свойствами (отражение, преломление, затухание и т.п.).

Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.

Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии.

Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей.

Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду.

Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны в метрах рассчитывается по формуле:

 или примерно ,
где f – частота электромагнитного излучения в МГц.

Из формулы видно, что, например, частоте 1 МГц соответствует длина волны ок. 300 м. С увеличением частоты длина волны уменьшается, с уменьшением – догадайтесь сами. В дальнейшем мы убедимся, что длина волны напрямую влияет на длину антенны для радиосвязи.

Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум).

Но если на пути волн встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток.

Но не вся энергия волны поглощается проводником, часть ее отражается от его поверхности и либо уходит обратно, либо рассеивается в пространстве. Кстати, на этом основано применение электромагнитных волн в радиолокации.

Еще одним полезным свойством электромагнитных волн является их способность огибать на своем пути некоторые препятствия. Но это возможно лишь в том случае, когда размеры объекта меньше, чем длина волны, или сравнимы с ней.

Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить.

Вспомните военную технологию снижения заметности «Stealth», в рамках которой разработаны соответствующие геометрические формы, радиопоглощающие материалы и покрытия для уменьшения заметности объектов для локаторов.

Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него.

По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя.

Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него.

РАСПРЕДЕЛЕНИЕ СПЕКТРА

Радиоволны, используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн.

За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи.

После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой.

Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются.

Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:

Диапазончастот Наименование диапазона частот Наименованиедиапазона волн Длина волны
3–30 кГц Очень низкие частоты (ОНЧ) Мириаметровые 100–10 км
30–300 кГц Низкие частоты (НЧ) Километровые 10–1 км
300–3000 кГц Средние частоты (СЧ) Гектометровые 1–0.1 км
3–30 МГц Высокие частоты (ВЧ) Декаметровые 100–10 м
30–300 МГц Очень высокие частоты (ОВЧ) Метровые 10–1 м
300–3000 МГц Ультравысокие частоты (УВЧ) Дециметровые 1–0.1 м
3–30 ГГц Сверхвысокие частоты (СВЧ) Сантиметровые 10–1 см
30–300 ГГц Крайневысокие частоты (КВЧ) Миллиметровые 10–1 мм
300–3000 ГГц Гипервысокие частоты (ГВЧ) Децимиллиметровые 1–0.1 мм

Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.

Распределение спектра между различными службами.

Эта разбивка довольно запутана, поэтому многие службы используют свою «внутреннюю» терминологию. Обычно при обозначении диапазонов выделенных для наземной подвижной связи используются следующие названия:

Термин Диапазон частот Пояснения
КВ 2–30 МГц Из-за особенностей распространения в основном применяется для дальней связи.
«Си-Би» 25.6–30.1 МГц Гражданский диапазон, в котором могут пользоваться связью частные лица. В разных странах на этом участке выделено от 40 до 80 фиксированных частот (каналов).
«Low Band» 33–50 МГц Диапазон подвижной наземной связи. Непонятно почему, но в русском языке не нашлось термина, определяющего данный диапазон.
УКВ 136–174 МГц Наиболее распространенный диапазон подвижной наземной связи.
ДЦВ 400–512 МГц Диапазон подвижной наземной связи. Иногда не выделяют этот участок в отдельный диапазон, а говорят УКВ, подразумевая полосу частот от 136 до 512 МГц.
«800 МГц» 806–825 и851–870 МГц Традиционный «американский» диапазон; широко используется подвижной связью в США. У нас не получил особого распространения.

Не надо путать официальные наименования диапазонов частот с названиями участков, выделенных для различных служб. Стоит отметить, что основные мировые производители оборудования для подвижной наземной связи выпускают модели, рассчитанные на работу в пределах именно этих участков.

В дальнейшем мы будем говорить о свойствах радиоволн применительно к их использованию в наземной подвижной радиосвязи.

КАК РАСПРОСТРАНЯЮТСЯ РАДИОВОЛНЫ

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.

Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота).

Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.

Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров.

Читайте также:  Отопление дома электричеством

Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км.

Волны короче 100 метров вообще считались непригодными для дальней связи.

Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.

Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой.

Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.

Распространение длинных и коротких волн.

Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.

Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.

Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.

Отражательные слои ионосферы и распространение коротких волн в зависимости от частоты и времени суток.

Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика.

Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния.

А это позволяет многократно использовать одну и ту же частоту соседним станциям.

Распространение коротких и ультракоротких волн.

Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно послать в любом направлении.

Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны).

Возможность направленного излучения волн позволяет повысить эффективность системы связи. Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящимся не в створе луча.

При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик.

Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий.

Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.

Параболическая направленная спутниковая антенна (фото с сайта ru.wikipedia.org).

Необходимо отметить, что с уменьшением длины волны возрастает затухание и поглощение энергии в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, ограничивающей дальность связи.

Мы выяснили, что радиоволны обладают различными свойствами распространения в зависимости от длины волны и каждый участок радиоспектра применяется там, где лучше всего используются его преимущества.

Источник: http://viol.uz/radiovolnyi-i-chastotyi.html

Как распространяются радиоволны

ПодробностиКатегория: РадиоОпубликовано 12.07.2015 20:33Просмотров: 4476

Если бы Максвелл не предсказал существование радиоволн, а Герц не открыл их на практике, наша действительность была бы совсем другой.

Мы не могли бы быстро обмениваться информацией при помощи радио и мобильных телефонов, исследовать далёкие планеты и звёзды с помощью радиотелескопов, наблюдать за самолётами, кораблями и другими объектами с помощью радиолокаторов.

Каким же образом радиоволны помогают нам в этом?

Источники радиоволн

Источниками радиоволн в природе являются молнии – гигантские электрические искровые разряды в атмосфере, сила тока в которых может достигать 300 тысяч ампер, а напряжение – миллиарда вольт. Молнии мы наблюдаем во время грозы. Кстати, они возникают не только на Земле. Вспышки молний были обнаружены на Венере, Сатурне, Юпитере, Уране и других планетах.

Практически все космические тела (звёзды, планеты, астероиды, кометы и др.) также являются естественными источниками радиоволн.

В радиовещании, радиолокации, спутниках связи, стационарной и мобильной связи, различных системах навигации применяются радиоволны, полученные искусственным путём. Источником таких волн служат высокочастотные генераторы электромагнитных колебаний, энергия которых передаётся в пространство с помощью передающих антенн.

Свойства радиоволн

Радиоволны – это электромагнитные волны, частота которых находится в интервале от 3 кГц до 300 ГГц, а длина – от 100 км до 1 мм соответственно. Распространяясь в среде, они подчиняются определённым законам. При переходе из одной среды в другую наблюдается их отражение и преломление. Присущи им и явления дифракции и интерференции.

Дифракция, или огибание, происходит, если на пути радиоволн встречаются препятствия, размеры которых меньше длины радиоволны. Если же их размеры оказываются бόльшими, то радиоволны отражаются от них. Препятствия могут иметь искусственное (сооружения) или природное (деревья, облака) происхождение. 

Отражаются радиоволны и от земной поверхности. Причём, поверхность океана отражает их примерно на 50% сильнее, чем сýша.

Если препятствие является проводником электрического тока, то какую-то часть своей энергии радиоволны отдают ему, а в проводнике создаётся электрический ток. Часть энергии расходуется на возбуждение электротоков на поверхности Земли.

Кроме того, радиоволны расходятся от антенны кругами в разные стороны, подобно волнам от брошенного в воду камешка. По этой причине радиоволны со временем теряют энергию и затухают.

И чем дальше от источника находится приёмник радиоволн, тем слабее сигнал, дошедший до него.

Интерференция, или наложение, вызывает взаимное усиление или ослабление радиоволн.

Радиоволны распространяются в пространстве со скоростью, равной скорости света (кстати, свет – это тоже электромагнитная волна). 

Как и любые электромагнитные волны, радиоволны характеризуются длиной и частотой волны. С длиной волны частота связана соотношением:

f = c/λ,

где f – частота волны;

λ – длина волны;

c – скорость света.

Как видим, чем больше длина волны, тем меньше её частота.

Радиоволны разбиваются на следующие диапазоны: сверхдлинные, длинные, средние, короткие, ультракороткие, миллиметровые и децимиллиметровые волны.

Распространение радиоволн

Радиоволны разной длины распространяются в пространстве не одинаково.

Сверхдлинные волны (длина волны от 10 км и более) легко огибают большие препятствия вблизи поверхности Земли и очень слабо поглощаются ею, поэтому энергии они теряют меньше других радиоволн. Следовательно, затухают они также гораздо медленнее.

Поэтому в пространстве такие волны распространяются на расстояния до нескольких тысяч километров. Глубина их проникновения в среду очень велика, и их используют для связи с подводными лодками, находящимися на большой глубине, а также для различных исследований в геологии, археологии и инженерном деле.

Способность сверхдлинных волн легко огибать Землю позволяет исследовать с их помощью земную атмосферу.

Длинные, или километровые, волны (от 1 км до 10 км, частота 300 кГц – 30 кГц) также подвергаются дифракции, поэтому способны распространяться на расстояния до 2 000 км. 

Средние, или гектометровые, волны (от 100 м до 1 км, частота 3000 кГц – 300 кГц) хуже огибают препятствия на поверхности Земли, сильнее поглощаются, поэтому гораздо быстрее затухают. Они распространяются на расстояния до 1 000 км.

Короткие волны ведут себя иначе. Если мы настроим автомобильный радиоприёмник в городе на короткую радиоволну и начнём двигаться, то по мере удаления от города приём радиосигнала будет всё хуже, а на расстоянии примерно 250 км он прекратится совсем. Однако спустя некоторое время радиотрансляция возобновится. Почему так происходит?

Всё дело в том, что радиоволны короткого диапазона (от 10 м до 100 м, частота 30 МГц – 3 МГц) у поверхности Земли затухают очень быстро. Однако волны, уходящие под большим углом к горизонту, отражаются от верхнего слоя атмосферы – ионосферы, и возвращаются обратно, оставляя позади себя сотни километров «мертвой зоны».

Далее эти волны отражаются уже от земной поверхности и снова направляются к ионосфере. Многократно отражаясь, они способны несколько раз обогнуть земной шар. Чем короче волна, тем больше угол отражения от ионосферы.

Но ночью ионосфера теряет отражательную способность, поэтому в тёмное время суток связь на коротких волнах хуже.

А ультракороткие волны (метровые, дециметровые, сантиметровые с длиной волны короче 10 м), не могут отражаться от ионосферы. Распространяясь прямолинейно, они пронизывают её и уходят выше.

Это их свойство используют для определения координат воздушных объектов: самолётов, стай птиц, уровня и плотности облаков и др. Но и огибать земную поверхность ультракороткие волны тоже не могут.

Из-за того что они распространяются в пределах прямой видимости, их применяют для радиосвязи на расстоянии 150 – 300 км.

По своим свойствам ультракороткие волны близки к световым волнам. Но световые волны можно собрать в пучок и направить его в нужное место. Так устроены прожектор и фонарик. Точно так же поступают и с ультракороткими волнами. Их собирают специальными зеркалами-антеннами и узкий пучок посылают в нужном направлении, что особенно важно, например, в радиолокации или спутниковой связи.

Миллиметровые волны (от 1 см до 1 мм), самые короткие волны радиодиапазона, схожи с ультракороткими волнами. Они также распространяются прямолинейно. Но серьёзной помехой для них являются атмосферные осадки, туман, облака. Кроме радиоастрономии, высокоскоростной радиорелейной связи они нашли применение в СВЧ технике, используемой в медицине и в быту.

Субмиллиметровые, или децимиллиметровые, волны (от 1 мм до 0,1 мм) по международной классификации также относятся к радиоволнам. В природных условиях они почти не существуют. В энергии спектра Солнца занимают ничтожно малую долю.

Поверхности Земли не достигают, так как поглощаются парами воды и молекулами кислорода, находящимися в атмосфере. Созданные искусственными источниками, применяются в космической связи, для исследования атмосфер Земли и других планет.

Читайте также:  Небольшие ветрогенераторы для дома

Высокая степень безопасности этих волн для организма человека позволяет применять их в медицине для сканирования органов.

Субмиллиметровые волны называют «волнами будущего». Вполне возможно, что они дадут учёным возможность изучать строение молекул веществ совершенно новым способом, а в будущем, может быть, даже позволят управлять молекулярными процессами.

Как видим, каждый диапазон радиоволн применяется там, где особенности его распространения используются с максимальной пользой.

Источник: http://ency.info/materiya-i-dvigenie/radio/480-kak-rasprostranyayutsya-radiovolny

Факты о радио: история, теория, принцип работы

Кто-то мечтает о новом айфоне, кто-то о машине, а кто-то о наборе деталей и новом динамике для своего радио. не так давно были времена, когда пределом мечтаний золотой молодежи был обычный транзисторный радиоприемник.

Радио было верным спутником человека весь 20-й век. Знаменитые объявления от советского информбюро, первые музыкальные передачи, настоящий прорыв в передаче информации, революция в СМИ – все это радио.

All we hear is radio Ga-Ga. В сегодняшней статье разберемся с тем, что такое радио и как оно работает.

Знаменитое “радио Га-га” из песни группы Queen – не что иное, как детский лепет сына барабанщика группы. Роджер Тейлор услышал, как ребенок бормочет и коверкает слова, а потом решил, что из этого может получиться неплохой припев для песни.

Когда-то радио было круче, чем интернет – факт. Еще один факт – без радио не будет никакого интернета. Пусть приемники слушают не так часто, радио-технологии активно развиваются и используются  в спутниковой связи, телевидении, мобильных телефонах, рациях, медицинских приборах… Короче, везде.

Суть радио в самом широком смысле:

Давайте же узнаем, как эта штука работает, и кто это придумал.

Попов, Маркони, Тесла?

Кем впервые была открыта радиосвязь? Говорить о конкретном изобретателе радио в принципе неправильно, так как слишком много людей в разное время сделали свой вклад в развитие этой технологии. Здесь и Томас Эдисон, и Никола Тесла, и Александр Попов, и Гульельмо Маркони, и многие другие.

Гульельмо Маркони

Интересно, что во многих странах есть свой изобретатель радио. Споры о том, кто был первым, велись долго, и на то было много причин.

В России традиционно считалось, что радио изобрел Александр Попов. Да, Попов проводил успешные эксперименты в области передачи данных начиная с 1895 года , однако его изобретение было сильно усовершенствовано и доведено «до ума» иностранными коллегами. К тому же Попов не патентовал свою работу.

Безусловно, вклад Попова в развитие радио нельзя недооценивать. Однако считать его единственным изобретателем радио неверно. Мнение, что Александр Попов изобрел радио, во многом было навязано пропагандой СССР, когда все возможные и невозможные изобретения пытались приписать советскому союзу.

Также противостояние вели Тесла и Маркони. Никола Тесла утверждал, что провел эксперименты по беспроводной передаче сигнала раньше 1896 года, когда это сделал Маркони. Однако Маркони, обладавший коммерческой жилкой, успел запатентовать изобретение первым.

Заслуга этого человека в том, что именно он смог найти прежде лишь теоретическим идеям действительно широкое практическое применение.

Настоящей сенсацией в 1901 году стала передача радиосигнала на расстояние 3200 километров. Тогда многие ученые считали, что радиоволна не может распространиться на такую дальность из-за шарообразной формы Земли.

Что такое радиоволна

Волна – это колебание. Морская волна – это колебание поверхности воды.

Так же как и свет, радиоволны представляют собой электромагнитное излучение. Разница лишь в частоте и длине волны. Скорость распространения радиоволны в вакууме равна примерно 300000 километров в секунду.

Ниже приведем весь спектр электромагнитных колебаний и покажем место радиоволн в нем.

Электромагнитное излучение

Радиоволна – это сигнал. То, что передает информацию. Радиоволны делятся на диапазоны: от субмиллиметровых до сверхдлинных. Для каждого диапазона волн характерны свои особенности распространения.

Например, чем больше длина волны и чем меньше частота, тем больше волна способна огибать преграды. Длинные волны огибают всю планету.

Все маяки и спасательные станции настроены на волну длиной 6 метров и частотой 500 кГц.

Средние волны подвержены поглощению и рассеиванию сильнее. Длина их распространения – около 1500 км. Короткие волны проходят небольшие расстояния, их энергия поглощается поверхностью планеты.

Как” работают” радиоволны. Принцип распространения радиоволн

Прежде чем разбираться с самим радио, нужно уточнить еще несколько моментов. Как именно передается информация.

Как передается информация. Модуляция

Возьмем электромагнитную волну. Она представляет собой синусоиду, колебания векторов напряженности магнитного и электрического полей. «Где же здесь информация?» спросите вы, и в этом вопросе есть резон.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Сама по себе синусоида не несет никакой информации. Для передачи данных используется модуляция сигнала. Есть разные виды модуляций:

  • амплитудная;
  • фазовая;
  • частотная;
  • амплитудно-частотная.

Например, аббревиатура FM означает frequency modulation – частотная модуляция.

Частотная модуляция – это изменение частоты. Амплитудная – соответственно, амплитуды. Конечно, изменение не простое, а несущее в себе информацию.

У нас есть несущий сигнал (несущее колебание) и информационный сигнал (речь, звук, музыка). Модуляция несущего сигнала позволяет зашифровать в нем информацию. Причем параметр этого сигнала изменяется в соответствии с информационным сигналом.

Далее будем рассматривать частотную модуляцию, так как FM-радиостанции – самые популярные, а говорить приятнее о том, что привычно. При частотной модуляции сигнал не изменяется по амплитуде. В соответствии с изменениями уровня информационного сигнала меняется частота несущего колебания.

Вот как это выглядит:

Принцип работы частотной модуляции

Как работает радио

Простейший радиоприемник содержит приемник и передатчик. Передатчик должен отправить сигнал, а приемник – принять его.

При этом приемник не просто передает, а кодирует сигнал, применяя модуляцию. Передатчик также должен произвести обратное действие, то есть раскодировать сингал. И вот тогда мы получим тот же сигнал, что нам передали.

Например, вы едете в маршрутке, где водитель слушает радио «Шансон». Лето, жара, дачники, ехать еще несколько часов… В общем, красота, да и только. Но не будем отвлекаться! По радио звучит очень душевная песня.

Когда говорят «95.2 FM», подразумевают ультракороткую радиоволну с несущей частотой 95.2 Мегагерца.

Спектр ее сигнала имеет примерно такой вид. Это – информационный сигнал.

Спектр песни

Чтобы передать его на расстояние, эту информацию нужно зашифровать.  Передатчик на радиостанции отправляет несущую синусоидальную волну в пространство, проводя частотную модуляцию.

Приемник в кабине у водителя, наоборот, выделяет из пришедшего сигнала полезную составляющую. Далее сигнал отправляется на усилитель, с усилителя – на динамик. Как следствие – все счастливо путешествуют под музыку!

Зная принцип действия радио, можно при желании самостоятельно собрать радиоприемник из простых компонентов. Как это сделать с помощью картошки – узнаете из видео. Сразу скажем, сами не проверяли, но если вы попробуете – расскажите нам, как получилось. А если перед вами задачка посложнее и нужна помощь в ее решении обращайтесь в студенческий сервис.

Источник: https://Zaochnik.ru/blog/fakty-o-radio-istoriya-teoriya-princip-raboty/

Радиоволны – это… что такое радиоволны?

  • РАДИОВОЛНЫ — электромагнитные волны с частотой меньше 6000 ГГц (с длиной волны ? больше 100 мкм). Радиоволны с различной ? отличаются по особенностям при распространении в околоземном пространстве и по методам генерации, усиления и излучения. Их делят на… …   Большой Энциклопедический словарь
  • РАДИОВОЛНЫ — РАДИОВОЛНЫ, вид ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ с очень высокой длиной волны. Радиоволны различаются по их ЧАСТОТАМ, выраженным в килогерцах (кгц), мегагерцах (Мгц) или гигагерцах (Ггц). Звуковые волны имеют низкую частоту. Сигналы передаются в… …   Научно-технический энциклопедический словарь
  • радиоволны — Электромагнитные волны с частотами до 3000 ГГц, распространяющиеся в среде без искусственных направляющих устройств (ГОСТ 24375). [ОСТ 45.124 2000 ] радиоволны Электромагнитные волны с частотами до 3 ТГц, распространяющиеся в среде без… …   Справочник технического переводчика
  • Радиоволны — см. Излучение …   Российская энциклопедия по охране труда
  • РАДИОВОЛНЫ — разновидность электромагнитных волн, длина которых от 0,05 мм до 100 км (частота от 6∙1012 Гц до нескольких герц). Используются в научных исследованиях, для передачи различной информации без проводов на любые расстояния, в телевидении,… …   Большая политехническая энциклопедия
  • радиоволны — электрические магнитные волны с длиной волны λ от 5·10 5 до 108 м (частотой от 6·1012 Гц до нескольких Гц. Радиоволны с различным λ отличаются по особенностям при распространении в околоземном пространстве и по методам генерации, усиления и… …   Энциклопедический словарь
  • Радиоволны — Запрос «Радиоволна» перенаправляется сюда. Cм. также другие значения. Антенна радара. Радиоизлучение (радиоволны, радиочастоты)  электромагнитное излучение с длинами волн 5 × 10 5  1010 метров и частотами, соответственно, от 6 × 1012Гц и до… …   Википедия
  • радиоволны — radijo bangos statusas T sritis fizika atitikmenys: angl. broadcast waves; radio waves vok. Funkwellen, f; Radiowellen, f rus. радиоволны, f pranc. ondes hertziennes, f; ondes radio, f; ondes radio électriques, f …   Fizikos terminų žodynas
  • радиоволны — 185 радиоволны: Электромагнитные волны с частотами до 3 ТГц, распространяющиеся в среде без искусственных направляющих линий. [ГОСТ 24375 80, статья 19] Источник: ГОСТ Р 53801 2010: Связь федеральная. Термины и определения …   Словарь-справочник терминов нормативно-технической документации
  • Радиоволны — (от Радио…         электромагнитные волны с длиной волны > 500 мкм (частотой < 6․1012 гц). Р. имеют многообразное применение: Радиовещание, Радиотелефонная связь, Телевидение, Радиолокация, Радиометеорология и др. Во всех перечисленных случаях… …   Большая советская энциклопедия

Источник: https://dic.academic.ru/dic.nsf/enc_physics/2373/%D0%A0%D0%90%D0%94%D0%98%D0%9E%D0%92%D0%9E%D0%9B%D0%9D%D0%AB

Что такое радиоволны

Что такое радиоволны? 

Радиоволнами считают электромагнитные колебания, которые способны распространяться в пространстве, имея скорость света (300 тысяч км/секунда). Кстати свет тоже относят к электромагнитным волнам. Это и определяет их похожие свойства (характеристики отражения, преломления, затухания и т.п.).

Радиоволны могут переносить сквозь пространство энергетические потоки, излучаемые генераторами электромагнитных колебаний. Их рождение происходит при изменении электрических полей, например, когда через проводники проходит переменный электроток или когда через пространство проскочила искра, т.е.

импульсы тока, быстро следующие один за другим.Характеризуется электромагнитное излучение частотой, мощностью переносимой энергии, длиной волны.

Частота электромагнитной волны показывает, какое количество раз в секунду происходит изменение в излучателе направления электрического тока и, соответственно, какое количество раз в секунду происходит изменение в каждой точке пространства величины электрического, магнитного полей. Измеряют частоту в герцах (сокр.

Гц) – единицы, которые названы именем величайшего немецкого ученого Г. Р. Герца. 1 Гц соответствует одному колебанию в секунду, а 1 мегагерц (сокр. МГц) – миллиону колебаний за секунду.

 Учитывая, что скорость движения электромагнитной волны равна скорости света, возможно определить показатели расстояния между точками пространства, в которых электрическое (иногда магнитное) поле будет находиться в одинаковой фазе. Данное расстояние называют длиной волны.

Длину волны (в метрах) рассчитывают как соотношение скорости света взятой в метрах к частоте электромагнитного излучения взятой в МГц. Такое соотношение показывает, к примеру, что при частотах 1МГц длина волны будет составлять 300 метров.

Увеличение частоты ведет к уменьшению длины волны, уменьшение частоты к увеличению длины волны.

 Знания длины волны очень важны при выборе антенн для радиосистем, поскольку от нее напрямую будет зависеть длина антенн. Электромагнитная волна свободно проходит через космическое пространство или воздух. Но если на дороге волны встречаются металлические провода, антенны или любые другие проводящие тела, то они вынуждены отдавать им свою энергию, тем самым вызывая в этих проводниках электрический переменный ток. Тем не менее, не вся волновая энергия поглощается проводниками, часть ее будет отражаться от поверхности. К слову, на этом основывается применение в радиолокации электромагнитных волн.

Читайте также:  Измеритель ёмкости аккумуляторов (с линейным стабилизатором)

 Еще одно полезное свойство электромагнитной волны (впрочем, как и всякой другой волны) является ее способность огибать на своем пути все тела. Но таковое возможно только в том случае, если размер тела меньше самой длина волны, или хотя бы сравним с ней.

К примеру, чтобы обнаружить небольшой самолет, длина радиоволн локаторов должна быть чуть меньше его геометрического размера (менее 10 метров). Если же тела больше, чем длина волн, они могут отразить ее.

Но могут и не отразить – тут вспоминается американский самолет-невидимка «Stealth».

Энергия от электромагнитных волн зависит от уровня мощности генераторов (излучателей) и расстояния до них. По научному последнее звучит так: потоки энергии, приходящиеся на единицу площади, являются прямо пропорциональными мощности излучения, а обратно пропорциональными квадрату расстояния до излучателей.

Это означает, что дальность связи будет зависеть от мощностей передатчиков, но в большей степени от показателей удаленности.

Например, потоки энергетического солнечного электромагнитного излучения на поверхность Земли достигают 1 киловатта на один квадратный метр, а потоки энергии вещательной средневолновой радиостанции – всего тысячные, а иногда и миллионную долю ватта на метр квадратный.

Распределение спектра. Используемые в радиотехнике радиоволны (радиочастоты) занимают область, говоря более научно, определенный спектр. Это только часть от обширного спектра электроволн. За радиоволной (по убывающей длине) по очереди следуют тепловой или инфракрасный лучи.

После них – узкий промежуток волн видимого света, затем – спектры рентгеновских, ультрафиолетовых, а также и гамма лучей – они все считаются электромагнитными колебаниями единой природы, которые отличаются только по длине волны и, соответственно, частоте. Хотя весь спектр разбивают на области, границу между ними намечают условно.

Одна область следует непрерывно за другой, переходит одна в другую, а в некоторой ситуации перекрываются.

 По международным соглашениям полный спектр радиоволн, используемых в радиосвязи, разбивают на диапазоны.

Эти диапазоны весьма обширные и, в свою очередь, их разбивают на участки, куда входит так называемые радиовещательный и телевизионный диапазон, диапазон для наземных, авиационных и космических, морских центров связи, для медицины и передачи данных, для радиолокации с радионавигацией и т.п. Каждой радиослужбе выделяется свой участок из диапазона или фиксированная частота. Эта разбивка довольно запутанная, поэтому многие службы применяют «внутреннюю» терминологию. Обычно для обозначения диапазонов, которые выделены для подвижной наземной связи используют определенные названия. Не следует путать официальные наименования диапазона частот с названием участков, которые выделены для различных служб. 

Как распространяется радиоволна? Радиоволна излучается посредством антенн в пространство и распространяется в виде электромагнитного поля. Даже учитывая, что природа радиоволн одинаковая, их способности к распространению напрямую зависит от длины волн.Земля для радиоволны является проводником электричества (хотя и не достаточно хорошим). Проходя над земной поверхностью, радиоволна постепенно ослабевает. Это связывают с тем, что электромагнитная волна возбуждает в земной поверхности электротоки, на что и затрачивается часть энергии. Таким образом, энергию поглощает земля, особенно в случае волн с короткой длиной волны. 

Источник: http://shopcarry.ru/top/editorial/chto_takoe_radiovolni/

Свойства радиоволн

Радиоволны – основа функционирования многих моделей оборудования, включённого в системы безопасности. Некоторые свойства радиоволн рассмотрим далее.

Радиоволны представляют собой электромагнитные колебания, распространяющиеся в пространстве со скоростью света – 300 000 км/сек. Главные свойства радиоволн заключаются в том, что они способны переносить через пространство энергию, излучаемую генератором электромагнитных колебаний. Колебания же возникают при изменении электрического поля.

Свойства радиоволн позволяют им свободно проходить сквозь воздух или вакуум. Но если на пути волны встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от поверхности.

На этом свойстве основано применение электромагнитных волн в радиолокации. Свойства радиоволн огибать тела на своём пути реализуются в случае, когда размеры данного тела имеют меньший показатель, чем длина радиоволны, или сравнимы с ней. Если тело больше, чем длина волны, оно может отразить ее.

Скорость распространения в свободном пространстве одинакова для всех типов электромагнитных волн от гамма-лучей до волн низкочастотного диапазона. Но число колебаний в единицу времени меняется в очень широких пределах: от нескольких колебаний в секунду для электромагнитных волн низкочастотного диапазона до 1020 колебаний в секунду в случае рентгеновского и гамма-излучений.

Поскольку длина радиоволны (т.е. расстояние между соседними горбами волны; рис. 1) дается выражением ? = с/f, она тоже изменяется в широких пределах – от нескольких тысяч километров для низкочастотных колебаний до 10–14 м для рентгеновского и гамма-излучений. Именно поэтому взаимодействие электромагнитных волн с веществом столь различно в разных частях их спектра.

И все же все эти волны родственны между собой, как родственны водяная рябь, волны на поверхности пруда и штормовые океанские волны, тоже по-разному воздействующие на объекты, встречающиеся на их пути. Электромагнитные волны существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приемнику через вакуум или межзвездное пространство.

Например, рентгеновские лучи, возникающие в вакуумной трубке, воздействуют на фотопленку, расположенную вдали от нее, тогда как звук колокольчика, находящегося под колпаком, услышать невозможно, если откачать воздух из-под колпака. Глаз воспринимает идущие от Солнца лучи видимого света, а расположенная на Земле антенна – радиосигналы удаленного на миллионы километров космического аппарата.

Таким образом, никакой материальной среды, вроде воды или воздуха, для распространения электромагнитных волн не требуется. Далее рассмотрим основные постоянные свойства радиоволн – частота и длина.

Частота электромагнитного излучения (радиоволны)

Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии.

Частота электромагнитного излучения показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей.

Измеряется частота электромагнитного излучения в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду.

Это основная единица измерения для данного явления, (аналогично, например,  децибелу — единице уровней, затуханий и усилений). Электромагнитные волны, частота электромагнитного излучения которых условно ограничены 3000 ГГц, распространяются в пространстве без искусственного волновода.

Нижняя граница радиоволн – 3 кГц – условная, установлена международными соглашениями. По длине волны диапазон радиоволн подразделяют на: мириаметровые (3—30 кГц), километровые (30—300 кГц), гектометровые (300—3000 кГц), декаметровые (3—30 МГц) и метровые (30—300 МГц), дециметровые (300—3000 МГц), сантиметровые (3—30 ГГц), миллиметровые (30—300 ГГц), децимиллиметровые (300—3000 ГГц).

Длина радиоволны

Длина радиоволны – это расстояние между двумя соседними максимально высокими или максимально низкими точками, расстояние, которое проходит волна за один период – за время одного колебания. Таким образом, длина радиоволны представляет собой расстояние между двумя соседними «возвышениями» или «впадинами» волны.

Частота и длина радиоволны обратно пропорциональны друг другу. Поэтому, зная частоту и скорость распространения радиоволн, можно определить искомую величину. Длина радиоволны равна скорости распространения, поделенной на частоту. Как уже было описано, с увеличением частоты длина радиоволны уменьшается, с уменьшением – увеличивается.

Знание длины волны очень важно при выборе антенны для радиосистемы, так как от нее напрямую зависит длина антенны. Энергия, которую несут радиоволны, зависит от мощности генератора (излучателя) и расстояния до него. Поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя.

Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него.

Источник: https://secandsafe.ru/stati/programmnoe_obespechenie/svoystva_radiovoln

Радиоволны

Физика > Радиоволны

Радиоволны – электромагнитные, которые по длине волны вписываются в диапазон 1-100 км (частоты: 300ГГц – 3кГц).

Задача обучения

  • Сравнить характеристики AM и FM.

Основные пункты

  • Наименьшие частоты именуется как «радио». Длина волны охватывает 1-100 км, а частота: 300ГГц – 3кГц.
  • Есть множество подкатегорий, включая AM и FM радио. Они способны генерироваться в природных источниках, вроде молнии или астрономического явления, а также искусственными, вроде радиостанций, спутников и сотовых телефонов.

  • АМ используют для транспортировки коммерческих радиосигналов (540-1600 кГц). Аббревиатура – амплитудная модуляция. Волны обладают стабильной частотой, но изменчивой амплитудой.
  • FM также применяют для коммерческих целей (88-108 МГц). Это частотная модуляция, где меняется частота, но остается стабильной амплитуда.

Термины

  • FM-радиоволны – применяется для транспортировки коммерческих радиосигналов (88-108 МГц).
  • Радиоволны AM – используются в коммерции (540-1600кГц).
  • Радиоволны – часть электромагнитного спектра с частотами 300ГГц – 3кГц (1-100 км).

Радиоволны – электромагнитные лучи, чья длина волны превышает ИК-излучение.

По частоте достигает 300ГГц – 3кГц, а длина волны: 1-100 км. Они перемещаются на световой скорости. Естественным путем создаются в молнии или космических явлениях. Искусственными источниками служат радиовещание, мобильная связь, радиолокация, спутники, компьютерные сети и прочие подобные приборы. Длинные волны способны покрывать значительную часть Земли.

Короткие могут отражать ионосферу и путешествовать по миру.

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличаются, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Разновидности радиоволн

Радиоволны делятся на множество подкатегорий, используемы для радио AM и FM, сотовой связи и телевидения. Наиболее низкие формируются высоковольтными линиями (50-60 Гц). Это одно из средств потери энергии при передаче на больших дистанциях.

Радиоволны с крайне низкой частотой (1кГц) применяются для связи с подводными лодками. Волны могут проникнуть в соленую воду, выступающую отличным проводником.

Радиоволны АМ

Используют в коммерческих целях (540-1600кГц). Аббревиатура – амплитудная модуляция. Это метод размещения информации на волнах. Буферная обладает базовой частотой радиостанции и меняется по амплитуде аудиосигналом. Частота остается стабильной, а температура – нет.

Амплитудная модуляция для АМ. (а) – Несущая волна на стартовой частоте станции. (b) – Звуковой сигнал на гораздо более низких частотах. (с) – Амплитуда модулируется аудиосигналом без перемены главной частоты

Радио FM

Также задействованы в коммерческих целях (88-109МГц). Это частотная модуляция, где волна обладает базовой частотой и модулируется по ней, формируя волну со стабильной амплитудой, но меняющейся частотой.

Частотная модуляция для FM. (а) – Несущая волна на базовой частоте станции. (b) – Звуковой сигнал на более низких частотах. (с) – Частота модулируется звуковым сигналом, не задевая амплитуду

Слышимые частоты располагаются в диапазоне до 20кГц, FM может опускаться до 0.020 МГц. Приемник настраивается на резонанс транспортируемой волны и обладает схемой, воспроизводящей информацию. FM не так сильно подвергается шуму сторонних радиоисточников. А вот АМ добавляет шум к амплитуде в качестве части информации.

ТВ

Электромагнитные волны также обеспечивают телевизионное вещание. Но здесь они обязаны передавать сразу звуковую и визуальную информацию, поэтому охватывают большой диапазон частот: 54-89 МГц и 174-222 МГц. Подобные каналы именуют VHF (очень высокая частота). Есть также UHF (сверхвысокая частота): 470-1000 МГц.

Сигнал – АМ, а звук – FM. Отметьте, что они используют устаревшую антенну на крыше. Дело в том, что кабельное ТВ и спутниковое осуществляется на более высоких частотах с форматом HD.

Источник: http://v-kosmose.com/fizika/radiovolnyi/

Ссылка на основную публикацию
Adblock
detector