Лабораторный БП PS-3005P это гибридный блок питания, на выходе у него используется быстродействующий линейный стабилизатор, за линейным стабилизатором «следит» ШИМ предрегулятор.
Почему так ? Зачем такие сложности ?
Преимущество линейного стабилизатора в его быстродействии, в случае перегрузки по току линейный стабилизатор быстро снижает выходное напряжением и с большей вероятностью «спасает» устройство.
Недостаток линейного стабилизатора в том, что на регулирующем элементе выделяется много тепла, что требует больших радиаторов и вентиляторов.
Импульсный стабилизатор, в отличие от линейного, имеет небольшие тепловые потери, но на его выходе устанавливаются конденсаторы большой емкости из-за чего он становиться медленным, при перегрузке все эти тысячи микрофарад разряжаются на нагрузку.
В гибридном блоке питания за счет ШИМ предрегулятора падение напряжения на линейном стабилизаторе небольшое и следовательно тепловые потери малы, таким образом получается быстрый стабилизатор с небольшим тепловыделением.
Как работает БП в целом надеюсь понятно далее будет поподробнее, переходим к внешнему виду.
БП собран в корпусе Gainta G768 из высокопрочного ABS пластика.
На передней панели расположен дисплей на ярких семисегментных индикаторах, светодиодные индикаторы режимов работы, два энкодера, кнопка и выключатель питания.
На задней панели сетевой разъем и разъем цифрового канала.
Вскрываем верхнюю крышку
БП состоит из трех основных модулей: модуль индикации, модуль регулирования (на фото слева) и модуль резонансного преобразователя (на фото справа).
В модуле индикации интересного ничего нет, а вот два остальных модуля рассмотрим поподробнее.
Резонансный преобразователь
Фото преобразователя без лишних проводов
Резонансный преобразователь относиться к импульсным преобразователям (ИП) и является разновидностью полумостовых (мостовых) преобразователей.
Особенностью резонансных преобразователей является так называемое «мягкое» переключение силовых транзисторов, которое происходит при нулевом напряжении ( ZVS) или нулевом токе (ZCS), наиболее распространен ZVS преобразователь, он и используется в БП.
Переключение транзисторов при нулевом напряжении очень важно из соображений излучаемых помех, чем больше значение коммутируемого напряжения тем больше амплитуда помехи и поскольку коммутация происходит при напряжении близком к нулю, то и помехи от преобразователя небольшие. Кроме того при «мягком» переключении транзисторов нет потерь на переключение, основные потери сводятся к статическим потерям (потери на сопротивлении канала).
Недостатки у резонансного преобразователя тоже, есть. Прежде всего это более сложный расчет и более сложная конструкция силового трансформатора, требующая секционирования обмоток. Оптимизация параметров резонансного преобразователя процесс кажется бесконечный, на фото выше представлена ревизия 2.6.3 т.е. перед ней было по меньшей мере 10 вариантов печатных плат, а расчетных (бумажных) вариантов и не сосчитать. Но, не смотря на всю сложность, процесс оптимизации действительно интересен и если Вы до сих пор не собирали подобные ИП, то может самое время попробовать начать ?
Блок питания с регулировкой напряжения и тока 3 — DRIVE2
Всем привет! Давно хочу написать, но все не хватает времени, а сегодня вот как-то не могу найти чем заняться…напишу об очередной доработке блока питания. Предыдущая часть здесь www.drive2.ru/b/2195993/
Блок питания активно использовался все это время, и показал себя с отличной стороны. Использовал его в основном для всяких поделок и несколько раз для подкачки колес компрессором.
Подкачка колес была непростым испытанием, ток несколько раз переваливал за 10А.
Насчет самого блока питания, я не сомневался, что он выдержит такую нагрузку, но вольтамперметр рассчитан на ток до 10А, а глядя на проводки которыми он подключается и разъем, думаю, и того меньше! Но все на удивление выдержало.
Полный размер
Качаем колеса
Полный размер
Качаем колеса
И вот решил я расширить универсальность прибора, добавив ограничение по току, чтобы можно было заряжать автомобильный аккумулятор, да и любой другой аккум. В инете есть много схем о переделке компьютерного БП с ограничением по току.
Как и с регулировкой напряжения, с ограничением по току может справляться все та же TL494. Но эти переделки показались мне слишком сложными, и я решил пойти другим путем. На али был найден подходящий понижающий DC-DC преобразователь с регулировкой напряжения и тока. Вот ссылочка.
Вход от 7 до 32В, выход — от 0,8 до 28В, максимальный ток 12А.
DC-DC преобразователь на 12А с Али
После этого я принялся все переделывать. Выбросил все лишнее из БП, убрал регулировку напряжения, впаял в плату подстроечный резистор и выставил напряжение около 17В, чтобы на выходе было около 15В. Все провода заменил на качественный медный провод сечением более 3 квадратов.
Все разъемы выкинул, все на пайке. К вольтамперметру тоже протянул нормальный провод и припаял прямо к плате. Преобразователь закрепил внутри корпуса. Вентилятор запитал от шины +5В (на ней сейчас около 7В). Добавил на корпус резиновые ножки.
Вообщем все сделал не на страх, а на совесть.
Полный размер
С преобразователем внутри
Полный размер
С преобразователем внутри
Полный размер
С преобразователем внутри
Теперь всем доволен…почти))) Хочу еще вентилятор переставить, чтобы он вдувал воздух вовнутрь, но имеющийся кулер этого не позволяет сделать, так как крепеж у него только с одной стороны. И пора обновить красочку. Уже перестал считать, во сколько он мне обошелся, так как наверное уже смог бы купить готовый аналогичный БП, но самому сделать ведь интереснее))
При дальнейшем повышении выходного напряжения блока питания до уровня 12,4-12,6 вольт, открывается второй стабилитрон, на второй вход микросхемы К555ИВ3 (вывод 12) подаётся логический ноль и срабатывает реле Р2, а Р1 выключается (двоичный код двойки 0-1-0). К первой части обмотки II подключается обмотка III, и на выходе трансформатора переменное напряжение повышается ещё на 5 вольт. Ну и так далее, при повышении выходного напряжения блока питания – срабатывание всех реле происходит в двоичном коде. Пороги срабатывания выбраны следующие; 6,2 – 12,5 – 18,6 – 24,8 – 31 – 37,5 – 43,5 вольт и зависят от применённых стабилитронов.
Трансформатор блока питания.
Силовой трансформатор для применения с данным блоком, имеет три силовых обмотки. Намотать одну силовую обмотку с несколькими выводами, или три силовых обмотки – особой разницы нет, так как в основном трансформатор для своего источника питания, основная часть радиолюбителей изготавливает самостоятельно.
Поэтому мотаем три обмотки, проводом рассчитанным на наш максимальный ток нагрузки. Первая на 13 вольт с отводом от 8-ми вольт (8+5), вторую на 10 вольт и третья на 20 вольт. Начало обмоток на схеме обозначены точками.
Вы можете по своему усмотрению выбрать для себя необходимые напряжения и намотать свои обмотки, только необходимо помнить, что напряжение обмотки III должно быть в два раза больше второй части обмотки II, а напряжение обмотки IV – в два раза больше напряжения обмотки III.
Транзисторы в данном блоке переключения применены КТ315 и выходные КТ815. Вместо них можно ставить любые транзисторы соответствующей структуры и мощности.
Блок собран на печатной плате – размером 55х70 мм. Печатная плата рассчитана без установки на неё реле, так как они могут применяться самые разнообразные. Реле установлены на отдельной плате.
Зарубежные аналоги для микросхемы К555ИВ3 – 74LS/HC/HCT 147. Стабилитроны можно ставить на необходимые Вам пороги переключений. Печатная плата разработана в формате Sprint-Layout 6.0 и изображена со стороны деталей. То есть при её изготовлении рисунок нужно “зеркалить”. Плата также имеется в архиве.
Архив для статьи
При занятиях каким-либо делом регулярно, люди стремятся облегчить себе труд, путем создания различных приспособлений и устройств. Это в полной мере относится и к радиоделу. При сборке электронных устройств одним из важных вопросов, остается вопрос питания. Поэтому, одно из первых устройств, которое часто собирает начинающий радиолюбитель, это блок питания с регулировкой напряжения.
Важными характеристиками блока питания, являются его мощность, стабилизация напряжения на выходе, отсутствие пульсаций, что может проявиться, например, при сборке и запитывании усилителя, от этого блока питания в виде фона или гула. И наконец, нам важно, чтобы блок питания был универсальным, чтобы его можно было применить для питания множества устройств. А для этого необходимо, чтобы он мог выдавать различное напряжение на выходе.
Частичным решением проблемы, может стать китайский адаптер с переключением напряжения на выходе. Но такой блок питания не имеет возможности плавной регулировки и в нем отсутствует стабилизация напряжения.
Иными словами напряжение на его выходе “скачет” в зависимости от величины питающего напряжения 220 вольт, которое часто проседает по вечерам, особенно если вы живете в частном доме. Также напряжение на выходе блока питания (БП), может уменьшиться при подключении более мощной нагрузки.
Всех этих недостатков, лишен предлагаемый в этой статье блок питания, со стабилизацией и регулировкой напряжения на выходе. Вращением ручки переменного резистора мы можем выставить любое напряжение в пределах от 0 и до 10.3 вольт, с возможностью плавной регулировки.
Напряжение на выходе блока питания, мы выставляем по показаниям мультиметра в режиме вольтметра, постоянный ток (DCV).
Это может пригодиться не раз, например, при проверке светодиодов, которые, как известно не любят, когда на них подают завышенное, по сравнению с номинальным напряжение. От этого их срок службы может резко сократиться, а в особо тяжелых случаях светодиод может сразу же сгореть. Ниже приведена схема этого блока питания:
Схема данного РБП является стандартной и не претерпела существенных изменений с 70-х годов прошлого века. Первые варианты схем были с применением германиевых транзисторов, более поздние варианты были с применением современной элементной базы. Данный блок питания способен выдавать мощность до 800 – 900 миллиампер, при наличии трансформатора обеспечивающего нужную мощность.
Ограничение в схеме по применяемому диодному мосту, который допускает токи максимум до 1 ампера.
Если потребуется увеличить мощность данного блока питания, нужно взять боле мощный трансформатор, диодный мост и увеличить площадь радиатора, либо если размеры корпуса не позволяют это сделать, можно применить активное охлаждение (кулер). Ниже приведен на рисунке список деталей необходимых для сборки:
В данном блоке питания применен отечественный мощный транзистор КТ805АМ. На фото ниже можно ознакомиться с его внешним видом. На соседнем рисунке приведена его цоколевка:
Данный транзистор необходимо будет прикрепить на радиатор.
В случае крепления радиатора к металлическому корпусу блока питания, например как это сделано у меня, нужно будет поставить слюдяную прокладку между радиатором и металлической пластиной транзистора, к которой должен прилегать радиатор.
Для улучшения теплоотдачи от транзистора к радиатору, нужно применить термопасту. Подойдет в принципе любая, применяемая для нанесения на процессор ПК, например та же КПТ–8.
Трансформатор должен выдавать на вторичной обмотке напряжение 13 вольт, но в принципе допустимо напряжение в пределах 12-14 вольт.
В блоке питания установлен фильтрующий электролитический конденсатор, ёмкостью 2200 мкф, (можно больше, меньше нежелательно), на напряжение 25 вольт.
Можно взять конденсатор, рассчитанный на большее напряжение, но следует помнить, что у таких конденсаторов обычно и размеры больше. На рисунке ниже приведена печатная плата для программы sprint-layout, которую можно скачать в общем архиве, прикрепленном архиве.
Я собрал блок питания не совсем по этой плате, так как у меня трансформатор с диодным мостом и фильтрующим конденсатором шли на отдельной плате, но сути это не меняет.
Переменный резистор и мощный транзистор, в моем варианте подключены навесным монтажом, на проводках. На плате обозначены контакты переменного резистора R2, R2.1 – R2.3, R2.1 это левый контакт переменного резистора, остальные отсчитываются от него.
Если все-таки при подключении были спутаны левый и правый контакты потенциометра, и регулировка осуществляется не слева – минимум, направо – максимум, нужно поменять местами провода, идущие к крайним выводам переменного резистора. В схеме предусмотрена индикация включения на светодиоде.
Включение – отключение осуществляется тумблером, путем коммутации питания 220 вольт, подводимого к первичной обмотке трансформатора. Так выглядел блок питания на этапе сборки:
Питание подается на блок питания через родной разъем блока питания АТХ компьютера, с помощью стандартного отсоединяемого кабеля. Такое решение позволяет избежать путаницы проводов, которая часто возникает на столе у радиолюбителя.
Напряжение на выходе блока питания снимается с лабораторных зажимов, под которые можно зажать любой провод. Также в эти зажимы, можно подключить, воткнув сверху, стандартные щупы от мультиметра с крокодилами на концах, для более удобной подачи напряжения на собранную схему.
Хотя при желании сэкономить, можно ограничиться простыми проводками на концах с крокодилами, зажимаемыми с помощью лабораторных зажимов.
В случае использования металлического корпуса, наденьте кембрик подходящего размера на винт крепления зажима, во избежание замыкания зажима на корпус.
Подобный блок питания трудится у меня уже не меньше 6 лет, и доказал оправданность его сборки, и удобство применения в повседневной практике радиолюбителя. Всем удачной сборки! Специально для сайта “Электронные схемы” AKV.
Схемы для начинающих
Пример исполнения импульсного БП с контроллером на основе интегральной микросхемы PWR-9MP3 (фирмы Power Integration) со встроенным мощным КМОП-транзистором приведен на рис. 1.
ИС реализована в корпусе DIP с 16 выводами. В данной ИС содержатся все узлы, необходимые для работы ШИМ-регулятора и все схемы самозащиты, устанавливаемые в современных контроллерах импульсных БП.
Выпрямленное сетевое напряжение через обмотку I импульсного трансформатора подается на мощный КМОП-тран-зистор, а также на линейный предрегулятор, понижающий входное напряжение до уровня 6В (Vs), требуемого для работы схемы управления при включении ИБП в сеть.
После вхождения ИБП в рабочий режим данный предрегулятор выключается, а питание для малосигнальных цепей ИС начинает поступать от выпрямителя, образованного диодом D5 и конденсатором С5, подключенными к обмотке обратной связи трансформатора (обмотка II).
Развязывающий конденсатор СЗ служит для фильтрации импульсных помех,наводимых на управляющие цепи. Диоды D3, D4 обеспечивают подавление (демпфирование) выбросов напряжения, возникающих при запирании ключа.
Схема ШИМ-контроллера построена по обычному принципу. Вырабатываемая генераторной частью последовательность импульсов, проходя через вентиль И-НЕ и схему управления, включает ключ на КМОП-транзисторе.
При этом пилообразное напряжение с выхода генератора пилы поступает на один из входов ШИМ-компаратора, другой вход которого соединен с выходом усилителя сигнала ошибки (выходной сигнал которого пропорционаленразностй между напряжением, вырабатываемым цепью обратной связи, и напряжением 1.25 В источника опорного напряжения).
Когда уровень пилообразного напряжения достигает уровня выходного сигнала усилителя ошибки, компаратор срабатывает и выдает сигнал отключения КМОП-транзистора (КМОПТ), который приходит через вентиль ИЛИ, ШИМ-триггер, вентиль И-НЕ в предоконечный каскад управления.
Рассмотрим работу схем самозащиты. КМОПТ-ключ имеет отвод, благодаря которому лишь малая часть общего тока стока протекает через встроенный в кристала токоизмерительный резистор Rsense. Напряжение, падающее на этом резисторе, поступает на компаратор схемы ограничения тока, и если ток стока превысит примерно 300 мА, то произойдет быстрое запирание КМОП-транзистора.
Во второй секции ИС имеются схемы блокировки, срабатывающие при чрезмерном повышении или понижении сетевого напряжения (схемы OV и UV соответственно) и гарантирующие включение ИБП только при условии, что уровни входного напряжения и напряжения от встроенного источника +6 В находятся в заданных пределах.
Схема блокировки при чрезмерном повышении входного напряжения (схема OV) особенно полезна при работе от сети, на напряжение которой могут накладываться мощные выбросы. На время действия таких переходных процессов ИБП отключается и вновь включается, когда входное напряжение окажется в заданных пределах.
Пороговые уровни OV/UV задаются посредством делителя на резисторах R1 и R2. Вход OV/UV можно использовать для управления ИС. Так, ИС может либо отключаться, либо удерживаться в выключенном состоянии подачей на выход OV/UV сигнала с низким уровнем.
Подключив к данному выводу конденсатор, можно обеспечить задержку включения ИБП.
Схема плавного включения содержит генератор и встроенный конденсатор, подключенные к промежуточному каскаду усилителя сигнала ошибки.
До полной зарядки конденсатора напряжение усилителя сигнала ошибки будет удерживаться на низком уровне, увеличивая тем самым скважность управляющих импульсов и ограничивая амплитуду тока ключа в процессе включения.
После полной зарядки конденсатора усилитель входит в линейный режим, обеспечивая стабилизацию выходаого напряжения. Во всех случаях отключения и блокировки данный конденсатор разряжается, благодаря чему ИБП будет всегда включаться из определенного состояния.
Схема защиты от перегрева запирает ключ при нагреве кристалла до 125f-175° С. Наличие гистерезиса схемы гарантирует, что ключ включается снова только после того, как температура снизится, по меньшей мере, на 45°С.
В следующем материале, рассмотрим еще одно оригинальное схемное решение импульсного блока питания основе ИМС контроллера STR50115В, нашедшее широкое применение в телевизорах фирмы SONY.
Информационный сайт по ремонту бытовой радиоэлектронной аппаратуры Времонт.su